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Background: Nanoparticles with different sizes, shapes, and surface properties are being 

developed for the early diagnosis, imaging, and treatment of a range of diseases. Identifying the 

optimal configuration that maximizes nanoparticle accumulation at the diseased site is of vital 

importance. In this work, using a parallel plate flow chamber apparatus, it is demonstrated that 

an optimal particle diameter (d
opt

) exists for which the number (n
s
) of nanoparticles adhering 

to the vessel walls is maximized. Such a diameter depends on the wall shear rate (S). Artificial 

neural networks are proposed as a tool to predict n
s
 as a function of S and particle diameter 

(d), from which to eventually derive d
opt

. Artificial neural networks are trained using data from 

flow chamber experiments. Two networks are used, ie, ANN231 and ANN2321, exhibiting an 

accurate prediction for n
s
 and its complex functional dependence on d and S. This demonstrates 

that artificial neural networks can be used effectively to minimize the number of experiments 

needed without compromising the accuracy of the study. A similar procedure could potentially 

be used equally effectively for in vivo analysis.

Keywords: nanoparticle, optimal configuration, vascular adhesion, laminar flow, wall shear 

rate, artificial neural networks

Introduction
The use of nanoparticles in the early diagnosis, treatment, and imaging of a number 

of disorders, such as cancer and cardiovascular disease, is emerging as a powerful 

tool.1 Sufficiently small nanoparticles can be administered at the systemic level, 

transported by blood flow, and reach potentially any site within the macrovascular and 

microvascular circulation carrying imaging and therapeutic agents. A large variety 

of nanoparticles have been developed, and exhibit differences in size, shape, surface 

physicochemical properties, material composition, and deformability.

In cancer treatment and imaging, the maximum nanoparticle diameter has been 

traditionally limited to 200–300 nm in order to take full advantage of the well known 

enhanced permeation and retention effects.2 Given that tumor vasculature has been 

shown to be discontinuous, with “fenestrations” a few hundred nanometers in size, 

sufficiently small nanoparticles would more likely extravasate by crossing the 

fenestrations passively and accumulating in the tumor interstitium.3–5 Within this size 

range, many different nanoparticle types have been proposed including liposomes 

and polymeric particles,6 dendrimers with a characteristic size of 4–10 nm,7 super 

paramagnetic iron oxide particles for cancer imaging and magnetic hyperthermia,8 

gold nanoshells for photothermal therapy,9 and nanoporous silica beads for drug 

delivery and imaging.10
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However, enhanced permeation and retention-based 

delivery strategies are recognized to have important limita-

tions, ie, the fenestration size varies with the type, location, 

and stage of the disease, and indeed with the patient.3 Most 

importantly, vascular fenestrations are cancer-specific and 

are not found in other diseases directly involving the vascular 

apparatus, eg, atheroma. Here, we consider a more general 

nanoparticle delivery strategy based on targeting the diseased 

vasculature without relying on fenestrations and the enhanced 

permeation and retention effect. In this case, nanoparticles 

were designed to recognize and adhere efficiently to the 

walls of the diseased blood vessels and to resist dislodging 

hydrodynamic forces.

Mathematical models have been proposed to predict the 

probability of vascular adhesion as a function of nanoparticle 

size, shape, and surface properties, and biophysical condi-

tions at the site of adhesion.11,12 By contrast, in this work 

artificial neural networks in conjunction with flow chamber 

experiments are proposed as a tool to predict and optimize 

vascular adhesion of nanoparticles.

Methods and materials
Spherical particles and flow  
chamber apparatus
Polystyrene fluorescent particles (Fluoresbrite®, Polysciences, 

Warrington, PA) of different sizes were purchased, namely 

0.75, 1.0, 2.0, 4.5, and 6.0 µm (nominal diameter). Particle num-

ber and diameter were measured using a Multisizer 4 Coulter 

Counter and a size analyzer (Beckman Coulter, Fullerton, CA) 

with a 100 µm aperture. Particles were suspended in a balanced 

electrolyte solution (ISOTON II Diluent, Beckman Coulter) 

and counted. The surface zeta potential was measured using 

a ZetaPALS (Brookhaven, NY). The actual particle diameter 

and surface zeta potential are listed in Table 1.

