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Background: Systemic delivery of small interfering RNA (siRNA) is limited by its poor 

stability and limited cell-penetrating properties. To overcome these limitations, we designed 

an efficient siRNA delivery system using polyethyleneimine-coated virus-like particles derived 

from adeno-associated virus type 2 (PEI-AAV2-VLPs).

Methods: AAV2-VLPs were produced in insect cells by infection with a baculovirus vector 

containing three AAV2 capsid genes. Using this method, we generated well dispersed AAV2-

VLPs with an average diameter of 20 nm, similar to that of the wild-type AAV2 capsid. The 

nanoparticles were subsequently purified by chromatography and three viral capsid proteins 

were confirmed by Western blot. The negatively charged AAV2-VLPs were surface-coated 

with PEI to develop cationic nanoparticles, and the formulation was used for efficient siRNA 

delivery under optimized transfection conditions.

Results: PEI-AAV2-VLPs were able to condense siRNA and to protect it from degradation by 

nucleases, as confirmed by gel electrophoresis. siRNA delivery mediated by PEI-AAV2-VLPs 

resulted in a high transfection rate in MCF-7 breast cancer cells with no significant cytotoxicity. 

A cell death assay also confirmed the efficacy and functionality of this novel siRNA formula-

tion towards MCF-7 cancer cells, in which more than 60% of cell death was induced within 

72 hours of transfection.

Conclusion: The present study explores the potential of virus-like particles as a new approach 

for gene delivery and confirms its potential for breast cancer therapy.

Keywords: adeno-associated virus type 2, virus-like particles, small interfering RNA delivery, 

breast cancer therapy, nanomedicine

Introduction
Small interfering RNA (siRNA) mediates sequence-specific binding and degrada-

tion of mRNA, and is one of the most important findings over the past decade, with 

great potential in the treatment of diseases caused by abnormal mRNA overexpres-

sion, such as cancer.1 However, clinical application of siRNA is limited by its poor 

intracellular uptake, rapid enzymatic degradation, and inefficient systemic delivery.2 

Introduction of nanoparticles could overcome these limitations. Many nanoparticles 

have been investigated for gene delivery, including solid inorganic particles, such as 

gold,3 silver,4 and carbon nanotubes,5–7 or “soft” nanoparticles, such as liposomes,8–10 

polymersomes,11 and polyplexes. Use of nanoparticles enables targeting of tumor tissue 

through the enhanced permeability and retention effect. siRNA is a negatively charged 
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molecule, which allows formation of electrostatic associa-

tions with positively charged coatings or complexes. One of 

the strategies to incorporate siRNA into nanoparticles is to 

coat these particles with positively charged polymers, such 

as polyethyleneimine (PEI), poly beta-amino ester, or poly 

L-lysine. Electrostatic coating can greatly enhance siRNA 

efficacy in systemic delivery due to its protective effects and 

improved cellular uptake.12

Virus-like particles are hollow protein cages derived from 

viruses but do not contain viral genomes. They are an ideal 

nanoscale biomaterial due to their biocompatibility, regular 

structure, and homogenous size. Virus-like particles are 

noninfectious, but by nature they inherit the essential features 

of the viruses from which they are derived, including cell-

penetrating ability, capacity to pack nucleic acids or struc-

turally similar molecules, and specific tissue tropism. These 

features make virus-like particles excellent nanocarriers for 

delivery of therapeutics. In addition, extensive viral genomic 

studies allow genetic modification of viral surface proteins for 

bioconjugation of targeting molecules, and introduction of, 

eg, foreign targeting proteins, which are beneficial for site-

specific delivery. Many biomedical applications, including 

vaccine development,13 delivery of peptides, drugs, imaging 

reagents, have been approached using virus-like particles.14

In recent years, adeno-associated virus (AAV) has 

been extensively investigated as gene therapy for many 

genetic disorders, including lysosomal storage disorders and 

hemophilia.15 AAV is a small, nonenveloped parvovirus with 

a size of around 22 nm. The wild-type AAV genome contains 

about 4700 bases of linear, single-stranded DNA. The genome 

has two open frames with two genes, ie, rep and cap, which 

encode viral replication and capsid proteins respectively 

(Figure 1). There are 11 known AAV serotypes to date, and 

AAV2 is the best studied among them. AAV2 virus-like 

particles (AAV2-VLPs) can be spontaneously assembled 

by capsid proteins. A single cap gene encodes three capsid 

proteins, ie, VP1, VP2, and VP3, with a molecular weight 

of 87, 73, and 62 kDa, respectively (Figure 1). Strategies 

for expression of these three capsid proteins are involved in 

alternative splicing and an unusual translation mechanism. 

