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Abstract: Intercellular membrane nanotubes (ICNs) are highly curved tubular structures that 

connect neighboring cells. The stability of these structures depends on the inner cytoskeleton 

and the cell membrane composition. Yet, due to the difficulty in the extraction of ICNs, the cell 

membrane composition remains elusive. In the present study, a raft marker, ostreolysin, revealed 

the enrichment of cholesterol-sphingomyelin membrane nanodomains along ICNs in a T24 

(malignant) urothelial cancer cell line. Cholesterol depletion, due to the addition of methyl-β-

cyclodextrin, caused the dispersion of cholesterol-sphingomyelin membrane nanodomains and 

the retraction of ICNs. The depletion of cholesterol also led to cytoskeleton reorganization and to 

formation of actin stress fibers. Live cell imaging data revealed the possible functional coupling 

between the change from polygonal to spherical shape, cell separation, and the disconnection of 

ICNs. The ICN was modeled as an axisymmetric tubular structure, enabling us to investigate the 

effects of cholesterol content on the ICN curvature. The removal of cholesterol was predicted 

to reduce the positive spontaneous curvature of the remaining membrane components, increas-

ing their curvature mismatch with the tube curvature. The mechanisms by which the increased 

curvature mismatch could contribute to the disconnection of ICNs are discussed.

Keywords: cyclodextrins, T24 urothelial cancer cell line, intercellular membrane nanotubes, 

cholesterol-sphingomyelin membrane nanodomains

Introduction
Intercellular membrane nanotubes (ICNs), as a novel intercellular communication 

mechanism, are extensively studied both functionally and structurally.1–7 Previously, it 

has been shown that ICNs are stabilized not only by the inner cytoskeleton but also by the 

membrane composition.8–10 Yet, due to their fragility, it is impossible to separate the ICNs 

from the rest of the cell, and therefore their membrane composition remains unknown. To 

shed light on the ICN membrane composition, it is possible to use membrane raft markers, 

for the binding of different lipids, proteins, and their complexes.11–16 In the present study, 

the addition of a raft marker, ostreolysin (Oly), revealed the presence of cholesterol-

sphingomyelin membrane nanodomains throughout the plasma membrane and ICNs. 

The role of cholesterol-sphingomyelin nanodomains in the stability of ICNs was explored 

using a cholesterol depletion agent and a cholesterol-free growth medium.

Oly belongs to a novel protein family called aegerolysins (PF06355; IPR 009413), 

which are known for their cytolytic properties.17,18 The binding of Oly evokes the for-

mation of distinctive pores that induce cell lysis.19 Fluorescent mutants devoid of lytic 

activity, or fluorescent antibody-labeled proteins at their sublytic concentrations, have 

been used for the structural investigation of biological membranes.11–16 In particular,  
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it has been revealed that Oly interacts specifically with 

cholesterol-sphingomyelin membrane nanodomains,19–21 

which do not colocalize with caveolin and cholera toxin B 

membrane nanodomains.11 Oly differs from other raft mark-

ers, since it can sense the interaction between two lipids (ie, 

cholesterol and sphingomyelin), and does not bind to any 

lipid in its pure form.

While cholesterol-enriched membrane nanodomains have 

been found to be important for different biological functions, 

such as exocytosis and endocytosis, signal transduction, patho-

gen entry, and attachment of various ligands,22–24 their contri-

bution to the stability of highly curved membrane regions (eg, 

ICNs) are not fully understood. A cholesterol molecule has a 

small hydrophilic headgroup and a  relatively short hydropho-

bic tail, which enables it to fill gaps in highly curved cell mem-

brane regions.25,26 The stability of a highly curved ICN might 

depend on the relative concentration of cholesterol. In mixed 

membrane models, the addition of cholesterol facilitates the 

formation of an intermediate phase called liquid ordered 

phase,27,28 exhibiting more rigidity than the surrounding liquid 

disordered nanodomains.29 Therefore, it is possible that the 

stability of the ICN may depend on the distribution of liquid 

ordered membrane nanodomains enriched in cholesterol. In 

the literature, liquid ordered membrane nanodomains were 

previously denoted as membrane rafts.22,23 Membrane rafts are 

defined as small (10–300 nm) in diameter, heterogeneous, and 

highly dynamic domains. Upon stimulation, small rafts can 

be stabilized to form larger platforms through protein–protein 

and protein–lipid interactions.

