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Objective: To review the feasibility of coupling the techniques of random amplified 

polymorphic DNA (RAPD) with carbon nanotube-based modified electrode for guanine/deoxy-

guanine triphosphate (dGTP) electrochemical sensing for mapping of the pancreatic cancer 

genetic fingerprint and screening of genetic alterations.

Methods: We developed a new method to study the electrochemical behavior of dGTP utilizing 

carbon multiwalled nanotube (MWNT)-modified glassy carbon electrodes (GCEs). RAPD was 

applied for amplification of DNA samples from healthy controls and patients with pancreatic 

cancer under the same conditions to determine the different surplus quantity of dGTP in the 

polymerase chain reaction (PCR), thereby determining the difference/quantity of PCR products or 

template strands. Using this method we generated a genetic fingerprint map of pancreatic cancer 

through the combination of electrochemical sensors and gel electrophoresis to screen for genetic 

alterations. Cloning and sequencing were then performed to verify these gene alterations.

Results: dGTP showed favorable electrochemical behavior on the MWNTs/GCE. The results 

indicated that the electrical signal and dGTP had a satisfactory linear relationship with the 

dGTP concentration within the conventional PCR concentration range. The MWNTs/GCE 

could distinguish between different products of RAPD. This experiment successfully identified 

a new pancreatic cancer-associated mutant gene fragment, consisting of a cyclin-dependent 

kinase 4 gene 3′ terminal mutation.

Conclusion: The coupling of RAPD and nanoelectrochemical sensors was successfully 

applied to the screening of genetic alterations in pancreatic cancer and for mapping of DNA 

fingerprints.

Keywords: nanoelectrochemical sensor, random amplified polymorphic DNA, genetic finger-

print, pancreatic cancer, genetic predisposition, carbon nanotube

Introduction
The high lethality rate of pancreatic cancer necessitates further improvement of thera-

peutic modalities, and it is clinically urgent to find new means to accurately detect 

early development of pancreatic cancer. Besides environmental exposure, genetic 

susceptibility to pancreatic cancer is also recognized as an important factor influenc-

ing the development of the disease in different individuals. As such, the identification 

of genetic differences related to the development of pancreatic cancer could lead to 

significant breakthroughs in early diagnosis and treatment.1–3

Electrochemical biosensing technology, which is characterized by high efficiency 

and sensitivity, easy and simple operation, and zero contamination, has been employed 

In
te

rn
at

io
na

l J
ou

rn
al

 o
f N

an
om

ed
ic

in
e 

do
w

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.d
ov

ep
re

ss
.c

om
/

F
or

 p
er

so
na

l u
se

 o
nl

y.

www.dovepress.com
www.dovepress.com
www.dovepress.com
http://dx.doi.org/10.2147/IJN.S25842
mailto:lqc673@yahoo.com.cn
mailto:xhl1963@sina.com
mailto:shenghua2327@yahoo.cn


International Journal of Nanomedicine 2011:6submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

2934

Liu et al

in molecular recognition and separation as well as in gene 

purification, and it is currently a cutting-edge research 

field in the life sciences.4–7 Carbon nanotubes demonstrate 

good electrical properties, nanosize effects, large specific 

surface areas, and favorable biocompatibility, and they are 

widely used in electrochemical biosensing technology.8–11 

Carbon nanotube-modified glassy carbon electrodes (GCEs) 

can be used for simultaneous determination of deoxy-

guanine triphosphate (dGTP) and guanine, providing the 

possibility for direct detection of dGTP without separation 

of polymerase chain reaction (PCR) products. This study 

screened for gene mutations associated with pancreatic 

cancer by employing the techniques of arbitrarily primed 

PCR (random amplified polymorphic DNA [RAPD]) and 

electrochemistry to detect dGTP. It has been shown that 

RAPD, which employs random short-sequence primers, 

can be used to generate gene maps and is not limited to the 

detection of specific gene mutations or polymorphisms.12 

This study applied these new methods to achieve genetic 

fingerprinting of pancreatic cancer, overcoming the limita-

tions of traditional RAPD and improving the screening 

efficiency to create a technology platform for screening of 

genetic susceptibility to complex diseases. These results 

have far-reaching scientific significance.

Material and methods
Instrument and reagents
The Model CHI 660C electrochemical analyzer (Shanghai 

Chenhua Instruments, Shanghai, People’s Republic of China) 

adopts a three-electrode system. The working electrode is 

a carbon multiwalled nanotube (MWNT)-modified GCE, 

the counter electrode is a platinum wire electrode, and the 

reference electrode is an Ag/AgCl electrode (saturated KCl). 