The cap gene can generate two transcripts, in which VP1 is 

expressed from the minor transcript mRNA, and VP2 and 

VP3 are expressed from the major transcript. Translation of 

VP2 is initiated from ACG, a nonconventional translation 

initiation codon; however, the expression rate of VP2 is 

less inefficient because ribosomes can easily bypass ACG 

to initiate expression of VP3 from ATG, the next inframe. 

The differences in translational initiation frequency and in 

the number of transcripts generated lead to a specific ratio of 

1:1:10 in wild-type AAV2.16 It has been shown that AAV2 is 

well tolerated in human clinical trials, infects both dividing 

and nondividing cells, and is able to target cancer cells without 
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Figure 1 Schematics of novel AAV2-VLPs siRNA delivery design strategy and their use in cancer therapy AAV2 cap gene was previously constructed into baculovirus vector 
(denoted as BAC-cap) under polyhedrin (polh) promoters for high amplification. The AAV2-VLPs were produced in bioreactor by infection of insect cells with BAC-cap. 
The generated crude AAV2-VLPs were purified by chromatography. For siRNA delivery, cationic polymer polyethylene imine (PEI) were applied to coat negative charged 
AAV-VLPs by electrostatic interactions. Delivery of cell death siRNA in breast cancer cells led to destruction of cancer cells.
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affecting healthy cells.17 These features make AAV2-VLPs a 

potentially useful agent in biomedical applications.

Several systems have been investigated for expression of 

recombinant AAV2, eg, cotransfection of plasmids containing 

separate AAV2  genes in HeLa or HEK293  cells, and 

infection of insect cells with AAV2 genes constructed from 

baculovirus.18 The capsids of recombinant AAV2 generated 

by different expression methods have different stoichiometric 

ratios, ranging from 1:1:5 to 1:1:20.19 In this study, we 

used an insect/baculovirus expression system to produce 

AAV2-VLPs. As shown in Figure 1, the AAV2 cap gene was 

previously constructed into a baculovirus vector (denoted as 

BAC-cap) under a polyhedrin promoter for high amplification. 

The AAV2-VLPs were produced in a bioreactor by infection 

of insect cells with BAC-cap. For siRNA delivery, cationic 

PEI was used to coat negatively charged AAV-VLPs via 

electrostatic interactions. In this study, the production condi-

tions for AAV-VLPs were optimized. We demonstrate that 

PEI-AAV2-VLPs could condense siRNA and protect it from 

enzymatic degradation; the PEI-AAV2-VLP complexes 

showed high siRNA transfer efficiency in vitro using MCF-7 

breast cancer cells. Delivery of siRNA induced pronounced 

cell death in MCF-7 breast cancer cells, which holds promise 

for breast cancer therapy.

Materials and methods
Insect cell culture
Spodopterafrugiperda (Sf-9) cells were propagated in serum-

free medium (Sf-900 II SFM Gibco cell culture, Invitrogen, 

Burlington, ON, Canada) at 27°C in shake flasks (Corning 

Glass Works, Corning, NY) with a working volume of 20% 

of the total volume and cultured in suspension in an orbital 

shaking incubator at 110 rpm. Cells were maintained in the 

exponential growth phase.

Expression of AAV2-VLPs by baculovirus 
infection in flask mode
The baculovirus construct, BAC-cap, containing the 

AAV2 capsid gene, was kindly provided by RM Kotin 

from the National Institutes of Health (Bethesda, MD). 

For AAV2-VLP expression, Sf-9 cells were inoculated at a 

density of 0.5 × 106 cells/mL and 20 mL of culture in 125 mL 

shake flasks. The cells were infected at a density of 2 × 106 

cells/mL with BAC-cap in different multiplicities of infection 

(MOI) and maintained at 27°C and 110 rpm. Samples were 

taken every 24 hours post-infection. Cell density, viability, 

and diameter were measured using the Cedex Cell counting 

system (Innovatis, Bielefeld, Germany).

Production of AAV2-VLPs
Production of AAV2-VLPs was carried out in a 3.5  L 

Chemap bioreactor (Chemap AG, Mannedorf, Switzerland) 

equipped with a pitch blade impeller having a working vol-

ume of 2.8 L. Sf-9 cells were inoculated in the bioreactor 

at a density of 0.5 × 106 cells/mL in 2 L of culture medium. 

When the cell density reached 2 × 106 cells/mL, the cells 

were infected with BAC-cap at MOI 1. The dissolved oxygen 

concentration was controlled at 40% of air saturation. The 

O
2
 consumption, pH, and CO

2
 were monitored during the 

whole cell culture. Cell density and viability were examined 

by sampling every 12 hours and measured using the Cedex 

Cell counting system. The cells were harvested when viability 

was around 30%.

