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Abstract: Research on liposome formulations has progressed from that on conventional vesicles 

to new generation liposomes, such as cationic liposomes, temperature sensitive liposomes, and 

virosomes, by modulating the formulation techniques and lipid composition. Many research 

papers focus on the correlation of blood circulation time and drug accumulation in target tissues 

with physicochemical properties of liposomal formulations, including particle size, membrane 

lamellarity, surface charge, permeability, encapsulation volume, shelf time, and release rate. 

This review is mainly to compare the therapeutic effect of current clinically approved liposome-

based drugs with free drugs, and to also determine the clinical effect via liposomal variations in 

lipid composition. Furthermore, the major preclinical and clinical data related to the principal 

liposomal formulations are also summarized.

Keywords: PEGlated liposomes, temperature sensitive liposomes, therapeutic efficiency, 

virosomes, cationic liposomes

Introduction
The clinical utility of most conventional chemotherapeutics is limited either by the 

inability to deliver therapeutic drug concentrations to the target tissues or by severe 

and harmful toxic effects on normal organs and tissues. Liposomes are small, spheri-

cal, and enclosed compartments separating an aqueous medium from another by 

phospholipid bilayer. Many hundreds of drugs, including anticancer and antimicrobial 

agents, chelating agents, peptide hormones, enzymes, proteins, vaccines, and genetic 

materials, have been incorporated into the aqueous or lipid phases of liposomes, with 

various sizes, compositions, and other characteristics, to provide selective delivery 

to the target site for in vivo application. Several techniques, such as the Bangham, 

detergent-depletion, ether/ethanol injection, reverse phase evaporation, and emulsion 

methods, have been reported for preparing liposomes with high-entrapment efficiency, 

narrow particle size distribution, and long-term stability.1–7 Recently, some alternative 

methods including dense gas and supercritical fluid techniques have been introduced 

for liposome preparation without using any organic solvent.1,7–9 Due to the differences 

in preparation methods and lipid compositions, liposomes can be classified according 

to their lamellarity (uni- and multilamellar vesicles), size (small [#100 nm], inter-

mediate [100–250 nm], or large [$250 nm]), and surface charge (anionic, cationic, 

or neutral).10–12 In clinical studies, liposomes show improved pharmacokinetics and 

biodistribution of therapeutic agents and thus minimize toxicity by their accumulation 

at the target tissue.13,14
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Liposomes were first discovered by Bangham in 1965 and 

the first liposomal pharmaceutical product, Doxil®, (Ben Venue 

Laboratories, Inc Bedford, OH) received US Food and Drug 

Administration (FDA) approval in 1995 for the treatment of 

chemotherapy refractory acquired immune deficiency syndrome 

(AIDS)-related Kaposi’s sarcoma.13–15 Currently, there are about 

twelve liposome-based drugs approved for clinical use and more 

are in various stages of clinical trials (Tables 1 and 2).13–62 Most 

liposomal drug formulations, such as Doxil and Myocet™ (GP-

Pharm, Barcelona, Spain), are approved for intravenous applica-

tion.63 Other administration routes such as intramuscular delivery 

have been approved for delivery of surface antigens derived 

from the hepatitis A or influenza virus (Epaxal® [Berna Biotech 

Ltd, Berne Switzerland] and Inflexal® V [Berna Biotech España 

SA, Madrid, Spain]).37,38 Oral delivery has also been examined; 

however, this is more troublesome due to the potential for lipo-

some breakdown following exposure to bile salts.64

Storage of liposomes: lyophilization
Liposomes dispersed in aqueous solution generally face 

physical and chemical instabilities after long-term storage.65 

Hydrolysis and oxidation of phospholipids and liposome 

aggregation are the common cause of liposome instabilities. 

