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Background: Gene therapy provides a novel method for the prevention and treatment of cancer, 

but the clinical application of gene therapy is restricted, mainly because of the absence of an 

efficient and safe gene delivery system. Recently, we developed a novel nonviral gene carrier, 

ie, heparin-polyethyleneimine (HPEI) nanoparticles for this purpose.

Methods and results: HPEI nanoparticles were used to deliver plasmid-expressing mouse 

survivin-T34A (ms-T34A) to treat C-26 carcinoma in vitro and in vivo. According to the in vitro 

studies, HPEI nanoparticles could efficiently transfect the pGFP report gene into C-26 cells, 

with a transfection efficiency of 30.5% ± 2%. Moreover, HPEI nanoparticle-mediated ms-T34A 

could efficiently inhibit the proliferation of C-26 cells by induction of apoptosis in vitro. Based 

on the in vivo studies, HPEI nanoparticles could transfect the Lac-Z report gene into C-26 cells 

in vivo. Intratumoral injection of HPEI nanoparticle-mediated ms-T34A significantly inhibited 

growth of subcutaneous C-26 carcinoma in vivo by induction of apoptosis and inhibition of 

angiogenesis.

Conclusion: This research suggests that HPEI nanoparticle-mediated ms-T34A may have a 

promising role in C-26 colon carcinoma therapy.

Keywords: gene therapy, mouse survivin-T34A, colon cancer, polyethyleneimine, nanoparticles, 

cancer therapy

Introduction
Manipulation of apoptosis provides new strategies for treating human disease.1 Survivin 

is one of the proteins that inhibit apoptosis and regulate cell division. Interestingly, 

survivin is prominently upregulated in most human cancers, with undetectable levels 

in normal adult tissues.2–4 These features make survivin of interest in targeted cancer 

therapy.5

Gene therapy holds promise for the treatment of various diseases for which there 

is little hope of finding a conventional cure.6 Cancer is the leading cause of death in 

economically developed countries,7 and is a major public health problem throughout 

the world. Based on GLOBOCAN 2008 estimates, about 12.7 million cancer cases 

and 7.6 million cancer deaths are estimated to have occurred in 2008. Of these, 56% 

of cases and 64% of deaths occurred in the developing world.8

Colorectal cancer is the second most common cause of cancer death in men and 

women, with an estimated incidence in the United States of 145,290 and a mortality 

rate of 56,290 in 2005.9 Worldwide, colorectal cancer affects more than one million 

people every year and is responsible for more than 0.5 million cancer-related deaths 

annually. Presently, only 70% of colorectal tumors are resectable, of which only 75% 
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are curable. However, 25% of resected patients will have 

recurrent disease, and 19% of patients have advanced dis-

ease at the time of diagnosis, of whom the majority present 

with distal metastases, with some presenting with unresect-

able tumors.10 Survivin is highly expressed in colon cancer. 

Downregulating wild-type survivin can inhibit proliferation 

of colon cancer cells by induction of apoptosis, showing 

potential application in colon cancer therapy.11,12

Integrity of the survivin pathway is required for viability 

of cancer cells.13 Molecular antagonists of survivin including 

antisense or expression of a dominant negative mutant result 

in spontaneous apoptosis of cancer cells in vitro and in vivo. 

Survivin phosphorylation on Thr34  may be required to 

preserve cell viability at the cell division stage, and loss of 

phosphorylation on Thr34 results in apoptosis of cells.14,15 

Recent research has found that transfection of cancer cells 

with the mouse survivin Thr34 → Ala mutant (ms-T34A) 

gene led to apoptosis of cancer cells.16–18 Thus, targeting the 

survivin pathway in cancer with the ms-T34A gene is a novel 

protocol for cancer gene therapy.19,20

Currently, many cancer-associated genes are being 

identified. However, the clinical application of gene therapy 

is restricted, mainly because of the absence of effective and 

safe gene delivery technology.21–23 Polyethyleneimine (PEI) 

is one of the most efficient nonviral gene transfection agents. 