Purification of AAV2-VLPs
For purification of AAV2-VLPs, Sf-9 cells were firstly lysed 

to release virus-like particles from cells by adding triton-

X100 at a final concentration of 0.1%, 5 U benzonase per 

million cells, and 2 mM MgCl
2
, then incubated at 37°C for 

one hour with shaking; MgSO
4
 was added to 37.5 mM, and 

incubated at 37°C for another 30 minutes with shaking. The 

cell lysates were centrifuged at 4000 g for 15 minutes, and 

the supernatant was collected and filtered through a 0.45 µm 

cellulose membrane (Amicon, Beachwood, OH) before load-

ing onto purification columns.

AAV-VLPs were purified using two chromatography 

columns, ie, an ion exchange column and a hydrophobic 

interaction column, as described by Chahal et al.20 For ion 

exchange chromatography, Fractogel SO
3
-, a cation exchange 

resin, was packed into an XK 50 column (GE Healthcare, 

Waukesha, WI) with a bed height of 9 cm. A step change of 

340 mM NaCl was applied to elute the portion containing 

AAV2-VLPs. For the hydrophobic interaction chromatogra-

phy, Butyl-650M (TosoHaas, Toyopearl) was packed into a 

XK50 column (GE Healthcare) with a bed height of 7.4 cm. 

The hydrophobic interaction chromatography column was 

eluted by applying a gradient from 1500 to 0 mM (NH
4
)

2
SO

4
. 

Fractions were collected and examined by Western blot for 

the presence of AAV2-VLPs.

SDS-PAGE and Western blot for AAV2 
viral capsid proteins
Insect cell samples were lyzed by adding 0.1% triton-X100, 

after which 60 µL of lysates were mixed with 20 µL of dode-

cyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) 

buffer, and boiled for 10 minutes at 70°C. After this, 10 µL 

of prepared samples were loaded into each well and resolved 
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in NuPAGE 4%–12% Bis-Tris gel (Invitrogen). For Western 

blotting, the protein bands from the SDS-PAGE gel were 

transferred to a nitrocellulose membrane. A monoclonal 

antibody (dilution 1:1000) against the AAV2 capsid proteins, 

VP1, VP2, and VP3 (Maine Biotechnology Services Inc, 

Portland, ME) was used as the primary antibody and anti-

mouse IgG (dilution 1:5000) as the secondary antibody for 

Western blotting.

ELISA for detection of AAV-VLPs
The amount of AAV-VLPs assembled was determined 

using an AAV2 titration ELISA kit (Progen, Heidelberg, 

Germany). An anti-AAV2 monoclonal antibody specific for 

the assembled capsid proteins was precoated with multititer 

strips and the AAV2 particles were detected with biotinylated 

AAV2 antibody and horseradish peroxidase-conjugated 

streptavidin. A standard curve was prepared using the 

standard AAV2  materials included in the kit. The ELISA 

procedure was performed according to the manufacturer’s 

instructions.

Transmission electron microscopy
The size and shape of the AAV2-VLPs were examined using 

transmission electron microscopy (Philips CM200, 200 kV), 

whereby 5 µL of purified AAV2-VLPs was deposited on a 

carbon-coated copper grid and allowed to dry for one hour, 

and then viewed under a transmission electron microscope.

Preparation of PEI-AAV2-VLPs
The purified AAV2-VLPs were first washed five times with 

phosphate-buffered solution (pH 7.4) using centrifugal filtra-

tion columns (Amicon) with a cutoff of 100 kDa to remove the 

(NH
4
)

2
SO

4
 present in the chromatograph purification elution. 

For each wash, three volumes of phosphate-buffered solution 

were added and centrifuged at 4000 g for 15 minutes. PEI 

(25 kDa, Sigma, St Louis, MO) was prepared as 1 mg/mL in 

phosphate-buffered solution. The AAV2-VLPs were mixed 

with varying amounts of PEI by vortexing for 5 seconds and 

then left to sit for 30 minutes at room temperature to form 

PEI-AAV2-VLP complexes. Excess PEI was removed by 

washing five times with phosphate-buffered solution using a 

centrifugal filtration column with a cutoff of 100 kDa.

Measurement of nanoparticle size  
and zeta potential
The PEI-AAV2-VLPs were diluted in phosphate-buffered 

solution to a final viral particle concentration of 1 ×  107 

VLPs/mL. The size and zeta potential of the particles were 

measured using a particle size and zeta potential analyzer 

(Brookhaven Instruments Corporation, Holtsville, NY). Five 

measurements were taken for each sample, and the results 

were expressed as the mean ± standard error of the mean.

