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Abstract: Patients with chronic obstructive pulmonary disease (COPD) exhibit dominant 

features of chronic bronchitis, emphysema, and/or asthma, with a common phenotype of 

airflow obstruction. COPD pulmonary physiology reflects the sum of pathological changes 

in COPD, which can occur in large central airways, small peripheral airways, and the lung 

parenchyma. Quantitative or high-resolution computed tomography is used as a surrogate 

measure for assessment of disease progression. Different biological or molecular markers 

have been reported that reflect the mechanistic or pathogenic triad of inflammation, proteases, 

and oxidants and correspond to the different aspects of COPD histopathology. Similar to the 

pathogenic triad markers, genetic variations or polymorphisms have also been linked to COPD-

associated inflammation, protease–antiprotease imbalance, and oxidative stress. Furthermore, 

in recent years, there have been reports identifying aging-associated mechanistic markers as 

downstream consequences of the pathogenic triad in the lungs from COPD patients. For this 

review, the authors have limited their discussion to a review of mechanistic markers and genetic 

variations and their association with COPD histopathology and disease status.

Keywords: senescence, apoptosis, chronic obstructive pulmonary disease, bronchitis, 

emphysema

Introduction
Chronic obstructive pulmonary disease (COPD) manifests in two clinical phenotypes, 

bronchitis and emphysema.1,2 Chronic bronchitis is clinically defined as a productive 

cough on most days of a month for at least 3 months of a year in 2 or more consecutive 

years.3 Although cigarette smoking is the major cause for chronic bronchitis, other 

causes include air pollution and occupational exposures. These exposures introduce 

particulates and oxidants resulting in a common pathogenesis.2 Thus, the gross 

pathology and histology of chronic bronchitis is the same regardless of the etiology. 

Gross examination of lung tissue in a patient with chronic bronchitis shows thickened 

bronchial walls with luminal narrowing, and mucous plugging or mucopurulent 

debris within the airways. Microscopically, these gross findings correspond to goblet 

cell hyperplasia, thickening of the subepithelial basement membrane, bronchial 

wall fibrosis, and hyperplasia of the subepithelial seromucinous glands; classically 

defined by the Reid index (Figure 1).4 A chronic inflammatory infiltrate may also be 

present, but is not required, and squamous metaplasia of the respiratory epithelium 

can also be seen.

There are several types of emphysema that share in common destruction of alveolar 

walls with resultant enlargement of airspaces distal to terminal bronchioles. For the 
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purposes of this discussion, the Pratt classification5 will be 

used with the Thurlbeck classification6 given in parentheses. 

Centrilobular (centriacinar) emphysema is most commonly 

caused by cigarette smoking and is defined by destruction 

of alveoli centered around the respiratory bronchiole and 

involving the proximal acinus.7 Gross examination shows 

punctuate areas of small airspace destruction, often associated 

with the deposition of pigment, which is typically more 

pronounced in the apices. Panlobular (panacinar) emphysema 

is caused by α1-antitrypsin deficiency (A1ATD); an inherited 

disorder involving chromosome 14. The gross pathology in 

panlobular emphysema is widespread destruction of alveolar 

tissue with dilation of small airspaces throughout the lungs. 

Destruction is accentuated at the lung bases, with less severe 

destruction in the upper lobes. The histomorphology of 

centrilobular and panlobular emphysema is similar. “Free-

floating” alveolar septa (Figure 2) are seen admixed with 

normal alveolar tissue in centrilobular emphysema. Normal 

alveolar tissue is not seen in panlobular.7 With progressive 

destruction, the formation of bulla (airspace dilation in excess 

of 1 mm) is often observed. These two forms of emphysema 

are broadly classified as diffuse, and they can cause impair-

ment of lung function.

Other types of emphysema include localized (distal 

acinar) and paracicatricial (irregular) emphysema. These 

focal forms do not result in impairment of lung function 

but can cause spontaneous pneumothoraces. Grossly, 

localized emphysema has one or two sites of severe lung 

parenchyma destruction, most commonly located at the 

extreme apex of the lung. Free-floating alveolar septa and 

bulla are again the histomorphologic correlate to the gross 

pathology. Paracicatricial emphysema is defined as alveolar 

destruction surrounding foci of scarred lung tissue and can 

be seen in a wide variety of pulmonary disorders from healed 

foci of infection to the interstitial pneumonias as well as 

pneumoconioses.