The commercially available branched polyethyleneimine 

(25,000 kDa, PEI25K) has been used as the “gold standard” to 

evaluate the transfection efficiency of other newly developed 

nonviral gene carriers. However, polyethyleneimine is not 

biodegradable and has severe cytotoxicity.24–26 Coupling 

short PEI chains into a longer chain using biodegradable 

linkers can create biodegradable PEI derivates with high 

transfection efficiency and low toxicity, and this provides an 

interesting method for developing an advanced PEI-based 

gene carrier.27,28

Recently, we prepared biodegradable heparin-conjugated 

PEI2K (HPEI) nanoparticles as a novel nonviral gene carrier 

with low cytotoxicity and high transfection efficiency.29 In 

this work, we used these HPEI nanoparticles to deliver the 

ms-T34A gene to treat colon cancer in vitro and in vivo. 

The results suggest that the HPEI nanoparticle-mediated 

ms-T34A gene may be a novel candidate for colon cancer 

therapy.

Materials and methods
Materials
Polyethyleneimine (molecular weight 2000, PEI2K), 

polyethyleneimine (molecular weight 25,000, PEI25K), 

1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC), 

N-hydroxysuccinimide (NHS), 2-(N-morpholino)ethane-

sulfonic acid (MES), Dulbecco’s modified Eagle’s medium 

(DMEM), and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl 

tetrazolium bromide (MTT) were purchased from Sigma 

(St Louis, MO). Heparin (molecular weight 4000–6000) 

was purchased from Fluka (Milwaukee, WI). The C-26 

colon carcinoma cells were obtained from the American 

Type Culture Collection (Rockville, MD). Female BALB/c 

mice aged 6–8 weeks were obtained from the West China 

Experimental Animal Center. The C-26 colon carcinoma 

cells were cultured in DMEM supplemented with 10% heat-

inactivated fetal bovine serum and 100 µg/mL amikacin, and 

were maintained in a humidified chamber at 37°C in a 5% 

CO
2
 atmosphere.

Preparation of plasmid DNA
Plasmid pVITRO2 (Invitrogen, San Diego, CA) expressing 

ms-T34A was constructed in our laboratory.18 Escherichia 

coli colonies containing ms-T34A and a null colony were 

cultured in Luria-Bertani broth, with addition of ampicillin 

100 µg/mL. The recombinant plasmids were prepared using 

an Endofree Plasmid Giga kit (Qiagen, Chatsworth, CA). 

Endotoxin levels of the prepared plasmid DNA were deter-

mined by Tachypleus amebocyte lysate. No genomic DNA, 

small DNA fragments, or RNA were detected in the prepared 

DNA. The DNA was then dissolved in sterile endotoxin-free 

water, and the concentration of DNA was determined by 

ultraviolet spectrophotometry.

Preparation and characterization  
of HPEI nanoparticles
Preparation
HPEI was prepared according to a method previously 

described.29 Briefly, 50 mg of heparin was dissolved in MES 

solution buffer (0.05 M, 100 mL); 20 mg of EDC and 30 mg of 

NHS were then added to this solution for two hours to activate 

the carboxylic acid groups of heparin. The activated heparin 

solution was dropped into PEI2K solution (7.5 mg/mL, 20 mL) 

while stirring constantly. This reaction was carried out at room 

temperature overnight. The resulting HPEI nanoparticles were 

dialyzed in distilled water for three days, filtered by a syringe 

filter (Millex-LG, Millipore Co, Billerica, MA), adjusted to a 

concentration of 1 mg/mL, and stored at 4°C for future use.

Characterization
The morphology of the HPEI nanoparticles was observed 

under a transmission electron microscope (H-6009IV, 
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Hitachi, Japan). The HPEI nanoparticles were then diluted 

with distilled water and placed on a copper grid covered 

with nitrocellulose. Samples were negatively stained with 

phosphotungstic acid. The particle size and zeta potential of 

the HPEI nanoparticles were determined by dynamic light 

scattering (Malvern Nano-ZS 90, Worcestershire, UK). The 

temperature was kept at 25°C during the measuring process. 