Cell viability assay
The cytotoxic effect of PEI-AAV2-VLPs was evaluated in 

MCF-7 cells (American Type Culture Collection, Manassas, 

VA) by MTS assay using the Cell Titer 96Aqueous non-

radioactive cell proliferation MTS assay kit (Promega, 

Madison, WI). Briefly, triplicate samples of 1  ×  104/well 

in 96-well plates were exposed to varying amounts of PEI-

AAV2-VLPs at 37°C for 24  hours. The MTS assay was 

performed according to the manufacturer’s instructions. The 

3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-

2-(4-sulfophenyl)-2H-tetrazolium (MTS) was reduced by 

mitochondrial enzyme dehydrogenase to form formazan in 

viable cells. The formazan concentration in the cell culture 

was measured at an absorbance of 490 nm using a 1420-040 

Victor-3 multilabel counter (Perkin Elmer, Waltham, MA). 

The amount of formazan is proportional to the number of 

viable cells. Cell viability was calculated as the percentage of 

viable cells relative to that in the untreated control sample.

Gel electrophoresis assay for binding  
of siRNA to PEI-AAV2-VLPs
For gel electrophoresis, 4% agarose gel was used to examine 

the affinity of siRNA to PEI-AAV2-VLPs. siRNA (Allstar 

Cell Death, Qiagen, Quebec, Canada) was mixed with PEI-

AAV2-VLPs by gently vortexing and incubation at room 

temperature for 30 minutes to allow formation of siRNA-VLP 

complexes. The mixture was loaded onto agarose gel contain-

ing ethidium bromide and run in Tris-acetate-EDTA buffer 

(40 mM Tris-HCl, 1% (v/v) acetic acid, 1 mM (ethylenedi-

amine tetra-acetic acid) at 100 V. Migration of siRNA was 

viewed under ultraviolet light.

Transfection of siRNA in MCF-7 cells 
using PEI-AAV2-VLPs
MCF-7 breast cancer cells were maintained in Dulbecco’s 

modified Eagle’s medium (Invitrogen) with 10% fetal bovine 

serum (Invitrogen). The cells were cultured in a humidified 

incubator with 5% CO
2
 at 37°C. One day before transfec-

tion, the cells were seeded into a 96-well plate at a density 

of 1  ×  104 cells/well in 200  µL medium. On the day of 

infection, the PEI-AAV2-VLPs were mixed with fluorescent 

siRNA (rhodamine, Qiagen) or Cell Death siRNA (Allstar, 

Qiagen) and left to sit for 30 minutes at room temperature, 
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and then added to cells dropwise with gentle shaking. The 

transfection reagent (HiPerFect (Qiagen) was used as a 

positive control. For fluorescent siRNA transfection, the 

cells were washed once with phosphate-buffered solution 

to remove free particles in culture media and then viewed 

under a fluorescence microscope (TE2000-U, Nikon) after 

4 hours of incubation. Transfection efficiency was calculated 

by the fluorescence intensity measured using a plate reader 

relative to that in the positive control sample. Transfection 

efficiency was further confirmed by counting the number of 

cells exhibiting fluorescence in five different fields of views 

under a fluorescent microscope.

Results
Expression, production, and purification 
of AAV2-VLPs
Two key factors could influence the yield of AAV2-VLPs in 

an insect cell/baculovirus expression system, ie, the baculo-

virus dosage used for infection and the timing of harvest. To 

obtain optimized conditions for production of AAV-VLPs in 

a bioreactor, production was first evaluated in flask culture 

with three baculovirus dosages, with a multiplicity of infec-

tion (MOI) of 0.1, 1, and 3. Insect cell growth was assessed 

by measuring cell density, diameter, and viability every 

24 hours post-infection. The constitutive proteins (VP1–3) of 

the virus-like particles were examined by Western blot. The 

number of AAV2-VLPs assembled was measured using an 

ELISA kit. For all three infection conditions evaluated, cell 

viability dropped to less than 10% at 72 hours post-infection, 

indicating that the cell cultures had stopped by this point. The 

ELISA results showed that the yield of AAV2-VLPs assem-

bled reached a peak at 48 hours post-infection for MOI 1 and 

3; and at 72 hours post-infection for MOI 0.1 (Figure 2A). 

However, Western blotting showed that expression of the 

virus-like particle constitutive proteins (VP1–3) reached a 

similar level at 72 hours post-infection for all three different 

baculovirus infection dosages (Figure 2B). This suggests that 

the AAV2-VLPs assembled could dissociate with time in a 

cellular condition. Therefore, the timing of harvest is critical 

for recovery of intact virus-like particles.