Small airway obstruction has also been recognized as 

an important pathologic finding associated with COPD 

(Figure  3).8,9 Small airways disease includes respira-

tory bronchiolitis and membranous bronchiolitis.10 The 

histomorphology includes collections of macrophages contain-

ing smoker’s pigment within respiratory bronchiole lumina, 

alveolar ducts, and alveoli. A lymphocytic infiltrate within 

bronchiolar walls and peribronchiolar fibrosis with bronchiolar 

metaplasia of alveolar septa (lambertosis) are additional 

histologic features. Goblet cell metaplasia and mucostasis may 

also be seen within the membranous bronchioles.

Patients with COPD exhibit different characteristic 

features of chronic bronchitis, emphysema, and/or asthma, 

A

B

Figure 1 Histologic features of chronic bronchitis. (A) A section of bronchiole wall 
with luminal accumulation of mucous, goblet cell hyperplasia, basement membrane 
thickening (arrow), and scattered mononuclear inflammatory cells. (B) A bronchial 
wall with squamous metaplasia of the luminal epithelium (arrow head) and hyperplasia 
of the subepithelial seromucinous glands (arrow).
Note: Hemotoxylin-eosin, original magnification ×200.

Figure 2 Histologic features of centrilobular emphysema. A section of lung tissue shows 
fragmented and “free-floating” alveolar septa (arrow) characteristic of emphysema.
Note: Hemotoxylin-eosin, original magnification ×200.
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but all exhibit clinical symptoms of airflow obstruction. 

The Global Initiative for Chronic Obstructive Lung Disease 

(GOLD) has developed a COPD disease severity classification, 

stages I–IV, based primarily on pulmonary function tests 

(ie, forced vital capacity [FVC] and forced expiratory volume 

in 1 second [FEV
1
]). Pulmonary mechanics provide a clinical 

“snapshot” reflecting the combined effect of pathologic 

changes in all the affected lung compartments. Quantitative 

or high resolution computed tomography (CT) are surrogate 

measures for lung histology and are useful to assess airway 

wall thickening and emphysema.11,12 In the absence of actual 

tissue specimens, these two CT measurements provide an 

“ex vivo” type of pathological characterization. Similarly, 

CT assessment of airway wall thickness and emphysema 

each independently show associations with respiratory 

symptoms, such as dyspnea, cough, and wheezing, in COPD 

patients.11

Cigarette smoking is the primary environmental risk 

factor for COPD. In addition, other environmental (eg, 

wood smoke) and occupational exposures as well as 

genetics contribute to COPD pathogenesis. Consequently, 

pathologic changes and clinical symptoms are linked to 

the interaction of host factors with the environment. These 

interactions generate the pathologic triad of COPD: persistent 

inflammation, protease–antiprotease imbalance, and oxidative 

stress. This triad results in mucous/goblet cell metaplasia and 

hyperplasia, mucous hypersecretion, fibrosis, smooth-muscle 

alterations, and lung-tissue destruction.1 For this review, the 

authors have limited their discussion to a review of molecular 

markers and genetic host factors and their association with 

COPD histopathology and disease status. The Human 

Genome Project and the advancement of molecular biology 

and genetic analysis techniques, microarray analyses, and 

genome-wide association studies (GWASs) are leading to 

new discoveries of genetic variations that predispose to COPD 

susceptibility, lung function, and overall disease severity. 

Similar to the biomarkers, these genetic polymorphisms are 

linked to inflammation, protease–antiprotease imbalance, 

and oxidative stress.