The adhesion experiments were conducted in a parallel 

plate flow chamber (Glycotech, Rockville, MD) consisting of 

a Plexiglass flow deck, with inlet and outlet holes, a 35 mm 

borosilicate cover slip, and a silicon gasket, installed between 

the flow deck and the cover slip. The parallel plate flow cham-

ber was connected to a syringe pump (Harvard Apparatus, 

Holliston, MA) through plastic tubing to control the flow 

rate precisely. The chamber channel was 5 mm wide (w), 

20 mm long (l), and 254 µm high (h). After connecting the 

chamber to the pump, the apparatus was placed on the stage 

of an inverted fluorescent microscope (Nikon TE-2000). 

A schematic of the apparatus is presented in Figure 1.

For each experiment, 106 fluorescent polystyrene particles 

in 1 mL of solution were injected at different shear rates 

(S = 50, 75, and 90 sec−1), controlled through the syringe 

pump flow rate Q following the relationship:

	
S =

6
2

Q

h w
� (1)

Experiments were performed at room temperature (25°C). 

Images of the fluorescent particles adhering to the substrate 

within the chamber were captured at regions of interest using 

a 20× dry objective and were saved to a computer for storage. 

Multiple regions of interest were chosen in the middle of the 

channel to limit flow disturbance due to the side walls and 

inlet/outlet effects. The still images were saved to a computer 

for storage using a Nikon DQC-FS digital camera (Tokyo, 

Japan), and exported as TIF files into ImageJ, a freeware 

software from the National Institutes of Health (http://rsb.

info.nih.gov/ij/), for postprocessing.

The 35 mm borosilicate dishes were coated with collagen 

type I solution from rat tails (Sigma-Aldrich Corporation, 

St Louis, MO). The collagen solution with a concentra-

tion of 4  mg/mL was diluted in double-distilled water to 

obtain a surface coverage of about 10 µg/cm2. After coating, 

the cover slips were kept at 4°C overnight before running 

the experiments.

Artificial neural networks
The basics of artif icial neural networks are briefly 

covered below. A more comprehensive description is 

given elsewhere.13,14 The artificial neural network is a 

mathematical/computational tool, inspired by the structural 

and functional properties of the biological neural network, 

and consists of a collection of processing units (nodes or 

neurons) organized into layers and mutually interconnected 

through connecting links (synapses, see Figure 2A and 2B). 

In artificial neural networks, there are three distinct types 

of layers: the input layer, comprising all the input nodes; 

the hidden layer(s) collecting the processing nodes; and the 

output layer, comprising all the output nodes. In this work, 

fully connected networks are used where all the nodes in each 

Table 1 Size and zeta potential of polystyrene carboxylate fluorescent microspheres

Dnominal (μm) 0.75 1.00 2.00 4.50 6.00

Dmeasured (μm) 0.72 0.97 1.83 4.90 6.60
Zeta potential (mV) -73.1 ± 2.5 -87.3 ± 3.1 -70.6 ± 4.4 -82.2 ± 7.0 -52.4 ± 0.4
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layer receive connections from all the nodes in the preceding 

layer. Information enters the network through the input nodes, 

is then passed to the sets of hidden layers, and eventually 

reaches the output nodes. A synapsis connecting node i to j 

is characterized by a weighting function (w
ij
); and each layer 

(r) is characterized by a bias function (b
r
), which is equally 

applied to all nodes within the same layer. The information 

reaching a node j is weighted, combined, and processed 

through a transfer function (g
r
). The transfer function serves 

to normalize the information leaving node j. In mathematical 

terms, the artificial neural networks are defined in equation (2) 

where i and o are, respectively, the input and output vectors. 

Equation (2) is written for the j-th output from a network 

consisting of three layers (input, hidden layer, and output, 

Figure 2A). The weights w
ij

(l) are identified by the layer number 

(superscript l) and node numbers (subscripts i and j); the bias 

functions b
j
(l) are identified by the layer number (Figure 2B). 