A change in cell diameter is an indication of virus infec-

tion in insect cells. Figure 3 shows that at MOI 1 and 3, the 

Sf-9 cells increased in size and stop doubling by 24 hours 

post-infection, but that cell enlargement and cessation of 

cell growth were delayed to 48  hours post-infection with 

baculovirus infection at MOI 0.1. Therefore, a baculovirus 

infection dosage of MOI 1 was adequate for synchroniz-

ing Sf-9 cell infection at 24 hours post-infection. For MOI 

1  infection, Sf-9 cell viability was around 30% when the 

maximum yield of AAV2-VLPs assembled occurred (at 

48 hours post-infection, Figure 3C), so a cell viability of 

30% was set as an endpoint for AAV2-VLP production. For 

large-scale AAV2-VLP production, 2.5 L of Sf-9 cell culture 

was used in the bioreactor. The Sf-9 cells were infected with 

baculovirus at MOI 1. Similar cell growth and infection 
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patterns were observed in the bioreactor as in flask mode. 

Therefore, cell growth using the shake flask method was 

reproducible in the bioreactor. The cell culture was stopped 

when cell viability reached 30%.

Purification of AAV2-VLPs was achieved using a two-

step chromatography method developed earlier by Chahal 

et al.20 Figure 3A and B show the eluted peaks containing 

AAV collected from the ion exchange and hydrophobic 

interaction chromatography columns. The fractions con-

taining AAV2-VLPs were identified by Western blot. The 

concentration of pure AAV2-VLPs was 1.3 × 1012 VLPs/mL, 

as evaluated by ELISA. Band intensity analysis showed 

that pure AAV2-VLPs had a constitutive protein ratio of 

1:1:8 (VP1–3, Figure  4C). Under transmission electron 

microscopy, it was observed that the morphology of pure 

AAV2-VLPs included a round shape and a size of about 

20  nm (Figure  4D), which is similar to that reported for 

wild-type AAV2 capsids.

PEI and AAV2-VLP interactions
The AAV2 capsid surface has a zeta potential (a measure 

of net surface charge density) of −9.4  mV, according to 

the literature.21 The AAV2-VLPs generated by our method 

displayed a zeta potential of -11 mV as measured by zeta 

potential analyzer, which is similar to that previously reported. 

Negatively charged AAV2-VLPs can be coated with a cat-

ionic polymer via electrostatic association. PEI, a cationic 

polymer, was used to coat the AAV2-VLPs for the purpose of 

siRNA delivery. Our experiments were designed to determine 

the optimal PEI quantity needed for coating AAV2-VLPs. 
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The PEI coating amounts were evaluated in the range of 

1 × 10−8 to 3.2 × 10−6 µg/VLP. A coating of PEI led to a sharp 

increase in the zeta potential from -11.0 mV to +11.9 mV with 

5 × 10−8 µg/VLP of PEI added in the solution, and thereafter 

the extent of increase decreased significantly (Figure 5). The 

amount of PEI at the transition point was 5 × 10−8 µg/VLP, 

which could be the minimum amount for forming a stable 

layer on the surface of the AAV2-VLP complex. Therefore, in 

the subsequent experiment, a PEI amount of 2 × 10−7 µg/VLP 

was used for coating, which was four times the minimum 

amount in order to compensate for inaccuracy of the viral 

particle number used. The unbound PEI was removed using 

a centrifugation column with a cutoff of 100 kDa.

Toxicity of PEI-AAV2-VLPs
The toxicity of PEI-AAV2-VLPs was examined using 

MCF-7 cells. The cells were treated with varying amounts 

of PEI-AAV2-VLPs, with a VLP-to-cell ratio of 1000:1–

9000:1, and cell viability was examined by MTS assay. 

Cell viability in the untreated group was deemed to be 

100%, and the optical density from the MTS assay was 

used to calculate normalized cell viability in the other 

groups. The results showed that at a treatment dosage of 

less than 7000:1, toxicity was minor (cell viability .90%) 

