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Abstract: In this study, we have generated terahertz (THz) frequency by a novel design of 

microring resonators for medical applications. The dense wavelength-division multiplexing can 

be generated and obtained by using a Gaussian pulse propagating within a modified PANDA 

ring resonator and an add/drop filter system. Our results show that the THz frequency region 

can be obtained between 40–50 THz. This area of frequency provides a reliable frequency band 

for THz pulsed imaging.
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Introduction
Nonlinear terahertz (THz) radiation is the electromagnetic spectrum which ranges from 

30 THz to 100 GHz. It covers the region away from microwaves via mid to beyond 

infrared. Formerly, bulky and expensive equipment such as free electron lasers or 

the alternative employment of thermal sources produced weak, incoherent radiation. 

THz radiation gives rise to rotational and vibrating excitation of some biological 

molecules. THz radiation has also been used in tissue with differentiating abilities.1 

There is an increasing tendency towards THz technology for the next wave of nonin-

vasive biomedical instruments.2,3 THz pulse has many properties that could encour-

age the use of THz pulsed imaging (TPI) as a medical imaging tool. Moreover, THz 

waves are useful for the analysis of histopathological diagnosis, without any staining 

process.4 Rayleigh scattering of electromagnetic radiation increases with the inverse 

of the wavelength to the fourth power. However, there is no ionization hazard for bio-

logical tissue.5 TPI is a new technique based on broadband pulses of electromagnetic 

radiation of THz frequencies.6,7 Contrast images can be obtained for different degrees 

of THz wave absorption for normal tissues, such as muscles, fatty tissue and carti-

lage, as well as cancer tissue. We can obtain THz images using a microring resonator 

(MRR) in a wide range of wavelengths.8,9 The THz pulse interacts with the sample 

in reflection or transmission modes. The modified pulse is recorded as a time-series. 

The spectra information from THz pulses has been used to distinguish different types 

of soft tissues, such as muscle, fat, and kidney tissues.10,11

Methodology and results
In order to achieve a wide band frequency carrier, we propose a novel system consist-

ing of MRRs for many communication applications such as a wireless THz commu-

nication system and faster data transfer, which requires higher carrier frequencies.12 
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In this paper, we use MRRs made of InGaAsP/InP material to 

enhance the channels of the frequency band for implementa-

tion in medical imaging.13

The transfer function of the system uses Gaussian beam, 

described by Equation 1.14

	 E A i ti1 1 0= exp( )ω
	

(1)

Here A
1
 is the amplitude of the optical field and t is the 

time for phase shift with frequency shift of ω
0
. The optical 

outputs from the first and second ring resonators are given 

by Equations 2 and 3.15,16
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Here κ is the coupling coefficient, and K represents 

the wave number in vacuum. γ  is the fractional coupling 

intensity loss. L
1
 and L

2
 are circumferences of the first and 

second rings. Exp(-αL/2) shows the roundtrip loss coefficient 

and α is the waveguide loss. For the PANDA system, the 

output optical fields from right and left rings are expressed 

by Equations 4 and 5.
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Here, E
R
 and E

L
 are the outputs from the right and left 

rings of the PANDA system. The interior output fields of E
1
, 

E
2
, E

3
, and E

4
 are shown in Equations 6–9.
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Therefore, the final equations for drop port and throughput 

power are given in Equations 10–13.
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where P
t
 and P

d
 represent the output powers of the throughput 

and drop port, respectively.14,15

In this work we use a Gaussian beam as an input power 

to the proposed system. The new design of the system is 

illustrated in Figure  1. In this case the Gaussian pulse 

with a center wavelength of 1.3 µm, pulse width of 20 ns, 

and power of 1 W, is an input into the system as shown 

in Figure 2A. The parameters used are R
1
 = 5 µm (radius 

of first ring), R
2
 = 3 µm (radius of second ring), R

L
 = 1 

µm (radius of left ring of PANDA), R
R
 = 1 µm (radius of 

right ring of PANDA), R = 3 µm (radius of centered ring 

of PANDA), A
eff

 = 0.10–0.25 µm.2 Some fixed parameters 

such as nonlinear refractive index, n
0
 =  3.34 (InGaAsP/

InP)17 and intensity attenuation coefficient, α = 0.2 dBmm−1 

have been selected for this system. The coupler intensity 

loss is γ  =  0.1. The coupling coefficient of the MMR 

varies from 0.1–0.98. The nonlinear refractive index is 

n
2
 = 2.2 × 10−17.