Cyclodextrins (CDs) are a family of cyclic compounds 

made up of oligosaccharides that absorb cholesterol from 

the cell membrane. The inner core of the CD toroidal 

structure is much less hydrophilic than the outer surface, 

which facilitates the absorption of cholesterol from the 

cell membrane.30,31 On the other hand, the release of phos-

pholipids from cell membranes under exposure to CD is 

only minimal. For example, less than 5% of the initial cell-

associated choline-labeled phospholipids was released after 

1-hour exposure with 1 mM CD in various Chinese ham-

ster ovary cells and, at most, 2% of cellular phospholipids 

was released after 5-hour incubation with 5 mM CD from 

L-cells.32,33 Besides their effect on membrane composition, 

other studies investigated the effect of CDs on cellular com-

munication and cell shaping, demonstrating a decrease in the 

frequency of endocytosis and in the numbers of membrane 

invaginations.34–36

Herein, the effects of cholesterol depletion on the mes-

enchymal shape of a T24 cell and on the density of ICNs 

are reported. It is revealed that either methyl-β-cyclodextrin 

(mβCD) treatment or the growth in cholesterol-free medium 

cause a significant reduction in the density of ICNs. The 

dynamic morphological alterations are explored using live 

cell imaging and confocal microscopy. A computational 

model was constructed to investigate the underlying mecha-

nisms accounting for the instability of tubular structures fol-

lowing the application of a cholesterol depletion agent.

Materials and methods
Urothelial cell culture
Urothelial cell line T24 was cultured in a 1:1 mixture of 

advanced Gibco® Dulbecco’s modified Eagle’s medium 

(Invitrogen Life Technologies, Carlsbad, CA) and Ham’s F-12 

(Sigma-Aldrich Corporation, St Louis, MO), supplemented 

with Gibco 10% fetal bovine serum, 5 µg/mL insulin, 5 µg/

mL transferrin, 100 mg/mL hydrocortisone, and 5 ng/mL sel-

enite (Invitrogen), as well as 1800 U/mL cristacyclin (Pliva, 

Zagreb, Croatia) and 0.222 mg/mL streptomycin sulfate 

(Fatol Arzneilmittel GmbH, Schiffweiler, Germany). Cells 

were incubated at 37°C in a humidified incubator (Heracell, 

Heraeus, Germany) in an atmosphere of 5% carbon dioxide. 

One day prior to experiment, cells were seeded onto sterile 

glass coverslips (Brand GmbH, Wertheim, Germany) at 

approximately 70%–80% confluence and incubated overnight 

at 37°C. In some experiments, cells were grown in a medium 

with lipoprotein poor serum (LPPS medium) purchased from 

Thermo Scientific HyClone (South Logan, UT).

mβCD
The growth medium of overnight cultures was replaced 

with cholesterol free media (LPPS) with 1 mM, 2 mM, 

4 mM, 6 mM, 8 mM, 10 mM, 12 mM, 16 mM, or 20 mM 

mβCD (Sigma-Aldrich). Cells were incubated in mβCD 

for 2 hours or 4 hours, depending on the experiment. After-

wards, incubation medium was removed, cells were fixed 

in 2% paraformaldehyde (Merck, Hohenbrunn, Germany; 

37°C) for 20 minutes, washed twice in phosphate-buffered 

saline (PBS; Sigma-Aldrich 37°C) for 15 minutes, and then 

analyzed (see below).

Quantification of cellular cholesterol
Lipids from cell homogenates were extracted according to 

the method of Bligh and Dyer.37 Briefly, for each 200 µl of 

volume, a 1:2 mixture of chloroform:methanol (volume/

volume) was added. The chloroform layer was dried under 

a stream of nitrogen gas and lipids redissolved in isopropyl 

alcohol. The total cholesterol content was assayed using the 
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Cholesterol Reagent kit (Thermo Fisher Scientific, Vantaa, 

Finland) according to the manufacturer’s in structions. In 

p arallel, the protein concentration of 50 µl of each sample 

was assayed with the Bradford method.38 The ratio of choles-

terol  concentration to protein concentration was represented 

as mg of cholesterol/mg of cell protein.