for both 8-hour and 24-hour incubations; at the maximum 

dosage tested (9000:1), cell viability was around 70% 

(Figure 6).
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Figure 4 Purification and Characterization of AAV2-VLPs (A) step 1: ion exchange chromatography (IEC) (B) step 2: hydrophobic interaction chromatography (HIC)  
(C) western blot of purified AAV2-VLPs (D) TEM image of purified AAV2-VLPs. The entire 2.5 L of cell lysates from bioreactor were subjected to equilibrated IEC column. 
During purification process, column pressure, flow rate, conductivity and UV of flow through were monitored. The column was washed with buffer containing 150 mM NaCl 
until a base line was reached. A step change of 340 mM NaCl was applied to elute AAV2-VLPs. There were 2 elution peaks detected by UV. AAV2-VLPs were eluted in the 
second elution peak. The fraction containing AAV2-VLPs was collected and adjusted to 1.5 M (NH4)2SO4 concentration and then loaded to HIC column. In HIC column, 
a concentration gradient from 1500 to 0 mM (NH4)2SO4 was applied to elute AAV2-VLPs. Pure AAV2-VLPs was detected in the fraction between 962 and 625 mM of 
(NH4)2SO4 (indicated with black arrow). Constitution proteins of purified AAV2-VLPs were examined by western blot, band density band intensity analysis displayed protein 
ratio of 1:1:8 (VP1–3). TEM analysis showed that the morphology of pure AAV2-VLPs was round in shape with size of around 20 nm, which was similar to that of reported 
wildtype AAV2 capsids.
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PEI-AAV2-VLPs and siRNA binding 
affinity/protection effect
It was expected the negatively charged siRNA would form 

complexes with positively charged PEI-AAV2-VLPs via 

electrostatic interactions. Gel electrophoresis was applied to 

evaluate binding ability of virus-like particles to siRNA. 0.1 µg 

of siRNA was mixed with 0.5 ×  109 PEI-AAV2 virus-like 

particles and incubated for 30 minutes at room temperature 

to form a VLP-siRNA complex. Experiments were designed 

to investigate the efficacy of siRNA protection afforded by 
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Figure 5 Investigation of PEI and AAV2-VLPs interaction by zeta potential analysis. The PEI coating amount evaluated in the range of 1 × 10-8 to 3.2 x 10-6 µg/VLP. After 
coating, the excess PEI was removed by washing with 100 kDa cut-off centrifugation column. Zeta potential of PEI-AAV2-VLPs was measured in PBS buffer (pH 7.4). Total 
of five measurements were taken from each points. The results were plotted as means ± standard error. Coating of PEI led to a sharp increase of zeta potential of particles 
from -11 to +11.9 mV within 5 × 10-8 µg/VLP of PEI used. The amount of PEI in transition point (5 × 10-8 µg/VLP) was determined as the minimum amount for forming a 
stable layer on AAV2-VLP surface.
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Figure 6 PEI-AAV2-VLPs Cytotoxicity evaluation MCF-7 cells were incubated with PEI-AAV2-VLPs at increased VLP-to-cell ratio for 8 and 24 hrs respectively. Cell viability 
was measured by MTS assay. Cell viability in untreated groups was assigned as 100% and its O.D from MTS assay was used to calculate cell viability in treatment groups. 
With treatment dosage of less than 7000:1 VLP-to-cell ratio, toxicity effects were minor (cell viability .90%) for both 8 hr and 24 hr incubations; at maximum dosage tested 
(VLP-to-cell ratio of 9000:1), cell viability was around 70%.

PEI-AAV2-VLPs. For this, siRNA-VLP complexes were 

incubated with RNAse A for one hour at 37°C. Figure 7 shows 

that the migration of siRNA was fully arrested due to its 

association with PEI-AAV2-VLPs, because the particles 

were not able to pass through the gel due to their size (lane 2); 

with RNAase treatment, siRNA was not degraded (lane 3) 

and showed the same migration pattern as the sample not 

treated with RNAase (lane 2). This result suggested that 

PEI-AAV2-VLPs could associate tightly with siRNA and 

protect siRNA effectively from nuclease degradation.
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PEI-AAV2-VLP formulation for siRNA 
delivery
siRNA labeled with rhodamine, a fluorescent dye, was used 

to examine the delivery efficiency of PEI-AAV2-VLPs. Cell 

Death siRNA 40 ng was mixed with PEI-AAV2 virus-like 

particles of 1, 3, 5, and 7 × 107 VLPs, respectively, and left 

to sit for 30 minutes at room temperature to allow formation 

of nanoparticles. MCF-7 cells were plated at a density of 

1  ×  104 cells/well. siRNA incorporated into PEI-AAV2-

VLPs was added to each well. After 4 hours of transfection, 

the cells were viewed under fluorescent microscopy and the 

fluorescence intensity was measured using a plate reader 

at excitation 560  nm and emission 630  nm. The siRNA 

delivery efficiency was evaluated by normalized fluorescence 

intensity. HiPerFect, a commercial transfection reagent, was 

used as the positive control. The siRNA delivery efficiency 

with HiPerFect was assigned to 100% and its fluorescent 

intensity was used to calculate siRNA delivery efficiency 

with PEI-AAV2-VLPs. Signif icant fluorescence was 

observed in MCF-7 cells (Figure 8). The efficiency was 67%, 

70%, 96%, and 83% for 1000:1, 3000:1, 5000:1, and 7000:1 

VLP-to-cell ratios, respectively. The delivery efficiency was 

further confirmed by counting transfected cells under the 

microscope. The decreased transfection efficiency at a ratio of 

7000:1 may have been caused by decreased cell numbers due 

to the cytotoxicity of a high amount of PEI-AAV2-VLPs.