All results were the mean of three test runs.

The DNA-HPEI complexes with different ratios of 

nitrogen atoms from PEI to the phosphate group from DNA 

(N/P) were electrophoresed on 1% (w/v) agarose gel for 

30  minutes at 100 V. The gel was stained with ethidium 

bromide 0.5  mg/mL and illuminated on an ultraviolet 

illuminator to show the location of DNA.

Transfection in vitro
Twenty-four hours prior to transfection, C-26  cells were 

seeded into a six-well plate (Becton-Dickinson, Franklin 

Lakes, NJ) at a density of 1 × 105 cells per well in 2 mL of 

complete DMEM containing 10% fetal calf serum). At the 

time of transfection, the medium in each well was replaced 

with 1 mL of fresh serum-free medium. pGFP was used as a 

report gene. The amount of pGFP was kept at 2 µg/well, while 

the mass ratios of HPEI/pGFP, PEI25K/pGFP, and PEI2K/

pGFP were 5/1, 1/1, and 5/1, respectively. Six hours later, the 

medium was replaced by fresh medium. After 48 hours, the 

transfected cells were observed under a fluorescence micro-

scope (Carl Zeiss Microimaging Inc, Thornwood, NJ), and 

the transfection efficiency was recorded by flow cytometry 

(Epics Elite ESP, Beckman Coulter, Fullerton, CA).

Preparation of HPEI-DNA complexes
HPEI-DNA complexes were prepared by mixing 5 µg HPEI 

(5  µL, 1  mg/mL) solution with 1  µg of pVITRO2/GFP 

plasmid, pVITRO2/null plasmid, or pVITRO2/ms-T34A 

plasmid, followed by incubation for 30  minutes at room 

temperature.

In vitro studies
Cytotoxicity assay
C-26 cells were plated at a density of 1 × 104 cells/well into a 

96-well plate and incubated at 37°C overnight in DMEM. The 

medium was then removed, and the cells were then washed with 

serum-free DMEM without antibiotics, and 200 µL serum-free 

DMEM without antibiotics was added to the wells. Normal 

saline (control), HPEI (1 µg), the null HPEI complex (DNA-

HPEI, 0.2 µg:1 µg), or ms-T34A-HPEI complex (DNA:HPEI, 

0.2  µg:1  µg) was then added to the wells. The plate was 

incubated for 48 hours at 37°C. Cell viability was then exam-

ined using the MTT method.

Morphological analysis
After transfection for 48 hours, C-26 cells were suspended 

in hypotonic propidium iodide solution containing 50 µg 

propidium iodide/mL in 0.1% sodium citrate plus 0.1% 

Triton X-100, incubated in the dark for 10  minutes, and 

examined by fluorescence microscopy.

Flow cytometric analysis
After the transfected DNA (ms-T34A or null)-HPEI 

complexes (DNA:HPEI, 1:5) were incubated for 48 hours, 

the C-26 cells in the six-well plates were washed once with 

300 µL of phosphate-buffered solution, detached with 300 µL 

of trypsin/EDTA, centrifuged (1500 rpm, three minutes), and 

the supernatant was discarded. The C-26 cells were fixed 

with 75% alcohol, centrifuged (1500 rpm, three minutes), 

and resuspended with propidium iodide in an ice bath. Thirty 

minutes later, these samples were analyzed using a flow 

cytometer (ESP Elite).

In vivo study
Ten mice were subcutaneously injected with 100  µL of 

C-26 cell suspension (1 ×  106) into the right flank. The 

β-galactosidase-expressing plasmid pCMV-LacZ was used 

to evaluate the transfection efficiency of HPEI in vivo. 

When the mean tumor diameter was 10 mm, the tumor-

bearing mice were randomly divided into two groups, 

and treated with intratumoral injection of null-HPEI 

(5 µg:40 µg) or Lac-Z-HPEI (5 µg:40 µg), respectively. 