The input pulse is sliced to a smaller signal through 

the spectrum shown in Figure  2B and C. The light pulse 

can be chopped into discrete signals and amplified in the 

first ring, where more signal amplification is obtained by 

the second ring (smaller ring). The output signals from the 

(4)

(5)

(2)
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second ring resonator are inputs into the PANDA system. 

Output signals of the PANDA system are simulated and 

shown in Figure 3A–F. Figure 3E and F show the best region 

of frequency, which can be seen at the range of 40–50 THz. 

In practice, the channel frequency can be increased by using 

the system. Finally, the required signals can be obtained via 

the PANDA system.

The output signals from the PANDA system are inputs to 

the add/drop filter system in order to cancel out noisy chaotic 

signals. To retrieve the signals from the chaotic noise, we 

suggest the use of add/drop filters with proper parameters. 

Two complementary optical circuits of the MRR add/drop 

filter can be illustrated by Equations 14 and 15.17
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Figure 1 Schematic of two microring resonators coupled into a PANDA system.
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Figure 2 Result of the outputs from two ring resonators with centre wavelength at 1.3 µm: (A) the input Gaussian pulse, (B) the chaotic signal generation, (C) the amplified 
and filtering signals.
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where E
t1

 and E
t2

 represent the optical f ields of the 

throughput and drop port, respectively. β  =  kn
eff

 is the 

propagation constant, n
eff

 is the effective refractive index 

of the waveguide, L = 2πR is the circumference of the ring, 

and R is the radius of the ring. For simplification, we define 

the phase constant as φ = βL. Chaotic noise cancellation 

and required signals can be obtained by using the particular 

parameters of the add/drop device. κ
1
 and κ

2
 are coupling 

coefficients of the add/drop filters, κ
n
 = 2π/λ is the wave 

propagation number for a vacuum, where the waveguide 
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loss is α  =  0.2 dB/mm. The fractional coupler intensity 

loss is γ      = 0.1. For the add/drop filter device, the nonlinear 

refractive index is neglected.

We used an add/drop filter system with a radius of 10 

µm to determine the free spectral range, the number of 

channels and bandwidth as shown in Figure 4. Figure 5 shows 

the simulation results where Figure  5A and B represent 

the throughput and drop port outputs of the system, 

respectively.

As demonstrated in Figure 6, generated dense wavelength-

division multiplexing from the proposed configuration of ring 

resonators are involved in the THz region, which provides a 

reliable frequency band for medical applications, especially 

for THz imaging. The main advantage of THz imaging is 

its diagnostic capabilities.11 These obtained pulses are also 

useful for analysis of the histopathological diagnosis, without 

any staining process.6

To date, imaging spectroscopy is used only for small 

areas.3,4 THz imaging exactly reflects the tissue situation, for 

instance tumor, nontumor tissues, tissue degeneration, and 

fibrosis. The THz image shows significantly reduced absorp-

tion of THz radiation in this region compared with normal 

tissue, which suggests its usefulness for detecting tumors 

(Figure 7). Contrast images associated with different degrees 

of absorption of THz waves have been obtained for normal 

tissues, such as muscles, fatty tissue, and cartilage, as well as 

for cancer tissue. We could obtain THz images of large areas 

from an MRR in a wide range of wavelengths.8,10,11
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Conclusion
In this study, a new MRR design has been introduced, which 

provides the best frequency band when the input Gaussian 

pulse is used. This system consists of a series of MRRs 

connected to a PANDA system. Using the proposed system, 

multifrequency bands can be generated and simultaneously 

linked to an add/drop filter where it is suitable for analysis 

of the histopathological diagnosis. The results show the 

frequency band region lies between 40–50 THz. This range 

provides a reliable frequency band for medical purposes, 

especially in THz imaging.
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