According to the literature, many methods have been investi-

gated for the stabilization of liposomes, such as lyophilization, 

freezing, and spraying drying. In commercial liposome-based 

drugs (Table  1), AmBisome® (Gilead Sciences, Inc, San 

Dimas, CA), Amphotec® (Ben Venue Laboratories, Inc, 

Bedford, OH), Myocet, Visudyne® (Novartis Pharma AG, 

Basel, Switzerland), and LEP-ETU (liposome-entrapped 

paclitaxel easy-to-use; NeoPharm, Inc, Lake Bluff, IL) are 

all lyophilized products. In general, freeze-drying increases 

the shelf-life of liposomal formulations and preserves them 

in dried form as lyophilized cakes to be reconstituted with 

water for injection prior to administration.66 Furthermore, 

cryoprotectants need to be added to maintain particle size 

distribution of liposomes after the freeze-drying-rehydration 

cycle. Various types and concentrations of sugars have been 

investigated for their ability to protect liposomes against 

fusion and leakage during lyophilization processes.66 In com-

mercial liposome lyophilized products, lactose has been used 

as a cryoprotectant in the formulations of Amphotec, Myocet, 

and Visudyne, and sucrose was added in the formulations of 

AmBisome and LEP-ETU to increase liposome stability dur-

ing lyophilization. Interestingly, these commercial lyophilized 

products showed similar shelf-life in comparison with other 

liposome products (eg, suspension and emulsions) and hence 

lyophilization may not have the expected effect on liposome 

stability. In 1998, Clemons and Stevens compared the potency 

and therapeutic efficacy among the different lipid-based 

formulations of amphotericin B (Amphotec, AmBisome, and 

Abelcet® (Sigma-Tau PharmaSource, Inc, Indianapolis, IN)) 

for the treatment of systemic and meningeal cryptococcal 

disease.67 Their work indicated that the therapeutic efficacy 

of Amphotec and AmBisome was superior to that of Abelcet, 

by up to ten-fold, in survival and in clearing infection from 

all organs. In these three commercially available lipid-based 

formulations of amphotericin B, Amphotec and AmBisome 

are both lyophilized products and Abelcet is formulated as 

a suspension. Therefore, lyophilization may not extend the 

shelf-life of products but may increase therapeutic efficacy 

in vivo. Similar results were also reported in our previous 

studies.70 We investigated the stability of the siRNA-loaded 

liposomes in suspension and lyophilized powder form up 

to 1 month postmanufacture.68 Following formulation, the 

siRNA-loaded liposomes were stored at either 4°C or room 

temperature. The particle size and zeta potential of siRNA-

loaded liposomes remained unchanged in both storage 

conditions. However, siRNA entrapment efficiencies were 

observed to have decreased slightly after 1 month in storage 

for both suspension (90% → 83%) and lyophilized powder 

(94% → 84%) forms. Surprisingly, the gene-silencing 

efficiency of siRNA-loaded liposomes in aqueous solution 

showed 80% reduction following 1 month of storage at either 

4°C or room temperature. This was in contrast to liposomes 

prepared in the lyophilized powder form where 100% of the 

gene-silencing efficiency was retained following storage 

at either 4°C or room temperature for 1 month. Although 

therapeutic efficiency of liposome-based drugs may vary 

depending on the choice of lipids, the preparation technique, 

physico-chemical characteristics of the bioactive materials, 

and overall charge of the liposome, lyophilization is useful 

for the long-term storage of liposome-based drugs.