Mechanistic triad: oxidative stress, 
protease–antiprotease imbalance, 
and inflammation
Oxidative stress
Chronic smoking exposes the respiratory tree and lungs to 

reactive oxygen species (ROS), resulting in oxidative stress 

and injury. This triggers production of other ROS and lipid 

peroxidation and subsequent pulmonary inflammation.13 

For example, increased expression of 4-hydroxy-2-

nonenal, a product of lipid peroxidation, is present in 

both the airway and alveolar epithelia of COPD patients.14 

Similarly, malondialdehyde (MDA), an end product of lipid 

peroxidation also increases in the blood of COPD patients 

and increases with severity of disease.15 Both tobacco and 

wood smoke exposure-associated COPD will trigger MDA 

production. Recent studies demonstrate that in smoke-

associated COPD patients, increases in blood MDA inversely 

correlate with changes in FEV
1
.16

Cigarette smoking also causes particulate deposits in the 

lungs with corresponding increases in tissue iron (by Perl’s 

Prussian blue staining).17 Compared with nonsmokers and 

healthy smokers, smokers with COPD have increased iron 

and ferritin and decreased transferrin in their bronchoalveolar 

lavage (BAL) fluid.17 The authors of this paper have recently 

reported similar findings in A1ATD patients.18 Importantly, 

Ghio et al demonstrated that cigarette smoke triggers ROS 

production by an iron-dependent mechanism.17 Smoking 

triggers airway and pulmonary inflammation, with an influx 

of inflammatory cells including macrophages and neutrophils. 

The authors of this paper and others have reported that 

neutrophil elastase (NE) will degrade endogenous iron 

storage or transport proteins, ferritin, transferrin (TF), and 

lactoferrin, and therefore, may increase the “free” iron 

burden. Investigators demonstrated the NE-induced cleavage 

of TF and lactoferrin in vitro.19 The authors of this paper have 

recently reported that NE degrades ferritin to release “free” 

iron that can be taken up by airway epithelial cells.18 NE 

degrades the ferritin very rapidly, and iron is taken up by the 

cells within a few hours. If there is redox-active iron in the 

Figure 3 Histologic features of small airways disease. A section of lung tissue shows 
accumulation of macrophages with smoker’s pigment (arrow) within and around a 
respiratory bronchiole (arrow head).
Note: Hemotoxylin-eosin, original magnification ×200.
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airway surface liquid, the iron can mediate the Haber–Weiss 

reaction, converting any superoxide and/or hydrogen 

peroxide released during a neutrophilic respiratory burst to 

the highly cytotoxic hydroxyl radical.20 Protease degradation 

of TF has been shown to result in iron-mediated hydroxyl 

radical formation and oxidative injury.21,22 Rodent models 

demonstrate that either cigarette smoke exposure or a single 

intratracheal installation of NE causes an increase in iron 

and ferritin in BAL and/or lungs of these animals, which can 

lead to ROS production and oxidative injury.17,18 In addition, 

genetic analyses with different cohorts of COPD subjects, 

both familial and nonfamilial cohorts as well as a smoker 

control group, demonstrated increased expression of iron 

regulatory protein 2 (IREB2 or IRP2) in the lungs of COPD 

patients compared with controls and a genetic association 

of IREB2 as a COPD susceptibility gene.23 Collectively, 

this information highlights the importance of iron-mediated 

oxidative stress in COPD pathogenesis.

Smoking increases the oxidative burden to the lungs. In 

COPD, this is compounded by alterations in the antioxidant 

defenses. Data mining of genetic studies reveals alterations 

in the nuclear factor-erythroid 2-related factor (Nrf2)-

mediated oxidative stress response pathway as well as the 

mitochondrial dysfunction pathway.24 Nrf2 is a transcription 

factor that regulates Phase II and antioxidant genes in 

response to oxidant stress.25,26 In COPD subjects compared 

with healthy smokers, there is decreased expression of heme 

oxygenase 1 (HMOX-1) and catalase, components of the Nrf2 

response pathway, and decreases in catalase and cytochrome 

C oxidase subunits, components of the mitochondrial 

dysfunction pathway. The HMOX-1 has a (GT)
n
 dinucleotide 

repeat in the 5′-flanking region of the gene that has been 

reported to be highly polymorphic.27 In a Japanese population 

study, a HMOX-1 promoter polymorphism with 30 or 

more GT dinucleotide repeats is associated with increased 

susceptibility to emphysema in smokers.28 Furthermore, 

these investigators demonstrated that in response to oxidative 

stress, this polymorphism resulted in reduced transcriptional 

activity of the HMOX-1  gene decreasing the antioxidant 

capacity. Similarly, single-nucleotide polymorphisms 

(SNPs) in the glutathione-S-transferase (GST ) P1 gene have 

been associated with apical distribution of emphysema.29 

Interestingly, increased iron and ferritin levels have also been 

reported in the upper lobes of smokers,30 suggesting genetic 

variations along with iron-catalyzed oxidative stress/injury 

are important mechanisms in emphysema pathogenesis.