Summation over repeated indexes is used, except when the 

index is enclosed by parentheses (layer number). This kind 

of network has been described elsewhere.15–18

	

o w g w g w i b b bj js s sr r ri i r
i

s
r

j= +






+









 +∑∑( ) ( ) ( ) ( ) ( )3 2 1 1 2 (( )3

s
∑

	
	

	

(2)

During the training process, the weights (w
ij
) are modified 

by an iterative procedure to align the output signal with the 
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Figure 1 (A) Parallel plate flow chamber apparatus, used for in vitro adhesion experiments, consisting of: 1, a syringe pump; 2, a syringe with particles suspended in solution; 
3, inlet tubing; 4, parallel plate flow chamber; 5, outlet tubing; 6, microscope; 7, digital camera; and 8, computer. (B) Images depicting an epifluorescent microscope with setup 
of the system, and (C) the parallel plate flow chamber with tubing network installed over the stage of the microscope.
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experimental data (test data set). In this phase, a proper set 

of input–output data is specified and used partly to define 

weights and biases (learning set), and partly (test set) to 

check the error of the network response. Once the artificial 

neural network is trained, it is used in recall mode to predict 

the behavior of the system.

Although different transfer functions (g) can be used 

(ie, sigmoid, gaussian, hyperbolic tangent, and hyperbolic 

secant functions), the sigmoid transfer function 1/(1+e−x) 

is used here for all layers. The sigmoid function has been 

shown to provide good learning characteristics and excel-

lent accuracy.19 Also, concerning the topology of the 

network, one to four hidden layers are usually sufficient 

in the vast majority of cases. Complex functional rela-

tionships can be more accurately modeled with a higher 

number of layers, but at the expense of computational and 

training time.

Results
Flow chamber experiment  
and optimal particle size
After injection into the parallel plate flow chamber system, 

the number (n
s
) of particles adhering per unit area to the 

collagen substrate was measured using fluorescence micros-

copy under different hydrodynamic conditions (wall shear 

rate S) and particle diameter (d). These results are shown in 

Figure 3. For a fixed diameter (d), the number (n
s
) of adhering 

particles decreases steadily as S grows; whereas for a fixed S 

ranging between 50 and 90 per second the functional depen-

dence of n
s
on d is more complicated, exhibiting a maximum 

and correspondingly optimal diameter (d
opt

).

Particle adhesion is regulated by the interplay between 

hydrodynamic forces and adhesive interactions arising at 

the particle/substrate interface.14 The hydrodynamic forces 

exerted over a spherical particle attached to a rigid wall in a 

linear laminar flow are given by:11

	

F d SF ST

F T

s

s s

T d S= =

≈ ≈

3

2 2

1 668 0 944

2 3π µ
π

µand

and( . . ) � (3)

whereas the adhesive interactions are related in a complex 

way to the particle diameter (d).11 As the shear rate (S) 

increases, for a given d, the hydrodynamic forces (F) and 

(T) increase too and would tend to dislodge the particle away 

from the substrate, justifying the n
s
(S) relationship. Such a 

biphasic behavior was predicted for the first time by Decuzzi 

and Ferrari.12 Here, for the first time, it is experimentally 

demonstrated that an optimal size (d
opt

) exists, for which the 

number of adhering particles (n
s
) is maximized.

In the case at hand, the nonsymbolic model is constructed 

as follows. First, a suitable neural network is trained with 

a known input–output data set, which is obtained from the 

parallel plate flow chamber experiments described above. 

Then the network generalization capability enables predic-

tion of n
s
 for an arbitrary sequence of the particle size (d) 

and wall shear rate (S).
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Figure 3 Number of particles (ns) adhering per unit area in a parallel plate flow chamber, under different flow conditions (shear rate to the wall [S]), as a function of particle 
diameter d. Single marks represent the experimental data, as from Table S1.
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S = 50 (Raw data) S =75 (Raw data)

S = 90 (Raw data) S = 50 (ANN 231)

S = 75 (ANN 231) S = 90 (ANN 231)

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

0.00 4.00

P
ar

ti
cl

e 
d

en
si

ty
 n

s 
[#

/m
m

2 ]

Diameter d [µm]
3.002.001.00 7.006.005.00

A

S = 50 (Raw data)

S = 75 (Raw data)

S = 90 (Raw data)

S = 60 (ANN 231)

S = 70 (ANN 231)

S = 80 (ANN 231)