Clinical studies of liposomal-based 
anticancer drugs: doxorubicin
Liposome delivery systems offer the potential to enhance the 

therapeutic index of anticancer drugs, either by increasing the 

drug concentration in tumor cells or by decreasing the expo-

sure in normal host tissues. Doxorubicin is an anthracycline 

widely used to treat solid and hematological tumors, but its 

major drawback is its related cardiotoxicity. In cardiotoxicity, 

positively charged doxorubicin’s affinity for negatively charged 

cardiolipin, a lipid abundant in heart tissue, is thought to be 

involved in drug localization in the heart tissue.69 Therefore, 

doxorubicin-loaded liposomes were developed to combat 
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Figure 1 Chemical structures of lipids in liposome formulations.
Abbreviations: DOTAP, 1,2-dioleoyl-3-trimethylammonium propane; DPPC, dipalmitoylphosphatidylcholine; DOPA, 1,2-Dioleoyl-sn-Glycero-3-Phosphate; 
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aggressive tumors, like breast and ovary metastatic cancers and 

Kaposi’s sarcoma. Myocet and Doxil were the first-approved 

liposome-based drugs for cancer treatment. Both products 

contain doxorubicin but are different, particularly in the pres-

ence of polyethylene glycol (PEG) coating (Figure 1). In phar-

macokinetic studies of doxorubicin-loaded liposomes, free 

doxorubicin had an elimination half-life of 0.2 hours and an 

area under the plasma concentration–time curve (AU) of 4 µg h 

mL–1 in patients as compared with 2.5 hours and 45 µg h mL–1 

for Myocet and with 55 hours and 900 µg h mL–1 for Doxil, 

respectively.25 The particle size of Myocet is about 190 nm and 

Doxil is about 100 nm. Both liposome products have longer 

circulating half-life in blood as compared with the free drug, 

but Doxil has a much longer circulation time in blood than 

Myocet. Generally, the blood circulation time of liposomes 

(T
1/2

) increases with decreasing size, negative charge density, 

and fluidity in the bilayer or PEG surface coating. In a Phase III 

head-to-head comparison of free doxorubicin vs Myocet in 

patients with metastatic breast cancer, similar results were 

presented in first-year survival rate (64% vs 69%) and 

progression-free survival (3.8 vs 4.3  months), but Myo-

cet had low incidence of cardiac events (13% vs 29%), 
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mucositis/stomatitis (8.6% vs 11.9%), and nausea/vomiting  

(12.3% vs 20.3%).70,71 Therefore, Myocet tends to reduce 

drug-related toxicity (eg, cardiotoxicity) rather than to enhance 

antitumor efficacy. Similar to Myocet, Doxil had a better safety 

profile, including reduction of cardiotoxicity (3.9% vs 18.8%), 

neutropenia (4% vs 10%), vomiting (19% vs 31%), and alope-

cia (20% vs 66%) in a Phase III trial of metastatic breast cancer, 

whereas its progression-free survival times (6.9 vs 7.8 months) 

and overall survival times (21 vs 22 months) demonstrated 

equivalent efficacy to conventional doxorubicin.72 However, 

palmar-plantar erythrodysesthesia (48% vs 2%), stomatitis 

(22% vs 15%), and mucositis (23% vs 13%) were found to be 

more often associated with Doxil than free doxorubicin.

Lipo-dox® (TTY Biopharm Company Ltd, Taipei Taiwan) 

is the second generation of PEGylated liposomal doxorubi-

cin, composed of distearoylphosphatidylcholine (DSPC) and 

cholesterol with a surface coating of PEG.27 DSPC, which 

has two completely saturated fatty acids (both stearic acids), 

has high phase-transition temperature (Tm), 55°C, and good 

compatibility with cholesterol. Normally, lipid bilayer has two 

thermodynamic phases: gel or liquid-crystal phase. At tem-

perature , Tm, the lipid membrane is in the gel phase, which 

is relatively rigid and tight because the lipid molecules have 

lower energy of random motion and the hydrocarbon chains 

are fully extended and closely packed. Liposomes composed 

of phospholipids like DSPC have higher stability compared 

with others containing unsaturated fatty acid (egg phosphati-

dycholine [PC]) or fatty acids of shorter or not uniform carbon 

chains like hydrogenated soy PC (HSPC). In a Phase I clini-

cal study, Lipo-dox achieved the most prolonged circulation 

half-life (65 hours).73 However, Tseng et al demonstrated that 

there were no differences in survival between free doxorubicin 

only (median survival time of 23 days) and Lipo-dox (medium 

survival time of 23.5 days) in a murine B-cell lymphoma 

model.74 In patients with metastatic breast cancer, the median 

time to disease progression of 163 days represented the result 

of Lipo-dox treatment and the median duration of response 

in responding patients (286 days) are comparable with those 

of Doxil treatment.75 Neutropenia, stomatitis, and skin toxic-

ity were reported in many cases of Lipo-dox administration. 