The association of emphysema with genetic variations 

in other antioxidant genes has also been reported. There are 

three forms of superoxide dismutase, SOD1 (Cu/Zn SOD), 

SOD2 (MnSOD) and SOD3 (extracellular SOD, ecSOD). 

SNPs in SOD3  have been reported to either protect or 

promote development of emphysema and COPD. In a study 

on populations of European descent, there was a higher 

frequency of the R213G (213Gly) variant of SOD3 in smokers 

who did not develop COPD, compared with individuals with 

COPD.31 Similarly, in a Danish population study, smokers 

expressing the R213G polymorphism in the SOD3  gene 

have a reduced risk of COPD development.32 However, other 

SOD3 polymorphisms are associated with increased risk of 

emphysema and reduced lung function. In two Copenhagen 

populations, two polymorphisms, E1 (rs8192287), in the 

5′ untranslated region of exon 1, and I1 (rs9192288), in 

the first intron, are linked to decreased lung function.33 

In both populations, individuals homozygous for these 

polymorphisms, that is having both E1 and I1 polymorphisms 

have lower FVC% predicted. The investigators also followed 

these individuals for 26 years to monitor for COPD-associated 

hospitalizations and death. Individuals homozygous for 

these polymorphisms had an increased risk of COPD 

hospitalizations compared with noncarrier smokers. A group 

of US investigators with different populations reported related 

findings to the study in Copenhagen. These investigators 

looked at the same three reported polymorphisms, E1, I1, 

and R213G in severe COPD subjects, smoking controls, 

and two family-based cohorts.34 Sorheim et al demonstrated 

that SOD3 SNPs E1 and I1 are associated with a higher 

incidence of CT-defined emphysema in one population, and 

only the E1 SNP is associated with more emphysema in a 

family-based population.34 The same family-based cohort 

also demonstrates that E1 SNP is associated with increased 

airway wall thickness. The investigators concluded that the 

E1 and I1 SOD3 SNPs are associated with CT-documented 

emphysema, but not COPD susceptibility.34

Markers of oxidant injury have also been linked to 

emphysema. One of these markers is the oxidation of 

guanine in deoxyribonucleic acid (DNA) or ribonucleic acid 

(RNA) to produce 8-oxo-7,8-dihydro-2′-deoxyguanosine 

(8OHdG) in DNA and 8-oxo-7,8-dihydroguanosine (8OHG) 

in RNA. Evaluation of emphysematous lungs from COPD 

patients with and without A1ATD reveals increased 

immunohistochemical staining for 8OHdG and 8OHG in the 

emphysematous lungs compared with non-COPD lungs.35 

In addition, lungs from A1ATD have increased oxidized 

DNA/RNA markers in alveolar macrophages and airway 

epithelial cells. These results suggest a role for nucleic acid 

oxidation in the pathophysiology of emphysema.
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The free radical theory of aging suggests that reactive 