The following reagents were used in this study: MWNTs 

with a purity of .95%, an inside diameter of ,10  nm, 

5–15 µm length, ash content ,0.2 wt%, and a unit surface 

area of 40–300 m2/g (Nano-Tech Port, Shenzhen, People’s 

Republic of China); dGTP (SBS Genetech, Beijing, People’s 

Republic of China); guanine (Oxoid, Hampshire, UK); 

and N,N-dimethyl formamide (DMF; Ruijinte Chemicals, 

Tianjin, People’s Republic of China). All reagents used 

were analytically pure, and all solutions were prepared with 

secondary quartz distilled water, with 10 × PCR buffer and 

MgCl
2
 (Promega, Madison, WI) used for PCR. Detection of 

dGTP in the proof sample and in the arbitrarily primed PCR 

reaction utilized the electrochemical work station described 

previously.

Carbon nanotube activating treatment
A total of 1 g of carbon nanotubes was placed in a concen-

trated sulfuric acid-nitric acid (volume ratio 3:1) mixture 

(100 mL) and heated and stirred at a constant temperature of 

70°C for 12 hours. The solution was then filtered and washed 

until the pH value of the cleaning solution reached 7.0 and 

then subjected to vacuum drying at 60°C for 24 hours to 

obtain carboxylated carbon nanotubes.

Preparation of carbon nanotube-modified 
GCE
The GCE was successively polished in 0.30 µm and 0.05 µm 

Al
2
O

3
 and then subjected to ultrasonic cleaning for 3 minutes 

in 1:1 nitric acid, absolute ethyl alcohol, and redistilled 

water. It was then dried with nitrogen gas for later use. 

A quantity of carboxylated carbon nanotubes were placed 

into a spherical flask, sterilized deionized water was added, 

and ultrasonic dispersion was performed for 45 minutes to 

prepare a 1 mg/mL carbon nanotube dispersion. A total of 

8 mL of dispersion was applied on to the surface of the GCE, 

and the electrode was fixed in a vacuum dryer. A GCE with 

a uniform layer of MWNTs was thus obtained.

Electrochemical behavior of dGTP  
on the MWNTs/GCE
Different concentrations of the dGTP proof sample were 

added into the PCR buffer. Enrichment was then performed 

for 2 minutes with constant stirring. The oxidation currents 

of the different concentrations of dGTP were measured using 

cyclic voltammetry and pulse differential indication methods. 

Before testing, nitrogen gas was supplied to the electrolytic 

cell for 5 minutes, so as to remove the dissolved oxygen. The 

standard curve was generated based on the electrical signals 

and dGTP concentrations.

RAPD amplification of DNA samples 
from patients and healthy controls
Primer design and RAPD amplification conditions are indi-

cated in Table 1.

Arbitrarily primed PCR amplification
DNA templates of patient and healthy control groups were 

diluted to the same concentration, and amplification was 

perform based on the following conditions by using the ran-

dom primers detailed in Table 1. The 50 µL reaction mixture 

contained 200 ng of genomic DNA, 10 mmol/L Tris HCl 
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Table 1 List of random primersa

Primer  
number

Primer  
sequence

Random primers  
combination mode

1 CCGGCTACG 1, 2, 3, 4, 5, 6, 7, 8, 9
2 AACGGTCACT 1–2, 2–3, 3–4, 4–5, 5–6, 6–7, 7–8, 8–9
3 CCTGCACTGC 1–3, 2–4, 3–5, 4–6, 5–7, 6–8, 7–9
4 GGTCTGAACC 1–4, 2–5, 3–6, 4–7, 5–8, 6–9
5 AAGGCTAACG 1–5, 2–6, 3–7, 4–8, 5–9
6 CTTGATTGCC 1–6, 2–7, 3–8, 4–9
7 CTGATCCATG 1–7, 2–8, 3–9
8 CTTGATTGGG 1–8, 2–9
9 CTGCTCTCAGA 1–9

Note: a“1–9” means the primer added to the polymerase chain reaction system is 
from #1 to #9.
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Figure 1 DPV diagram of 20  µmol/L guanine and 20  µmol/L deoxy-guanine 
triphosphate on multiwalled nanotube-modified glassy carbon electrode.
Abbreviations: dGTP, deoxy-guanine triphosphate; DPV, differential pulse voltam-
metric.
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(pH 9.0), 50 mmol/L KCl, 0.1% Triton, 2 mmol/L MgCl
2
, 

0.25  mmol/L dNTPs, 100  ng of sense primer, 100  ng of 

antisense primer, and 3.0 U Taq-DNA polymerase. Cycling 

conditions included an initial step at 94°C for 5 minutes; 

45  cycles of 94°C for 1  minute, 36°C for 1  minute, and 

72°C for 2 minutes; and a final elongation step at 72°C for 

7 minutes. PCR products (10 µL) were separated using 1.5% 

agarose gel electrophoresis.