Efficacy of PEI-AAV2-VLPs siRNA 
delivery in breast cancer cell lines
siRNA-induced cell death was used to evaluate the efficacy 

and functionality of siRNA delivery by PEI-AAV2-VLPs. 

MCF-7 breast cancer cells were preplated in 96-well plates 

at a density of 1 ×  104 cells/well one night before. Each 

40 ng of Cell Death siRNA was formulated with 5 × 107 

PEI-AAV2-VLPs and added to 1 × 104 cells/well in 96-well 

plates (VLP-to-cell ratio 5000:1), which is the optimal 

transfection condition showing good transfection efficiency 

and a non-toxic VLP dosage. The sizes of PEI-AAV2-

VLPs and PEI-AAV2-VLPs formulated with siRNA were 

63.5 ± 0.5 nm and 114.7 ± 3.4 nm in diameter, respectively, 

as measured by particle size analyzer. The commercially 

available siRNA transfection reagent, HiPerFect, was used as 

a positive control. After 72 hours of transfection, cell viability 

was measured by MTS assay. Cell viability in the untreated 

group was assigned as 100% and its optical density by MTS 

assay was used to calculate normalized cell viability. siRNA 

delivery by PEI-AAV2-VLPs caused cell viability to change 

from 98% to 34.8%, which is comparable with HiPerFect 

(90% to 27% reduction in cell viability, Figure  9). Thus, 

PEI-AAV2-VLPs/siRNA exhibited a great gene silencing 

activity against cancer cells.

Discussion
Viruses typically consist of proteinaceous capsids and viral 

genomes, and have been traditionally thought of as pathogens 

because viral genomes are able to replicate inside the host 

and cause disease. However, by removing the viral genomes 

inside the capsids, the viruses become nonpathogenic. Nature 

has developed a wide range of capsids that vary in size, stabil-

ity, and functionality, facilitating them to infect their hosts. 

Many of the essential features of viruses are derived from 

viral capsids, such as cell-penetrating capacity and specific 

tissue tropism. From the materials science viewpoint, viral 

capsids or virus-like particles are superior nanosized natural 

materials due to their good stability, well defined geometry, 

and homogeneity in particle size. One advantage of virus-like 

particles over other conventional materials is that they can be 

genetically manipulated for insertion of peptides and ligands, 

so that a variety of ligands can be displayed on the surface 

of virus-like particles. This level of control is not possible 

for nanomaterials made from inorganic or organic materials. 

As a new class of nanomaterials for biomedical application, 

virus-like particles are worthy of intensive investigation.

Some applications of virus-like particles for delivery of 

solid nanoparticles,22 imaging reagents,23 and small molecule 

drugs24 have already been reported, but they have mainly 

focused on particles derived from plant viruses or bacterio-

phages, eg, Cowpea mosaic virus, Cowpea chorotic mottle 

virus, and bacteriophage MS2. Very few such applications of 

virus-like particles have been derived from human viruses due 

1 2 3

Figure 7 siRNA binding affinity and siRNA protection effect of PEI-AAV2-VLPs. 
lane 1: free siRNA; lane 2: siRNA incorporated PEI-AAV2-VLPs; lane 3 cell siRNA 
incorporated PEI-AAV2-VLPs incubated with Rnase A for 1 hr at 37°C. 0.1 µg of 
siRNA was mixed with 0.5 × 109 PEI-AAV2-VLPs and incubated for 30 min at room 
temperature to form VLP-siRNA complex, and then incubated with or without 
RNAse A for 1 hr at 37°C. siRNA migration was assessed by gel electrophoresis 
using 4% agarose gel. The migration of siRNA was fully arrested due to association 
with PEIAAV2- VLPs; with RNAase treatment, siRNA was not degraded (lane 3) 
showing the same pattern as in RNAase untreated one (lane 2).
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to the fact that human viruses may cause immune responses. 

However, virus-like particles derived from human viruses do 

have many advantages over other types of virus-like particles 

in terms of infectivity to specific human cells and tissues. 

The type of virus-like particles can be carefully selected so 

as to maximize its favorable functions. In this study, we used 

virus-like particles from AAV2, which has been widely used 

in clinical gene therapy trials and has been shown to induce 

a very mild immune response.25 Therefore, use of virus-like 

particles of this type would definitely bring more benefits.