oxygen species, modifiable by genetic and environmental 

factors (eg, smoking, pollutants), mediate aging-associated 

alterations in cells and tissues.36–39 Senescence and apoptosis 

are also linked with aging and COPD.40 Consequently, evidence 

of senescence markers and alveolar wall (ie, endothelial 

and/or epithelial) cell apoptosis in emphysematous lungs, 

implicates an aging paradigm important in COPD.41

Cigarette smoking has been implicated as a major 

risk factor for pulmonary cell senescence. Exposing lung 

fibroblasts and human alveolar epithelial cells to tobacco 

smoke in vitro induces senescence, a complete loss of 

replicative capacity, in both cell types.42,43 In the alveolar 

epithelial cells, senescence is characterized by increased 

senescence-associated β-galactosidase activity, accumulation 

of lipofuscin, and increased expression of the cyclin-

dependent kinase inhibitor, p21CIP1 (p21).43 Similar findings 

are also seen in the lung fibroblasts, as well as upregulation 

of a different cyclin-dependent kinase inhibitor, p16INK4a 

(p16), a known senescence biomarker.42 These reports 

were followed by studies using human lung emphysema 

tissues. Compared with healthy smokers and nonsmoker 

controls, emphysema patients have increased expression 

of senescence markers p16 and p21  in alveolar type II 

cells and alveolar endothelial cells.44 These investigators, 

using fluorescent in situ hybridization to assess telomere 

length, also demonstrated telomere shortening, as a marker 

of senescence, in the alveolar type II cells and endothelial 

cells. Similarly, in COPD patients compared with healthy 

smoker and nonsmoker controls, telomere shortening occurs 

in circulating leukocytes.45 A SNP in the BICD1 (bicaudal 

D homolog 1) gene is associated with human telomere 

length variations.46 Other SNPs were evaluated in several 

large cohorts by GWAS, comparing mild, moderate, and 

severe emphysema patients with controls.47 High-resolution 

CT (HRCT) was used to characterize the severity of the 

emphysema. This group also found a SNP in BICD1 that 

is significantly different between emphysema patients and 

controls and thus implicates this gene as an emphysema 

susceptibility gene.47

In addition to increased senescence in emphysematous 

lungs, there is increased apoptosis as part of the pathophysiology 

of emphysema and COPD. In particular, there is apoptosis of 

the structural cells, alveolar epithelial and endothelial cells. 

Apoptosis compounded by loss of proliferative capacity 

in these diseased lungs results in lung tissue loss and 

destruction (reviewed in Demedts et  al48 and Morissette 

et  al49). Emphysematous lungs, compared with those from 

healthy smokers and nonsmokers, have increased terminal 

transferase dUTP nick end labeling staining in alveolar septa 

in both alveolar epithelial and endothelial cells.50  The authors 

confirmed these findings with another immunohistochemical 

indicator of enhanced apoptosis, single-stranded DNA, 

demonstrating increased immunohistochemical staining in 

emphysematous lungs.50 Importantly, these investigators 

confirmed earlier in vitro and animal studies demonstrating 

decreased expression of vascular endothelial growth factor 

(VEGF) and VEGF R2 receptor in the pathogenesis of 

endothelial apoptosis in the emphysematous lungs.50 Other 

apoptosis markers are present in emphysematous lungs. There 

are increased p53 protein levels, Bax/Bcl-x
L
 ratio and tumor 

necrosis factor-related apoptosis-inducing ligand receptors 1, 

2, and 3 protein levels in emphysematous lungs.51 Interestingly, 

different SNPs in the cell division cycle 6 homolog (CDC6) 

gene correspond to a gene-dosage effect in annual lung 

function decline in ex-smoking COPD patients.52 For example, 

SNP6 patients with Val/Val have a 2% annual rate of decline 

in FEV
1
% predicted, while patients with Ile/Ile have an 11% 

annual rate of decline.

Another link to apoptosis in COPD is the autophagic 

process. Autophagy is a highly regulated process by which 

internal organelles and proteins are degraded. Autophagic 

proteins Beclin 1 and LC3B mediate cigarette smoke 

extract-induced apopotsis of airway epithelial cells.53 In 

addition, by Western analysis, electron microscopy, and 

immunoflourescence, there is increased expression of the 

autophagic proteins LC3B-II/LC3B-I, Atg4, Atg5-artg12, 

and Atg7, as well as increased numbers of different stages 

of autophagic vacuoles in the lungs of COPD patients in all 

GOLD categories, with a corresponding increase in caspase 

3 activity, a marker of apoptosis in GOLD 3/4 patients.54

Inflammation
Inflammation in COPD is not a separate entity by itself 

but is integrally related to oxidative stress and protease–

antiprotease imbalance. Cigarette smoking and other inhaled 

pollutants can serve as a trigger or activator of inflammation, 

oxidative stress, and protease–antiprotease imbalance.