After 48  hours, an in situ β-galactosidase staining kit 

(Beyotime, China) was used to detect tumor expression 

of the Lac-Z gene.

Therapy studies
Female BALB/c mice were injected subcutaneously with 

100 µL of C-26 cell suspension (1 × 106) into the right flank. 

After the tumor mean diameter reached about 6 mm, the 

tumor-bearing mice were randomly divided into four groups 

and received the following treatment by intratumoral injection: 

normal saline, HPEI nanoparticles (25 µg), null-HPEI 

complexes (5µg plasmid/ 25µg HPEI), and ms-T34A-HPEI 

complexes (5µg ms-T34A/ 25µg HPEI. The mice were treated 

with five doses at intervals of 3 days. The tumor volume was 

calculated as 0.52 × length × width2, and was recorded every 

3 days. When mice in the control group became very weak, 

they were sacrificed by dislocation of the cervical vertebra.
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Analysis of histology and apoptosis
The tumors were fixed in 4% paraformaldehyde in phosphate-

buffered solution for at least 24 hours. Tissues were embedded 

in paraffin, and at least four cross-sections 3–5 µm thick were 

taken from each tumor and stained with hematoxylin and 

eosin. A commercially available TUNEL kit (Promega, 

Madison, WI) was used to investigate the apoptotic cells in 

the C-26 tumors. This analysis was performed following the 

manufacturer’s protocol, and the samples were examined 

with a fluorescence microscope (400×).

The tumors were stored at −80°C, and to examine 

microvessel density, were immunostained with an epithelial 

cell marker goat antimouse CD31 antibody (dilution 1:100; 

Santa Cruz Biotechnology, Santa Cruz, CA) overnight at 

4°C. Rabbit-antigoat TRITC (dilution 1:100; Santa Cruz 

Biotechnology) was added, and the tumors were then left in a 

humidified chamber protected from light at 37°C for one hour 

and counterstained with Hoechst 33258 for 10 minutes. The 

microvessel density was determined as the average number 

of CD31-positive small vessels in a field (400×).

Statistical analysis
The data were evaluated using a two-tailed unpaired Student’s 

test or compared by one-way analysis of variance, and are 

expressed as the mean ± standard deviation. P , 0.05 was 

considered to be statistically significant.

Results and discussion
Use of advanced gene carrier systems is very important 

for developing a successful gene therapy protocol. Some 

functional genes associated with disease have been discovered, 

but the clinical use of gene therapy remains restricted, 

mainly due to the absence of safe and efficient gene delivery 

technologies. Nanoparticles have attracted attention as 

drug delivery systems.30–32 Some nanoparticle-encapsulated 

drugs are already in clinical trials or marketed.33 Cationic 

nanoparticles can be used as a nonviral gene vector in vitro 

and in vivo.34–36 PEI is one of the most efficient nonviral 

gene transfection agents. However, PEI is not biodegradable 

and has high cytotoxicity, which greatly restricts its clinical 

application.37–41 Binding short PEI chains into longer ones 

using biodegradable linkers can create PEI derivates with 

high transfection efficiency and low toxicity.42–44 These 

PEI derivates have more potential in gene therapy than the 

commercially available PEI25K.45–47 Recently, we used heparin 

to conjugate low molecular weight PEI (PEI2K), creating novel 

cationic HPEI nanoparticles with low cytotoxicity and high 

transfection efficiency.29 Up until now, HPEI nanoparticles 

have been used to deliver therapeutic genes (such as pVSVMP, 

pIL-15, and FILIP1L) to treat cancer. The results have shown 

HPEI nanoparticles to be a novel nonviral gene carrier with 

promising application in cancer gene therapy.29,48 In this 

work, we prepared a plasmid-expressing ms-T34A gene and 

used HPEI nanoparticles to deliver this gene to treat colon 

cancer in vitro and in vivo. The anticancer effect of HPEI 

nanoparticle-mediated ms-T34A gene therapy was evaluated, 

and the relevant anticancer mechanisms are discussed.