Moreover, stomatitis became the new dose-limiting toxicity 

of PEGylated liposomal doxorubicin. For Lipo-dox, stoma-

titis appeared at doses of 30 mg/m2 and reached dose limit at 

50 mg/m2.27 In contrast, Doxil reached dose limit at 80 mg/m2 

and hence Lipo-dox had higher incidence of severe stomatitis 

than Doxil. In comparison with Myocet (the non-PEGylated 

form of liposomal doxorubicin), Doxil and Lipo-dox (both 

PEGylated forms of liposomal doxorubicin) both showed 

significant incidence of stomatitis and this is mainly due to the 

long circulation properties of PEGylated liposomes.27,71,72

The new generation of doxorubicin-loaded liposomes 

are thermosensitive liposomes (TSLs), which release their 

encapsulated drugs in regions where local tissue temperatures 

are elevated.76 Compared with non-TSLs that remain stable 

and do not release drug in the physiologic temperature range, 

TSLs undergo a gel-to-liquid crystalline phase change when 

heated that renders the liposomes more permeable, releasing 

their encapsulated drugs. ThermoDox® (Celsion Corpora-

tion, Lawrenceville, NJ), a proprietary TSL encapsulation of 

doxorubicin, has recently begun Phase III clinical trials for 

the treatment of hepatocellular carcinoma.77 ThermoDox is 

composed of dipalmitoylphosphatidylcholine (DPPC), monos-

tearoylphosphatidylcholine (MSPC), and polyethylene glycol 

2000-distearoylphosphatidylethanolamine (PEG 2000-DSPE) 

in 90:10:4 molar ratio.49,50 In the design of TSLs, it is necessary 

to choose a phospholipid that has a gel-to-liquid crystalline 

phase transition temperature (Tc) in the temperature range 

of clinically attainable local hyperthermia (41°C– 42°C). 

The mechanism behind TSLs is the temperature-induced 

membrane instability at the Tc of the used lipids. DPPC with 

a Tc = 41.5°C is an ideal lipid according to temperature-trig-

gered technology.78,79 For liposomes composed of DPPC alone, 

the rate of release and the amount released are relatively small. 

By incorporating a small amount of lysolipids, such as MSPC 

or monopalmitoylphosphatidylcholine, into DPPC liposomes, 

Tc is shifted down slightly and membrane instability and drug 

release rate is significantly enhanced at Tc. In vitro release 

studies, monopalmitoylphosphatidylcholine-containing TSLs 

released about 45% of encapsulated doxorubicin in bovine 

serum at 42°C in a few seconds (20  seconds), while pure 

DPPC liposomes released only 20% over 1 hour.79 Banno 

et al demonstrated that the presence of MSPC, rather than 

PEG 2000-DSPE, in DPPC liposomes would give rise to the 

rapid drug-release profile in vitro, suggesting that lysolipid 

is the more important component in determining the rate of 

TSL content release.80 Indeed, Banno’s in vivo data showed 

that the presence of 9.6 mol% MSPC in TSL could result 

in more rapid elimination of the encapsulated doxorubicin 

(T
1/2

  =  1.29 h), compared with the formulation without 

lysolipid (T
1/2

 = 2.91 h). In 2007, Dromi et al compared the 

accumulation of doxorubicin in mice tumors among free 

doxorubicin, Doxil, and ThermoDox.50 Results showed that 

over time, doxorubicin gradually increased in tumors when 

both Doxil and ThermoDox were used but not with free 

doxorubicin. At 24 hours after administration, doxorubicin 

concentrations in tumors were found to be significantly higher 
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with Doxil than ThermoDox. ThermoDox is currently under 

evaluation in clinical trials and hence the therapeutic efficacy 

of ThermoDox is still unknown.