S = 85 (ANN 231)

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

0.00 4.00

P
ar

ti
cl

e 
d

en
si

ty
 n

s 
[#

/m
m

2 ]

Diameter d [µm]
3.002.001.00 7.00 8.006.005.00

B

Figure 4 (A) The ns(d) relationship as predicted from ANN231 for particle diameters not tested in the experiments. (B) The ns(d) relationship as predicted from ANN231 for 
shear rates (S) not tested in the experiments. (C) Root mean squared error of the test set of data for the ANN231. 
Note: The red arrow depicts the minimum (2.6 × 106 iterations).
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S = 50 (Raw data) S = 75 (Raw data)

S = 90 (Raw data) S = 50 (ANN 2321)

S = 75 (ANN 2321) S = 90 (ANN 2321)
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Figure 5 (A) The ns(d) relationship as predicted from ANN2321 for particle diameter not tested in the experiments. (B) The ns(d) relationship as predicted from ANN2321 for 
shear rates S not tested in the experiments. (C) Root mean squared error of the test set of data for the ANN2321. 
Note: The red arrow depicts the minimum (1.75 × 106 iterations).

0.03000

0.03500

0.04000

0.04500

0.05000

0.05500

0.00E+00 1.00E+06 2.00E+06 3.00E+06

Iteration

R
M

S
 e

rr
o

r

4.00E+06

C

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


International Journal of Nanomedicine 2011:6 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

1523

Artificial neural networks

Artificial neural networks for predicting 
optimal particle size
Any arbitrary complex function can be approximated by an 

artificial neural network,20 but in a nonconstructive manner. 

This implies that the number of internal degrees of freedom 

(ie, number of hidden layers, total number of nodes, node 

repartition between hidden layers) for the best approxima-

tion of an artificial neural network needs to be defined by the 

user. In this work, artificial neural networks with one and two 

hidden layers were considered, namely ANN231 (one hidden 

layer with three nodes) and ANN2321 (two hidden layers 

with three and two nodes). The experimental data used for 

training the networks are listed in supplementary Table S1. 

The values for the mean (µ) and standard deviation (σ) for the 

experimentally measured number of particles adhering per 

unit area are listed in supplementary Table S2, as a function 

of the particle diameter (d) and wall shear rate (S).

Figure 4 presents the variation of n
s
 with d and S as pre-

dicted from the network ANN231. In Figure 4A, n
s
 is plotted 

for new values of d (1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 

5.5, 6.0, and 6.5 µm), not considered in the experiments, and 

for the shear rates S = 50, 75, and 90 per second which are 

the same as those tested experimentally. In Figure 4B, n
s
 is 

plotted for new values of S, not considered in the experiments, 

namely S = 60, 70, 80, and 85 per second and for particle 

diameters tested in the experiments. The network can capture 

Table 2 Root mean squared error for learning and test sets of 
the two ANNs used

ANN RMSE learning set RMSE test set

231 0.04620 0.03678
2321 0.04623 0.03460

Abbreviations: ANN, artificial neural networks; RMSE, root mean squared error.
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Figure 6 The optimal diameter dopt as a function of S for the ANN231 and ANN2321.

the complexity of the experimental results, with optimal 

particle diameter (d
opt

) reducing as S increases. Figure 4C 

presents the variation of the root mean squared error with the 

number of iterations. A minimum is observed for 2.6 × 10+6 

iterations. The results in Figure  5 are, respectively, the 

predictions (Figures  5A and 5B) and root mean squared 

error (Figure 5C) obtained using the network ANN2321, as 

described above for the previous network.

For different d, the ANN2321 provides predictions 

slightly closer to the experimental data than ANN231 

(Figures 5A and 4A, respectively). In both cases, the accuracy of 

the predictions for the intermediate values of S (75 per second) 

is most critical. For different S, both networks give similarly 

accurate results (Figures 4B and 5B, respectively). The char-

acteristic errors of the training processes are shown in Table 2 

(root mean squared error for learning and test sets). It should 

be noted that, for each network, the training process should be 

stopped when the root mean squared error of the test set reaches 

a minimum (Figures 4C and 5C), with a still decreasing learning 
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root mean squared error (Figure S1 and Figure S2). However, 

given that the behavior of the test error for ANN2321 is sub-

stantially flat, we have used in this instance an “over-trained” 

version of it (ie, a very high number of iterations where neither 

the learning error nor the test error are changing).