Preparation and characterization  
of HPEI nanoparticles
HPEI nanoparticles were prepared in accordance with 

our previous description, as schematically represented in 

Figure 1A. The freshly prepared HPEI nanoparticles were 

characterized in detail, and found to have a dynamic diameter 

of 78 nm ± 3.4 nm and a polydispersity index of 0.153, as 

determined by dynamic light scattering. The transmission 

electron microscopic image of the HPEI nanoparticles 

(Figure 1B) indicates that these particles had a mean size 

of about 26 nm. To our knowledge, transmission electron 

microscopy determines the size of dry particles, while 

dynamic light scattering determines the hydrodynamic 

diameter of particles in water. HPEI nanogels are likely to 

have high water absorption, because dry HPEI nanoparticles 

(about 26 nm) can absorb water and swell to become nano-

gels with a size of about 78 nm. Thus, there is disagreement 

about particle size measurement by dynamic light scattering 

and transmission electron microscopy. The zeta potential 

spectrum for the HPEI nanogels is presented in Figure 1C; 

these nanoparticles were cationic and had a zeta potential 

of 29 ± 0.68 mV.

The DNA-binding ability of the HPEI nanoparticles was 

evaluated by gel retardation assay, and is shown in Figure 1D. 

When the N/P was 8, complete retardation of DNA was 

achieved. This suggests that the HPEI nanoparticles could 

bind DNA completely when the N/P was $8.

The transfection efficiency of these HPEI nanoparticles 

was evaluated in C-26 cells, with GFP plasmid used as the 

report gene. We observed that many cells had GFP-derived 

green fluorescence, indicating that HPEI nanoparticles could 

efficiently transfect the gene into C-26  cells (Figure  1E). 

Moreover, flow cytometry was used to determine the trans-

fection efficiency of the HPEI nanoparticles. As shown in 

Figure 1F, HPEI nanoparticles had a transfection efficiency 

of 30.5% ± 2%, which was comparable with that of PEI25K 

(32% ± 2.5%), while the transfection efficiency of PEI2K 

was very low.
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Anticancer effect in vitro
The antitumor activity of the HPEI nanoparticle-mediated 

ms-T34A gene in the C-26 cell line was evaluated in vitro. 

After transfection with the ms-T34A-HPEI complexes for 

48 hours, viability of the C-26 cells was determined by the 

MTT method, and the results are presented in Figure 2A. 

The HPEI-mediated ms-T34A gene efficiently inhibited the 

viability of transfected C-26 cells, while HPEI nanoparticles 

and the HPEI nanoparticle-mediated null plasmid did not 

significantly reduce cell viability. This result implies that 

HPEI nanoparticle-mediated ms-T34A-HPEI has anticancer 

activity in C-26 colon cancer cells.

Moreover, we used morphological observations of 

apoptosis and flow cytometry analysis to evaluate whether 

induction of apoptosis was one of the reasons why ms-T34A-

HPEI complexes are able to kill cancer cells. The results of 

the flow cytometry are presented in Figure 2B, showing that 

ms-T34A-HPEI significantly increased the proportion of 

apoptotic cells (46.8%) compared with other agents (normal 

saline 7.5%, HPEI 9.5%, null-HPEI 18.2%). According to 

the morphological observations, there were more apoptosis 

cells (shown with arrow) in the ms-T34A-HPEI treatment 

group than in the other treatment groups (Figure  2C). 

These results suggest that induction of apoptosis was involved 

in the anticancer mechanism of HPEI nanoparticle-mediated 

ms-T34A gene therapy.

Antitumor effect of ms-T34A-HPEI  
in vivo
First, we examined the ability of HPEI nanoparticles to 

transfect the ms-T34A gene into C-26 carcinoma cells in vivo. 

Lac-Z gene was used as the report gene. The HPEI-mediated 

Lac-Z gene was intratumorally injected into the C-26 tumor 

at a volume of about 500 mm3. Forty-eight hours later, an in 

situ β-galactosidase staining kit was used to detect expression 

of β-galactosidase in vivo. As shown in Figure 3A, the blue 

stain indicates expression of β-galactosidase, revealing that 

the Lac-Z gene could be efficiently transfected into C-26 cells 

in vivo. This result confirmed the transfection ability of HPEI 

nanoparticles in vivo.