COPD patients compared with control subjects experience 

an overall heightened state of systemic inflammation 

reflected by biomarkers, such as cytokines and nitric oxide, 

which further increase with exacerbations.55 Similarly, 

bronchoalveolar lavage fluid and sputum also demonstrate 

increased inflammatory biomarkers such as cytokines, 

proteases, and soluble cytokine receptors.56 In addition, 

cytokine levels can increase with COPD disease severity.57
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Cigarette smoking and perhaps other types of smoke 

inhalation trigger an inflammatory response in the lungs 

resulting in the influx of different types of inflammatory 

cells. Neutrophils, macrophages, T lymphocytes, as well as 

eosinophils and mast cells, have all been associated with 

chronic bronchitis or COPD.58 It is interesting to note that there 

is a strong immunologic aspect to COPD that is characterized 

by T cell activation, proliferation into effector-type T cells, 

and then chemoattraction to the lung based on tissue-specific 

chemokine receptor and ligand expression. Furthermore, 

immune tolerance mechanisms, specifically failure to develop 

tolerance, correlates with COPD disease severity.59 Bronchial 

biopsies or surgical resection specimens of airways and lungs 

have been evaluated by immunohistochemistry to identify 

the infiltrating cells in these tissues. Bronchial biopsies from 

chronic bronchitis subjects with airflow obstruction (COPD) 

compared with normal subjects demonstrate increased 

numbers of CD3+  and CD8+ T cells, macrophages, and 

increased HLA-DR expression.60 Importantly, these 

investigators demonstrate an inverse relationship between 

the number of CD8+ T cells, neutrophils, and eosinophils 

with FEV
1
% predicted in the chronic bronchitis patients. 

Similarly, both airways and lungs from smokers with COPD, 

compared with normal subjects, have increased CD8+ T cells 

in the lung parenchyma, pulmonary arteries, and peripheral 

airways.61,62 Importantly, the number of CD8+ T cells in 

the lung parenchyma and pulmonary arteries of the COPD 

patients negatively correlates with FEV
1
% predicted.61 

Furthermore, compared with control subjects, COPD subjects 

have increased expression of CXCR3+ cells, important in a 

Th1-type of response, which are also CD8+, in the airway 

epithelium and submucosa and increased expression of the 

CXCR3-ligand CXCL10 on the bronchiolar epithelium.63 

These studies highlight the importance of T cells in 

progression of COPD.

Neutrophils are also an important infiltrating inflammatory 

cell in COPD. Bronchial biopsies from GOLD stage III and 

IV COPD patients (severe/very severe) compared with 

healthy nonsmokers and healthy smokers, demonstrate 

increased expression of the chemokine CCL5, leukocyte 

chemotactic chemokine, in the airway epithelium and 

a corresponding increase in neutrophils in the airway 

submucosa.64 Interestingly, based on HRCT scoring of 

emphysema, an SNP in the CCL5 gene has been associated 

with milder emphysema.65 The submucosal neutrophils 

also have increased expression of CD11b and CD44, which 

promote adhesiveness in severe/very severe COPD.64 The 

severity of COPD is also aggravated by acute exacerbations, 

which are often associated with microbial infections and 

neutrophilic inflammation.66 Bronchial biopsies from COPD 

patients with acute severe exacerbations were compared 

with biopsies from stable COPD patients as well as normal 

nonsmoker, nonatopic control subjects. Compared with 

stable COPD and control subjects, patients with acute severe 

exacerbations have neutrophilia and, by in situ hybridization, 

increased mRNA expression of CXCL5 (epithelial derived 

neutrophil attractant-78), CXCL8 (IL-8), CXCR1, and 

CXCR2.67 In addition, a SNP in the CCL1 gene, a chemokine 

that is chemotactic for leukocytes, is significantly associated 

with the frequency of acute severe COPD exacerbations.68 

Furthermore, prospectively, these investigators demonstrated 

this polymorphism is significantly associated with an 

increased risk of death due to acute exacerbations. 