Finally, the two proposed networks were used to predict the 

optimal particle size (d
opt

) as a function of the shear rate (S). In 

both cases, d
opt

 reduced with S (Figure 6) in agreement with the 

experiments, but the ANN2321 has smoother behavior which 

captures the physics of the problem more appropriately.

Conclusion
Artificial neural networks were proposed to predict the 

number of particles adhering to the vasculature as a function 

of particle diameter (d) and wall shear rate (S). Two neural 

networks were considered with different internal structures 

(ANN231 and ANN2321), and their predictions were 

compared with the experimental data obtained by analyzing 

the adhesion performance of spherical nanoparticles injected 

into a parallel plate flow chamber system.

The proposed artificial neural networks captured the 

complexity of the physical problem, exhibiting biphasic 

behavior for the n
s
 (d) relationship, and demonstrating the 

existence of an optimal particle diameter (d
opt

) for which the 

number of adhering particles is maximized. The ANN2321 

offered slightly smaller characteristic errors than ANN231, 

and predicted more accurately the variation of d
opt

 with S. 

This work suggests that the number of long parallel plate 

flow chamber experiments can be reduced by using artifi-

cial neural networks, without compromising the accuracy 

of the study. This same procedure could be used for in vivo 

applications leading to a significant reduction in the number 

of animal experiments.
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Table S1 Experimental data for the number of particles ns 
adhering per unit area in a parallel plate flow chamber

S [sec-1] d [μm] ns[#/mm2]

50 0.720 25.60
50 0.720 16.56
50 0.720 22.13
50 0.968 25.79
50 0.968 29.16
50 0.968 27.40
50 1.829 40.01
50 1.829 38.57
50 1.829 41.04
50 4.899 64.49
50 4.899 52.76
50 4.899 54.23
50 6.596 61.55
50 6.596 55.70
50 6.596 74.75
75 0.720 17.78
75 0.720 21.50
75 0.720 17.78
75 0.968 17.15
75 0.968 19.35
75 0.968 18.61
75 1.829 17.30
75 1.829 20.81
75 1.829 20.08
75 1.829 23.45
75 1.829 29.90
75 1.829 28.21
75 4.899 48.85
75 4.899 60.42
75 4.899 42.43
75 4.899 55.28
75 4.899 54.64
75 6.596 47.32
75 6.596 39.24
75 6.596 35.77
75 6.596 40.40
75 6.596 46.74
75 6.596 50.78
90 0.720 14.92
90 0.720 15.31
90 0.720 14.07
90 0.968 13.22
90 0.968 14.65
90 0.968 14.92
90 1.829 13.68
90 1.829 17.59
90 1.829 13.68

90 4.899 28.57

90 4.899 29.71

90 4.899 32.00

90 4.899 29.71

90 4.899 30.28

90 6.596 27.18

(Continued)

Table S2 Values for mean and standard deviation of number of 
particles (ns) adhering per unit area in parallel plate flow chamber 
experiments

Wall shear  
rate S [s-1]

Particle 
diameter  
d [μm]

Mean 
adhesion  
μ[#/mm2]

Standard deviation 
σ[#/mm2]

50 0.72 21.43 4.56
50 0.968 27.45 1.69
50 1.829 39.87 1.24
50 4.899 57.16 6.39
50 6.596 64.00 9.76
75 0.72 19.02 2.15
75 0.968 18.37 1.12
75 1.829 23.29 4.90
75 4.899 52.32 6.88
75 6.596 43.38 5.75
90 0.72 14.77 0.63
90 0.968 14.26 0.91
90 1.829 14.98 2.26
90 4.899 30.05 1.25
90 6.596 24.41 4.06

Table S1 (Continued)

S [sec-1] d [μm] ns[#/mm2]

90 6.596 29.23
90 6.596 18.98
90 6.596 24.62

90 6.596 22.05
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Figure S2 Root mean squared error of the learning set of data for ANN2321.
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Figure S1 Root mean squared error of the learning set of data for ANN231.
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