A subcutaneous mouse colon cancer model was used 

to study the effect of ms-T34A-HPEI on tumor growth 

inhibition. Tumor-bearing mice were divided into four 

groups and treated with normal saline, HPEI, null-HPEI, or 

ms-T34A-HPEI by intratumoral injection. The tumor volume 

was recorded every three days. Four days after the final dose, 
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C-26 cells, and (F) transfection efficiency determined by cytometry analysis. 
Abbreviation: HPEI, heparin-polyethyleneimine.

submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

2423

Gene therapy for C-26 colon cancer

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


International Journal of Nanomedicine 2011:6

the mice were sacrificed, and their tumors were excised and 

preserved. The ms-T34A-HPEI treatment resulted in regres-

sion of tumor growth by 74.8%, 71.2%, and 66.2% com-

pared with the normal saline, HPEI, and null-HPEI groups, 

respectively (P , 0.05, Figure 3B). Moreover, according to 

our previous study, intratumoral injection of low-dose naked 

ms-T34A plasmid did not significantly inhibit the growth of 

C-26 carcinoma in vivo, which may be due to the limited 

expression of naked plasmid in vivo. These results suggest 

that the HPEI nanoparticle-mediated ms-T34A gene can 

inhibit growth of C-26 carcinoma in vivo.

To study the mechanism of anticancer activity for HPEI 

nanoparticle-mediated ms-T34A in vivo, we carried out 

hematoxylin and eosin staining and TUNEL assays. As shown 

in Figure  4A, many strongly positive nuclei identified as 

being in apoptotic cells could be observed in the ms-T34A-

HPEI complex-treated tumor tissues, whereas such nuclei 

were rare in the other groups by TUNEL assay. As shown in 

Figure 4B, a large number of cells with nuclear condensation 

were identified as being apoptotic in the tumor tissues treated 

with ms-T34A-HPEI complexes, whereas nuclear condensa-

tion was rare in the other groups on hematoxylin and eosin 

staining. These results imply that induction of apoptosis may 

be a mechanism for inhibition of colon cancer by ms-T34A-

HPEI complexes in vivo.

Moreover, tumor sections from each treatment group 

were stained with CD31 to evaluate microvessel density 

and counterstained with Hoechst 33258 to mark the 

cell nucleus. Treatment with ms-T34A-HPEI resulted 

in dramatic inhibition of angiogenesis in the tumors 

(Figure 5). This implies that antiangiogenesis may be another 

mechanism for inhibition of colon cancer by the ms-T34A-

HPEI complexes in vivo.

Survivin warrants attention as a method for targeted 

cancer therapy because of its differential expression in tumors 

versus normal tissues and as a bifunctional protein that acts 

as a suppressor of apoptosis and plays a central role in cell 

division.4,16–18 The results of propidium iodide staining and 

flow cytometric analysis in vitro as well as TUNEL staining 

in vivo suggested that ms-T34A-HPEI significantly induced 

apoptosis of cells, more so in the treated group than in 

controls. Previously, some reports also found that the survivin 

gene could kill cancer cells by inducing apoptosis,2,4,16–18 

which supports our results.

The results of CD31staining in each group indicated that 

microvessel density in the ms-T34A-HPEI group decreased 

markedly compared with controls. The generation of 

new blood vessels (angiogenesis) is important for normal 

embryonic development and for the development of patho-

logic conditions such as cancer.49 Previous studies have 

found that the ms-T34A gene can suppress tumor growth 

by inhibiting angiogenesis. This may involve upregulated 

survivin expression during the proliferative phase, with the 

nonproliferative phase of angiogenesis being a transcriptional 

target for vascular endothelial growth factors,11,50 indicating 

that vascular endothelial growth factor protects endothelial 

cells against apoptosis during angiogenesis by upregulating 

survivin.12–15 Therefore, in addition to inhibiting tumor cell 
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Figure 2 Antitumor activity of ms-T34A-HPEI on C-26 cancer cells in vitro. (A) Cell viability was measured by MTT, (B) cellular apoptosis was testified by flow cytometric 
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Abbreviations: HPEI, heparin-polyethyleneimine; ms-T34A, mouse survivin-T34A; NS, normal saline.
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growth, targeted survivin may also prove to be beneficial in 