Clinical studies of liposomal-based 
anticancer drugs: daunorubicin
Daunorubicin is classified as an anthracycline anticancer 

drug in the treatment of leukemia and a wide variety of solid 

tumors, but its major drawbacks are myelosuppression and 

cardiotoxicity.81 Daunorubicin has also been incorporated 

into liposomes for the formulation of liposomal anticancer 

chemotherapy drugs. DaunoXome® (Gilead Sciences, Inc) is a 

commercial liposomal formulation of daunorubicin in which 

the drug is entrapped into small unilamellar vesicles (45 nm) 

composed of DSPC and cholesterol in 2:1 molar ratio. In 

animal studies with tumor models in mice, DaunoXome 

increased tumor uptake of daunorubicin ten-fold when 

measured against free drug (2470.5 vs 245.1 µg ⋅ hr/mL for 

0–48 hours).82 Furthermore, clinical pharmacokinetic stud-

ies have demonstrated that DaunoXome was 36-fold higher 

in AUC (375.3 vs 10.33  µg ⋅ hr/mL) in comparison with 

conventional daunorubicin.83 In a Phase III trial of DaunoX-

ome versus a conventional combination of doxorubicin, 

bleomycin, and vincristine (ABV) in AIDS-related Kaposi’s 

sarcoma, the efficacy of DaunoXome was comparable to that 

of vincristine. Response rates (25% vs 28%), time to treat-

ment failure (115 vs 99 days), and overall survival (369 vs 

342 days) were similar on both treatment arms.84 Moreover, 

patients treated with DaunoXome experienced less alopecia 

(8% vs 36%) and neuropathy (13% vs 41%) and their car-

diac function remained stable. Therefore, DaunoXome may 

provide another comparable but safer chemotherapy.

Clinical studies of liposomal-based 
anticancer drugs: paclitaxel
Taxol® (paclitaxel) is a marketed product for the treatment of 

ovarian, breast, non-small cell lung cancer, and AIDS-related 

Kaposi’s sarcoma.40 However, paclitaxel is only sparingly 

soluble in water and, therefore, intravenous administration 

depends on the use of the non-ionic surfactant Cremophor 

EL® (polyethoxylated castor oil) to achieve a clinically rel-

evant concentrated solution. Unfortunately, Cremophor EL 

increases toxicity and leads to hypersensitivity reactions in 

certain patients.85 The LEP-ETU formulation of paclitaxel 

is being developed to potentially reduce toxicities associ-

ated with Taxol by eliminating the drug formulation com-

ponent polyoxyethylated castor oil. LEP-ETU formulations 

composed of 1,2-Dioleoyl-sn-glycero-3-phosphocholine 

(DOPC), cholesterol, and cardiolipin in 90:5:5 molar ratio 

were prepared by the modified thin-film hydration method. 