Consequently, they demonstrated a “gene–dosage effect” 

between subjects that are heterozygous versus homozygous 

for the polymorphism.68 Altogether, these studies highlight 

the key role of inflammatory cells, particularly neutrophils, 

macrophages, and T cells, in mediating progression of 

COPD.

Cigarette smoking is a trigger for senescence. One of 

the sequelae of senescence is the development of a pro-

inflammatory phenotype.69 In lung tissues from COPD 

patients compared with healthy smoker and nonsmoking 

control subjects, nuclear factor (NF)-κΒ activation is 

increased in senescent alveolar type II cells.70 In addition, 

compared with nonsmoking controls, there is decreased 

sirtuin deacetylase (SIRT1) protein expression, an anti-

inflammatory and anti-aging protein that negatively regulates 

transcription factors such as NF-κΒ, in the lungs of 

COPD patients.71 Thus, senescent cells may propagate the 

inflammatory response in COPD. Importantly, alveolar and 

endothelial senescence markers, p16 and p21, are positively 

correlated with airflow obstruction (FEV
1
% predicted)44 

and shortened telomere length in leukocytes from COPD 

patients with hypoxemia.45

Protease–antiprotease imbalance
In a simplistic sense, emphysema is caused by the 

imbalance of proteases and antiproteases that results in lung 

parenchymal destruction.72 The classic example is A1ATD, 

where unopposed neutrophil elastase has deleterious effects 

on the lungs. However, in the overall pathogenesis, it is the 

interactions between ROS and proteases or antiproteases that 

trigger this imbalance. Smoke exposure from cigarettes or 

biomass exposure from indoor fires can inactivate endogenous 

antiproteases,73 as well as trigger an acute pulmonary response 
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that activates resident alveolar macrophages and promotes 

neutrophil influx into lungs. As the smoke exposure continues 

and becomes more chronic, there is continued accumulation 

of macrophages, neutrophils, and CD8+ T cells in the 

lungs.74 The macrophages and neutrophils release a variety 

of proteases, including neutrophil elastase, proteinase 3, 

matrix metalloproteinases (MMPs), and cathepsins. These 

proteinases “support” each other by activating each other or 

inhibiting their endogenous inhibitors, such as neutrophil 

elastase inhibiting tissue inhibitors of MMPs, and MMPs 

degrading α1-antitrypsin.74 These proteinases cleave 

components of the extracellular matrix, elastin fibers and 

collagen, generating elastin fragments or collagen-derived 

peptides such as proline-glycine-proline, which have been 

shown to be chemotactic for monocytes, the precursor cell 

for macrophages75 or neutrophils.76 Collectively, chemotactic 

peptide fragments perpetuate macrophage and neutrophil 

accumulation and lung destruction.

Genetic factors also regulate protease activity in the 

lung and emphysema development. MMP12 knockout mice 

are protected from cigarette-smoke-induced emphysema.77 

Genetic studies in large COPD-related cohorts, including 

a family-based COPD cohort, identified a SNP in MMP12 

that protects lung function and reduces the risk of COPD 

in adult smokers.78 In contrast, two studies from Japan that 

used CT or HRCT to characterize the presence and severity 

of emphysema identified an SNP in MMP9 that is associated 

with smoking-induced emphysema development.79,80 In 

addition to MMPs, SERPINE2, an inhibitor of MMP 

activation and extracellular matrix destruction, has been 

linked to COPD as a potential susceptibility gene.81,82 Both 

studies used large case–control cohorts as well as family-

based cohorts to demonstrate the association of SERPINE2 

SNPs with COPD. DeMeo et al proposed a gene-by-smoking 

interaction for this gene.81

Summary
The unique histopathology of COPD is driven by interactions 

between host factors and environmental exposures. Basic and 

translational research have provided important discoveries 

concerning these interactions in COPD, resulting in the devel-

opment of biomarkers reflecting protease injury, oxidative 

stress, inflammation, senescence, and apoptosis (Figure 4). 

The breadth of pathological variability in COPD presents 

a challenge for clinicians. Unique gene and environmental 

interactions may provide critical new insights explaining indi-

vidual manifestations of disease and opportunities to improve 

outcomes for patients.
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