inducing apoptosis in proliferating endothelial cells within 

the tumor vasculature.17,18

Worldwide, colorectal cancer is responsible for more 

than 0.5  million cancer-related deaths annually, so new 

therapeutics for colon cancer are needed.51,52 Gene therapy 

provides a novel method for cancer treatment. Recently, 

some gene therapy protocols for colon cancer have been 

successfully developed, and their positive results are 

encouraging.53,54 Survivin is upregulated in colon cancer 

but undetectable in normal adult tissue. Previous work has 

indicated that the ms-T34A gene can selectively kill tumor 
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Figure 3 Antitumor effect of ms-T34A-HPEI on subcutaneous C-26 tumor models in vivo. (A) Transfection ability of HPEI was evaluated in vivo, while Lac-Z gene was used as 
the report gene. Blue staining means the gene expression, and (B) tumor volume of each treatment group. Mice bearing C-26 tumors were treated with NS, HPEI, null-HPEI, 
or ms-T34A-HPEI every three days for five doses (5 µg DNA/dosage). 
Note: There was a significant difference in tumor volume between ms-T34A-HPEI and the controls (P , 0.05). 
Abbreviations: HPEI, heparin-polyethyleneimine; ms-T34A, mouse survivin-T34A; NS, normal saline.
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Figure 4 Detection of apoptotic tumor cells. (A) TUNEL assay (green fluoresence indicates apoptotic cells) and (B) hematoxylin and eosin assay. ms-T34A-HPEI complexes 
induced a significant nuclear condensation, implying induction of apoptosis. 
Abbreviations: HPEI, heparin-polyethyleneimine; ms-T34A, mouse survivin-T34A; NS, normal saline.
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cells, but not normal cells in vitro and in vivo,55,56 suggesting 

a potential therapeutic application for the ms-T34A gene in 

colon cancer.57 In this work, we used a novel nonviral gene 

carrier to deliver the ms-T34A gene, and found that ms-T34A/

HPEI complexes can inhibit tumor growth efficiently in vitro 

and in vivo. Moreover, ms-T34A/HPEI complexes did not 

show strong toxicity to normal cells and tissues. Our results 

suggest that the HPEI nanoparticle-mediated ms-T34A gene 

may be an interesting biodrug for colon cancer therapy.

Overall, HPEI nanoparticles can efficiently transfect 

this gene into C-26 colon cancer in vitro and in vivo. HPEI 

nanoparticle-mediated ms-T34A can prevent proliferation 

of C-26 cancer cells by induction of apoptosis. Moreover, 

HPEI nanoparticle-mediated ms-T34A delivery can inhibit 

growth of C-26 cancer cells in vivo by induction of apoptosis 

and antiangiogenesis. These results suggest that HPEI 

nanoparticle-mediated ms-T34A may be a good candidate 

for colon cancer therapy.

Conclusion
HPEI nanoparticles are a novel nonviral gene carrier, and 

can efficiently transfect the ms-T34A gene into C-26 colon 

cancer cells. HPEI nanoparticle-mediated ms-T34A gene 

delivery can inhibit growth of C-26 colon cancer cells in 

vitro and in vivo. Moreover, antiangiogenesis and induction 

of apoptosis in cancer cells are involved in the anticancer 

mechanism of HPEI nanoparticle-mediated ms-T34A gene 

therapy in C-26 colon cancer. Our findings may provide some 

evidence for targeting survivin in C-26 colon cancer and 

suggest that ms-T34A-HPEI complexes can be considered as 

a novel treatment approach for C-26 colon cancer.
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