DOPC, a zwitterionic natural phospholipid, is chosen as 

one of the lipid components in the LEP-ETU formulation 

because of a low Tc (−22°C) and hence DOPC can form 

more flexible liposomes to entrap highly hydrophobic 

molecules. Moreover, cholesterol is included in LEP-ETU 

formulations to increase the liposome stability. Liposomes 

containing cardiolipin reportedly reduced cardiotoxicity 

associated with doxorubicin by altering the pharmacokinetics 

and tissue distribution of the drug and hence cardiolipin may 

also exert similar results in LEP-ETU.86 Fetterly et al evalu-

ated the maximum tolerated dose, dose-limiting toxicities, 

and pharmacokinetics of liposome-encapsulated paclitaxel 

(LEP-ETU) in comparison with Taxol.87,88 The maximum 

tolerated dose of LEP-ETU was 325 mg/m2 in a Phase I study 

of patients with locally advanced or metastatic carcinoma.88,89 

This dose is higher than that achieved with Taxol, which is 

typically delivered at a dose range of 135 to 200 mg/m2. The 

major toxicity to administration of paclitaxel is neuropathy. In 

the Phase I study, neurotoxicity occurred in 5 of 12 patients 

(42%) treated with LEP-ETU at $325 mg/m2. Although a 

direct comparison with Taxol is not possible, neutropenia 

was seen in 53% of metastatic breast cancer patients treated 

with 250  mg/m2 Taxol as demonstrated by Winer et  al.89 

Therefore, the neuropathy caused by LEP-ETU appears to 

be no worse than that reported for Taxol within 3 weeks of 

treatment. Following LEP-ETU administration, the AUC of 

paclitaxel in patients with advanced or metastatic carcinoma 

was improved (8.2 to 6.16 µg ⋅ hr/mL) with increasing dose 

(135 to 375  mg/m2), which is similar to Taxol. Although 

similarities exist between the plasma pharmacokinetics of 

the two formulations, the clinical evidence obtained from the 

Phase I study shows LEP-ETU can be administered safely at 

higher doses than Taxol.88,89

Another l iposome formation of pacli taxel is 

EndoTAG-1.42–44 The formulation of EndoTAG-1 is prepared 

by 1,2-dioleoyl-3-trimethylammonium propane (DOTAP), 

DOPC, and paclitaxel in 50:47:3 molar ratio. DOTAP is a 

cationic synthetic lipid, which comprises one positive charge 

at the head group. The use of cationic lipids to enhance gene 

delivery has been studied extensively, but their application 

in clinic is relatively unexplored. Recently, there has been 

great interest in cationic liposomes, mainly due to their 

inherent ability to selectively target tumor vasculature. This 

selective affinity of cationic liposomes to tumor vasculature 

provides an opportunity for the development of many anti-

angiogenic and anticancer formulations based on cationic 
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liposomes.42 EndoTAG-1 is the first formulation of cationic 

liposomes carrying paclitaxel in clinical trial. For com-

mercial storage, EndoTAG-1 formulations are lyophilized, 

and they are reconstituted with water for injection directly 

prior use. In preclinical programs, EndoTAG1-1  inhibited 

tumor growth also in Taxol-resistant animal tumor mod-

els such as B16  melanoma and Sk-Mel 28  melanoma. 

EndoTAG-1 demonstrated a strong antivascular effect on 

the preexisting tumor vasculature and affected several tumor 

microcirculatory parameters. In a Phase II trial of patients 

with pancreatic adenocarcinoma who were not candidates 

for surgery, EndoTAG-1 in combination with gemcitabine 

substantially extended overall survival compared with gem-

citabine alone.90 Median survival in patients who received 

gemcitabine alone was 7.2  months, whereas it was up to 

9.4  months in those who received combination treatment 

of EndoTAG-1 plus gemcitabine. After 6 and 12  months 

of treatment, survival rate was superior for all EndoTAG-1 

doses plus gemcitabine compared with gemcitabine alone. 

The 12-month survival rates in patients given the two higher 

doses of EndoTAG-1 (22 and 44 mg/m2 plus gemcitabine) 

were 36% and 33%, respectively, compared with 17.5% in 

those given gemcitabine alone. Combination treatment with 

EndoTAG-1 plus gemcitabine was well tolerated and led to 

substantially more prolonged survival rates compared with 

standard therapy in this Phase II trial. Further clinical studies 

are warranted to demonstrate a statistically significant sur-

vival benefit associated with EndoTAG-1 plus gemcitabine 

in advanced pancreatic cancer.