Another important factor for clinical application of 

virus-like particles is their ease of production, because a 
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Figure 8 siRNA delivery efficiency of PEI-AAV2-VLPs evaluated by fluorescent siRNA (A) fluorescent microscope images of siRNA transfected MCF-7 under fluorescent 
light (upper panel) and bright field (lower panel) (B) siRNA delivery efficiency evaluated by fluorescence intensity. The MCF-7 cells were plated at density 1 × 104 cells/well in 
96-well plate. 40 ng of siRNA was mixed with PEI-AAV2-VLPs of 1, 3, 5 and 7 × 107 VLPs respectively. After 30 min incubation at room temperature, the preparations were 
added to each well. After 4 hr of transfection, the cells were viewed under fluorescent microscopy and fluorescence intensity was measured by plate reader. Commercial 
transfection reagent, HiPerFect, was used as a positive control. The siRNA delivery efficiency with HiPerFect was assigned to 100% and its fluorescent intensity was used to 
calculate siRNA delivery efficiency with PEI-AAV2-VLPs. Significant fluorescence was observed in MCF-7 cells. The siRNA delivery efficiency was 67%, 70%, 96% and 83% for 
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considerable amount of virus-like particles is needed for 

human trials. The insect cell/baculovirus expression system is 

able to produce sufficient quantities to meet the requirements 

of human clinical applications, and can be used as “a factory” 

for production of AAV2 and AAV2-VLPs.26 Although it is 

known that the insect cell/baculovirus expression system 

is able to produce high levels of AAV2-VLPs, the optimal 

production conditions have not been determined. In this 

study, we optimized the production conditions, enabling 

1012 functional baculoviruses per mL to be produced, which 

is sufficient for clinical scale application. It is known that 

the purification method used can influence the properties of 

the virus. For example, the classic cesium chloride density 

gradient centrifugation purification method causes over 

50% loss of particle infectivity.27 Other methods are limited 

by scalability, eg, iodixanol gradient purification, or by 

cost considerations, eg, immunoaffinity chromatography. 

Based on these considerations, we chose to use a scalable 

two-step chromatography method for purification of AAV2-

VLPs. By applying scalable virus-like particle production 

and purification methods, further biomedical applications 

for the AAV2-VLPs generated will be easily amplified to 

human trial scale in future. Characterization of the virus-like 

particles by transmission electron microscopy (Figure 4D), 

Western blot (Figure 4C), and zeta potential analysis revealed 

that the AAV2-VLPs generated have a structure similar to 

that of wild-type AAV2. Therefore, it was expected that the 

AAV2-VLPs produced by the insect cells/baculovirus expres-

sion system could retain the infectivity and tissue tropism 

of wild-type AAV2.

Cationic groups are beneficial for electrostatic binding 

with negative charged siRNA. It has been shown that cat-

ionic polymers can be used to functionalize nanoparticles for 

efficient delivery of siRNA. Coating polymers on the surface 

of nanoparticles is a strategy to increase the solubility and 

stability of the particles. Cationic lipids and polymers have 

been shown to improve AAV2 transduction efficiency.28,29 In 

one study, AAV-mediated insulin gene therapy was combined 

with preinjection of PEI in mice to achieve increased infection 

efficiency.21 However, to our knowledge, we have used elec-

trostatic surface coating of AAV2-VLPs for siRNA delivery 

for the first time. Coating of virus-like particles with polymers 

could have other benefits, such as protection of virus-like 

particles from neutralization by the immune system and 

improved infection efficiency.28–30 It is important to know the 

mechanism of cell penetration and the mechanism of siRNA 

protection by the novel PEI-AAV2-VLPs. Investigation of 

these mechanisms in future studies will definitely provide 

more understanding of this new formulation.

Conclusion
In this study, a novel siRNA delivery formulation was devel-

oped using virus-like particles derived from adeno-associated 

virus, and the results are promising. The production and 

purification system for AAV2-VLPs is scalable for ease 

of possible future applications in clinical trials. The novel 

PEI-AAV2-VLPs are effective in siRNA delivery and are 

safe, and therefore suitable for biomedical applications. 

High siRNA delivery efficiency and a good silencing effect 

has been shown in cancer cells using PEI-AAV2-VLPs. 

In addition, PEI-AAV2-VLPs could protect siRNA from 

enzymatic degradation, which is beneficial for its in vivo 

delivery. Furthermore, the size of siRNA formulated PEI-

AAV2-VLPs (diameter 113.7  nm) is within the optimal 

range of sub-150 nm for tumor targeting via the enhanced 

permeability and retention effect.31 Our results suggest that 

this delivery system could be developed as a potential therapy 

for breast cancer.
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