Cloning and sequencing
On the basis of the results obtained using the nanobiosensors, 

significant differences in surplus dGTP were determined. We 

then analyzed the remaining PCR products (pancreatic cancer 

and healthy control groups) by agarose gel electrophoresis. 

After separating and purifying the differential PCR frag-

ments, the fragments were ligated into the pMD18-T plasmid 

(TaKaRa Bio, Shiga, Japan). The ligation reactions were 

transformed into Escherichia coli DH5 competent cells and 

incubated for 24 hours. The isolated plasmids were sequenced 

using an ABI PRISM7700 sequencer (Sangong Biotech, 

Shanghai, People’s Republic of China). The sequences were 

then compared with the human genomic sequence (NCBI, 

Bethesda, MD).

Results
Detection of guanine and dGTP
There was a significant difference between the oxidation peak 

potentials of dGTP and guanine, as determined using the 

MWNTs/GCE (see Figure 1). The oxidation peak of dGTP 

was about 1.0 V, and that of guanine was between 0.65 V 

and 0.70 V, which was consistent with previously published 

observations.5 This indicated that the MWNTs/GCE could 

effectively distinguish between the oxidation peak potentials 

of dGTP and guanine, making it possible to selectively detect 

the composition within the PCR system without separation 

of the reaction products.

Different concentrations of dGTP 
demonstrated a favorable linear 
relationship
As is shown in Figure 2, the oxidation peak current of dGTP 

increased with the increasing concentration. Within the range 

of 5–50 µmol/L, the oxidation peak current of dGTP showed 

a perfect linear relation with concentration, with a regression 

of I
pa

 = 0.0204C–0.086, r = 0.9966 (unit of I
pa

 is µA and that 

of C is µmol/L). This experiment showed that the MWNTs/

GCE could effectively detect changes in dGTP concentration 

in the PCR system and could be used to screen for genetic 

alterations amplified using random primers.

Analysis of gene mutations
As is shown in Figure 3A, compared with the healthy control, 

the concentration of dGTP in the peripheral blood DNA of 

patients with pancreatic cancer changed remarkably after 

40 cycles of amplification, and the peak current difference was 

0.33 µA. It could be estimated based on the linear equation 

obtained from Figure 2 that the dGTP concentration consumed 

in the reaction for the patients with pancreatic cancer was 

23.8 µmol/L higher than the healthy control (theoretically, when 

consuming 20 µmol/L of dGTP, a 50 µL reaction would be able 

to synthesize 250 ng or 1.25 pmol of an 800 bp sequence).

It can be observed from the gel electrophoresis analysis 

that two more fragments with a size of about 200 bp and 
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Figure 2 DPV diagram (A) of deoxy-guanine triphosphate of different concentrations 
on multiwalled nanotube-modified glassy carbon electrode and the working curve 
(B) reflecting the relationship between oxidation peak current and concentration 
change.
Abbreviations: dGTP, deoxy-guanine triphosphate; DPV, differential pulse voltam-
metric.
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Figure 3 Diagrams of differential oxidation current between pancreatic cancer patient and normal control (A) and the gel electrophoresis of polymerase chain reaction 
product (B) on multiwalled nanotube-modified glassy carbon electrode.
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800 bp were amplified from the pancreatic cancer sample than 

the healthy control, as shown in Figure 3B. The results showed 

that the electrochemical sensor could be used to detect 

changes in dGTP quantity and thus could be used to screen 

for gene alterations associated with pancreatic cancer.

Purification of sequencing results
The differentially amplified bands (between the pancreatic 

cancer and healthy control reactions; 200 bp and 800 bp) were 

purified, cloned, and sequenced (Figure 4). The underlined 

sequence in Figure 4 is consistent with amplification with 

random primer No. 2 (AACGGTCACT), and the associated 

sequence is a fragment of plasmid. This sequence was 

identical to that of the 3’ end of a cyclin-dependent kinase 

gene of Homo sapiens located on chromosome 1.

Genetic fingerprinting
Using random primer combinations (the primer added to the 

PCR system is from #1 to #5), amplification was performed 

using peripheral blood DNA samples from healthy controls 

(gel electrophoresis lane A) or patients with pancreatic 

cancer (gel electrophoresis lanes B → G) as DNA templates 

under the same PCR conditions. The results showed that the 

resulting PCR products were significantly different, based 

on either agarose gel electrophoresis or electrochemical 

sensing technology for detection of the PCR-based substrate 

(dGTP) (Figure 5).

As can be observed in Figure 5, the different pancreatic 

cancer DNA templates that were amplified via arbitrarily 

primed PCR presented different banding patterns follow-

ing gel electrophoresis, indicating a difference between 

individuals with pancreatic cancer. Furthermore, these dif-

ferences could also be identified using the electrochemical 

sensor, which presented significantly different concentration 

curves.