Liposome application in vaccine 
formulation: Epaxal and Inflexal V
The incorporation of viral membrane proteins or peptide 

antigens into liposomes has been shown to potentiate cell-

mediated and humoral immune response, and generate solid 

and durable immunity against the pathogen. Virosomes 

are reconstituted virus liposomes, constructed without the 

genetic information of the virus making them unable to rep-

licate or cause infection.91,92 The lipid layers of virosomes, 

composed of dioleoyl phosphatidylethanolamine (DOPE) and 

DOPC, are employed to mimic viral membrane for vaccine 

delivery. Epaxal and Inflexal V are both vaccine products 

using the virosome-based antigen delivery system for com-

mercial use (Table 1). For the production of Inflexal V, the 

influenza viruses, grown in hens’ eggs, are first inactivated 

with beta-propiolactone. The influenza surface antigens, 

hemagglutinin and neuraminidase, are then purified and 

mixed with the phospholipid lecithin to form virosomes. 

Due to the virosomal technology, hepatitis A virus (HAV) 

vaccine Epaxal, and influenza vaccine Inflexal V are highly 

efficacious by mimicking natural viral infection. The use of 

virosomes to deliver hepatitis A or influenza antigens stimu-

lates a strong immune response of immunocompetent cells. 

In contrast to other commercially available HAV vaccines, 

Epaxal is an aluminium-free vaccine based on formalin-

inactivated hepatitis A (strain RG-SB) antigen-incorporated 

virosomes. In a clinical study by Usonis et al, seroprotection 

rates were 100% in all infants and children at 1 and 12 months 

after primary vaccination with Epaxal.35 In contrast, the 

seroprotection rate after vaccination with the aluminium-

containing vaccine Havrix™ (GlaxoSmithKline Biologicals 

Rixensart, Belgium) was 67.7% in infants with pre-existing 

maternal anti-HAV antibodies, and a booster vaccination 

was required for complete seroprotection. Moreover, Epaxal 

was generally well tolerated by infants and children, with no 

serious systemic or local events reported after either primary 

or booster vaccination.

For Inflexal V, most studies have shown inferior efficacy 

or ineffectiveness on clinical parameters for these vaccines 

compared with the nonadjuvanted, split-virus, or subunit 

seasonal vaccines.93 Kanra et al, compared the immunogenic-

ity and safety of Inflexal V in children with a split influenza 

vaccine, Fluarix (GlaxoSmithKline Biologicals, Dresden, 

Germany).94 Both vaccines were well tolerated and could 

induce effective immune responses in children. Interestingly, 

the virosome-adjuvanted influenza vaccine showed greater 

immunogenicity (88.8% seroconversion rates for H3 N2) over 

the split influenza vaccine (77.5% seroconversion rates for 

H3 N2) in unprimed children. In essence, virosomal tech-

niques may not be able to give superior protective immunity 

in clinic but play an important role in preventing morbidity 

and lethality associated with vaccine.

Liposomal formulations  
in ophthalmology: Visudyne®

Verteporfin is a hydrophobic chlorin-like photosensitizer, 

which has been shown to be highly effective  for photo-

dynamic therapy in vivo. However, verteporfin also has a 

tendency to undergo self-aggregation in aqueous media, 

which can severely limit drug bioavailability to biological 

systems. It is important to introduce verteporfin into the 

bloodstream in its monomeric form and hence verteporfin 

was encapsulated in liposomes (Visudyne) for intravenous 

drug delivery.29–31 The lipid layers of Visudyne are composed 

of unsaturated egg phosphatidylglycerol and dimyristoyl 

phosphatidyl choline in 3:5 molar ratio. Visudyne was the 
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only drug approved by the FDA for the photodynamic treat-

ment of age-related macular degeneration. Visudyne treat-

ment prevents the growth of the destructive blood vessels 

without hurting the surrounding tissues. Phase I and II clini-

cal trials were conducted for 609 patients with age-related 

macular degeneration.95,96 After 12 months of treatment, the 

group treated with Visudyne (6 mg/m2 body surface area) 