Oly labeling, actin labeling, antibodies,  
and microscopy
Oly was isolated from fresh fruiting bodies of Pleurotus 

ostreatus as previously described.18 The purity of Oly was 

checked by polyacrylamide gel electrophoresis. The protein 

concentration was determined spectrophotometrically using 

the BCA™ Protein Assay Reagent (Thermo Scientific Pierce 

Protein Research Products, Rockford, IL). After isolation, the 

protein was desalted and kept frozen (−20°C) in aliquots in 

140 mM sodium chloride, 1 mM ethylenediaminetetraacetic 

acid, 20 mM tris(hydroxymethyl)aminomethane hydrochlo-

ride buffer (pH 8.0). Rabbit anti-Oly primary antibodies were 

prepared as previously described.18 T24 cells grown on cover-

slips were incubated with 2.5 µg/mL of Oly for 30 minutes at 

37°C. After fixation in 4% paraformaldehyde, washing with 

PBS, and blocking with 2% bovine serum albumin (Sigma-

Aldrich) with 0.2% sodium azide, (Fluka Chemie, Buch, 

Switzerland) primary Oly antirabbit antibodies (1:2500) 

and then Molecular Probes® Alexa Fluor® 555-conjugated 

secondary antibodies (1:1000) (Invitrogen) were added. 

Coverslips were washed and mounted in VECTASHIELD® 

with 4′,6-diamidino-2-phenylindole (Vector Laboratories, 

Burlingame, CA).

Actin labeling was performed in 16.7 µg/mL phalloidin 

(phalloidin-fluorescein isothiocyanate) (Sigma-Aldrich) in 

20% methanol (Carlo Erba Reagenti, Milan, Italy) in PBS 

for 30 minutes. For preparations which were labeled for Oly, 

actin labeling with phalloidin-tetramethylrhodamine isothio-

cyanate (Sigma-Aldrich) was performed after goat antirabbit 

secondary antibody incubation and 10 minutes washing in 

PBS. Afterwards, coverslips were decanted and embedded 

in VECTASHIELD-4′,6-diamidino-2-phenylindole and 

analyzed in a fluorescence microscope (Axio™ Imager Z1; 

Carl Zeiss AG, Oberkochen, Germany).

Phase-contrast and fluorescence  
image acquisition
Cells were analyzed in a fluorescence microscope (Axio 

Imager Z1). Phase-contrast images were taken with 63× -water 

objective (numerical aperture 0.95) and fluorescence images 

with Plan Apochromat® (63×, oil/numerical aperture 1.4; 

Carl Zeiss).

Morphometric analysis
Sampling was performed as follows: cover glass with fixed 

cells was imaged with water immersion objective (63×). 

Images were taken at every second visual field, second hori-

zontal, and second vertical axis. Afterwards, 20 randomly 

chosen images were analyzed for each treatment by counting 

the cells and ICNs per image. Only membrane nanotubes 

that made contact between neighboring cells were counted as 

ICNs. The ICN density, ie, the number of ICNs per cell, was 

calculated as follows: ICN density = (total number of ICNs/

total number of cells). Data are reported as mean ± standard 

deviation in tables and text.

Live cell imaging
T24 cells were cultured on glass bottom dishes (MatTek 

C orporation, Ashland, MA). Time-lapse imaging was 

obtained on an LSM 510 (Carl Zeiss) confocal microscope 

using transmission light (oil objective 63×). Initially, images 

of control were taken (data not shown), then the medium was 

exchanged with cholesterol-free growth medium treated with 

5 mM mβCD and time sequences collected every 18 seconds 

for 2 hours.

Results
Oly and other raft markers
Previously, it has been demonstrated that Oly  preferentially 

binds to cholesterol-sphingomyelin membrane nanodo-

mains.19,20 Figure 1B shows the binding of Oly to cholesterol-

sphingomyelin membrane nanodomains t hroughout the 

plasma membrane and ICNs in T24 cells. Oly  preferentially 

binds rafts enriched with cholesterol and s phingomyelin 

molecules. Oly was strongly labeled in some of the T24 cells 

(Figure 1B), which could be due to differences in the concen-

tration of cholesterol-sphingomyelin rafts. Along the ICNs, 

there was no binding of caveolin-1 and flotillin-1 raft mark-

ers, and very little binding of ganglioside GM1 raft marker 

(data not shown). 