Discussion
As the generation III human genetic mark, single nucleotide 

polymorphisms (SNPs) reflect the difference between indi-

vidual phenotypes, disease susceptibility, and the response 

to drugs and the environment, for example. As such, SNPs 

are an ideal means for the study of malignant tumors and 

other complex diseases.13,14 Thanks to the optimization 
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Figure 4 Result of clone sequencing of the differential polymerase chain reaction product.
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of gene sequencing technology and the close cooperation 

between international research groups in recent years, case-

control studies detailing the relationship between SNPs and 

cancer risk have been increasing rapidly.15 However, these 

types of studies are still limited by the current methodology. 

Compared with the human gene database and the complex 

varieties of human diseases, the number of SNPs/mutations 

clearly associated with human disease is limited.16

The development of interdisciplinary approaches pro-

motes progress in gene testing technologies. In this study 

we developed a technical platform that combined arbi-

trarily primed PCR and nanoelectrochemical sensing for 

screening of pancreatic cancer susceptibility genes. There 

are many points to consider in respect of the use of RAPD 

in combination with electrochemical sensor analysis that 

have significantly improved the efficiency of screening for 

genetic alterations. In terms of PCR product identification, 

the traditional practice has been to interpret differential 

banding patterns following agarose gel electrophoresis. 

However, this method itself has many flaws, such as poor 

sensitivity and specificity. Furthermore, the more significant 

limitation lies in the fact that arbitrarily primed PCR utilizes 

short-sequence primers, and thus the products under different 

conditions would be significantly different. As such, it would 

be impossible to handle such a huge project using traditional 

technology.17 By using nanoelectrochemical sensing technol-

ogy to detect arbitrarily primed PCR products or substrates, 

we screened for differentially amplified genes between 

patients with pancreatic cancer and controls and identified 

a cyclin-dependent kinase gene. This gene is involved in 

cell-cycle regulation and progression through the cell cycle. 

Mutations in this gene could lead to arrest in the G1 phase 

of the cell cycle and thus possibly influence the development 

of pancreatic cancer.18,19

With regard to this approach, another point to consider is 

that arbitrarily primed PCR technology is a new molecular 

marking technology based on traditional PCR, and the ampli-

fied fragment polymorphism reflects polymorphisms in the 

DNA.20–24 Any specific primer has its unique binding site in 

the DNA template sequence. Any insertion, deletion, or base 

mutation in the primer binding site within the DNA template 

may result in a change in the distribution of these specific 

binding sites and thus bring about a change in the quantity/

size of the amplification product. Specific primer sets can 

only test for DNA polymorphisms in specific areas of the 

genome; however, a series of primers can be used to expand 

the detection area to encompass the whole genome. Hence, 

RAPD could be used for polymorphism detection of the entire 

genome and for construction of genomic fingerprints.25,26 

The experimental design depicted in Figure  6  shows the 

backward estimation of template-strand conditions based 

on the detection of reaction substrate consumption using 

nanoelectrochemical sensing technology.

In case of a base change at site 2, the sequence no longer 

matches with the random primers, and the reaction does not 

produce product B. Another point to consider is that this 

detection technology is based on determining the concen-

tration of dGTP without introducing any foreign substance 

to the PCR system.20,21 In this study, GCE surface-modified 

carbon nanomaterial was used for the study of the electro-

chemical behavior of guanine and dGTP at normal PCR 
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Figure 5 DPV curve generated from different pancreatic cancer samples amplified 
via arbitrarily primed polymerase chain reaction and detected using a multiwalled 
nanotube-modified glassy carbon electrode.
Abbreviation: DPV, differential pulse voltammetric
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concentrations, and it provided a theoretical basis for the 

development of new DNA detecting methods and design 

of guanine oxidation-based biosensors. This method could 

have profound significance and application value to studies 

involving clinical medicine and genetic engineering.22,23

The development of pancreatic cancer is the result of 

environmental and genetic factors, and the poor understanding 

of the relationship between gene abnormalities and pancreatic 

cancer greatly restricts the application of molecular diagnoses 

for the early screening of high risk groups. Nanoelectrochemi-

cal sensors have unique oxidation electrical behaviors in terms 

of detection of PCR reaction substrates (dGTP), and the use 

of random primers generates different amplification products 

under different PCR conditions. In this study we estimated the 

difference in amplification product from the template by detect-

ing substrate consumption after the amplification of DNA 

templates from the patients with pancreatic cancer and healthy 

controls under the same conditions. The results showed that the 

new design was effective at distinguishing genetic alterations. 

Although some defects are observed in this principle, this paper 

proposes a new method of studying the differential gene of 

complex diseases, and provides a valid example of applying 

carbon nanotubes to clinical gene study.
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