had statistically better visual acuity, contrast sensitivity, and 

fluorescein angiographic outcomes than those who had pla-

cebo treatment (5% dextrose in water). At the examination 

12-months posttreatment, 246 (61%) of 402 eyes assigned to 

verteporfin compared with 96 (46%) of 207 eyes assigned to 

placebo had lost fewer than 15 letters of visual acuity from 

baseline. In subgroup analyses, the visual acuity benefit of 

verteporfin therapy was clearly demonstrated (67% vs 39%) 

when the area of choroidal neovascularization, caused by 

age-related macular degeneration, occupied 50% or more 

of the area of the entire lesion. However, Chowdhary et al 

reported that Visudyne was readily destabilized in the pres-

ence of relatively low concentrations of plasma.29 Therefore, 

the aim of future investigation of liposomal formulations in 

ophthalmology is to develop stable liposome structures for 

extending the plasma circulation time following intravenous 

injection.

Future approaches
Since the first liposomal pharmaceutical product, Doxil, 

received FDA approval in 1995, liposomes have been widely 

applied as drug carriers in clinic. Until now, several important 

types of liposomes, such as PEGylated liposomes (Doxil and 

Lipo-dox), temperature sensitive liposomes (ThermoDox), 

cationic liposomes (EndoTAG1-1), and virosomes (Expal 

and Inflexal V) have been investigated for clinic use. In 

contrast with liposomal-based drugs on the market (Table 1), 

liposome-based drugs in clinical trials (Table  2) focused 

more on the types of delivered drugs (eg, Cisplatin, BLP25 

lipopeptide, Grb2 antisense oligodeoxynucleotide, Bacterio-

phage T4 endonuclease 5, etc) and therapeutic applications 

(from topical delivery systems to portable aerosol delivery 

systems). New liposomal formulations, such as PEGylated 

liposomes, may extend blood circulation time, vary drug 

distribution in the body, and hence reduce the possible side 

effects related to the drugs (eg, cardiotoxicity). However, 

PEGylated liposomes (Doxil and Lipo-dox) displayed signifi-

cant incidence of stomatitis in clinical trials, which may be 

related to PEGylation. Moreover, some of the new generation 

liposomes showed only comparable or even poor therapeutic 

efficiency compared with free drug or conventional vesicles 

in clinical trials. In comparison with Doxil, ThermoDox 

displayed significantly weaker doxorubicin accumulation in 

mice tumors at 24 hours after administration.50 EndoTAG-1 

plus gemcitabine and EndoTAG-1 plus paclitaxel achieved 

excellent therapeutic effect in two Phase II clinical trials in 

pancreatic cancer and triple receptor-negative breast cancer, 

but EndoTAG-1 therapy alone in triple receptor-negative 

breast cancer resulted in poor survival rate (34%) and median 

progression-free survival time (3.4 months) in comparison 

with paclitaxel (48% and 3.7 months).97 SPI-077, the first 

liposomal formulation of cisplatin, had limited clinical effi-

cacy in a Phase II clinical trial of advanced non-small cell 

lung cancer, even though SPI-077 demonstrated enhanced 

cisplatin tumor accumulation in preclinical models.98 Similar 

to SPI-077, a Phase II study of liposomal annamycin in the 

treatment of doxorubicin-resistant breast cancer had no 

detectable antitumor activity.99 Although new liposomal-

based drugs have been well studied in preclinical animal mod-

els, these liposomal pharmaceutical products may be unable 

to provide promising therapeutic effects in clinical trials. For 

future development of liposomal-based drugs, the compari-

son of drug circulation time in blood, drug accumulation in 

tissues, and possible toxicity between conventional vesicles 

and new generations of liposomes should be investigated in 

preclinical animal models. Furthermore, there should also be 

focus on the clinical therapeutic effects and toxic side effects 

of liposomal lipid composition.
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