The depletion of cholesterol using mβCD and LPPS 

revealed reduced binding of Oly to the cell surface 

( Figure 1D), which demonstrated the disappearance of 

cholesterol-sphingomyelin membrane nanodomains that Oly 

binds to in the cell membrane. Finally, due to the relatively 

low concentration of mβCD (1 mM) and the short treatment 

time (2 hours), there was neither an effect on the cell mor-

phology nor on the ICN density (Figure 1C and D).
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mβCD treatment
CD treatment has been shown to drive the transfer of cho-

lesterol from the outer membrane leaflet of the cell and from 

fluid areas to mβCD molecules.39,40 In the present study, the 

depletion of cholesterol from the plasma membrane was 

verified using the Bligh and Dyer method. It was revealed 

that the treatment by mβCD reduced the concentration of 

cholesterol in cell membranes. The relative concentration of 

cholesterol (mg cholesterol/mg protein) was 0.006 in the con-

trol experiment, whereas following mβCD treatment (4 mM 

for 2 hours), the relative concentration fell to 0.002.

Figure 2 shows phase-contrast images of T24 cells grown 

in LPPS for 2 hours and treated with increasing concentra-

tions of mβCD (from 2 mM to 20 mM). Following treatment, 

cells were more separated, and the extent of cell separation 

was a function of mβCD concentration. Furthermore, it was 

revealed that 2 mM mβCD did not have a significant effect 

on the ICN frequency (Figure 2C). However, above a con-

centration of 4 mM mβCD, the retraction of ICNs became 

considerable, and the cell edge surface became smoother, 

demonstrating the retraction of short and long membrane 

protrusions (Figure 2D–J). These results revealed that the 

depletion of more cholesterol led to more significant mor-

phologic changes.

Actin and DNA labeling
The formation of actin stress fibers might be important for 

cell reshaping and cell contraction.41 Following cell growth 

in LPPS for 4 hours, actin labeling of T24 cells demonstrated 

the smoothing of the cell surface as well as the formation 

of actin stress fibers (Figure 3C). The formation of actin 

stress fibers might facilitate static cell contraction, which 

could reduce the cell size and smooth out the cell surface. 

Similar morphologic changes were observed upon 4 mM 

mβCD treatment (Figure 3D and E). By adding a DNA label 

(4′,6-diamidino-2-phenylindole), it was observed that the 

integrity of the cell nuclei, after mβCD treatment, remained 

intact (Figure 3F–J).

Morphometric analysis
To determine the statistical effect of mβCD treatment in 

T24 cells, the number of cells and the number of ICNs were 

counted in acquired images. The ICN density was calculated 

in each image. Summary statistics for the differences in ICN 

density upon mβCD treatments of different concentrations for 

2 hours are shown in Figure 4. It was revealed that the ICN 

density was significantly (P , 0.05) reduced following the 

application of 4 mM mβCD, and that the average number of 

ICNs fell dramatically upon an increase in the concentration 

Actin10 µm

A B

C
Cells treated with 1 mM mβCD and grown in LPPS

Cells grown in LPPS

D

Actin

Oly

Oly

Figure 1 Ostreolysin marks the presence of cholesterol-sphingomyelin membrane nanodomains along intercellular membrane nanotubes in T24 cells. The labeling of actin 
filaments highlights the location of intercellular membrane nanotubes (see close up) between T24 (malignant) cells of urothelial origin grown in lipoprotein poor serum 
medium (A). The addition of ostreolysin reveals specific binding to cholesterol-sphingomyelin membrane nanodomains along the cell surface and along the intercellular 
membrane nanotubes (B). The growth of T24 cells in lipoprotein poor serum medium treated with 1 mM methyl-β-cyclodextrin for 2-hour causes the formation of actin 
stress fibers (C) as well as the dispersion of cholesterol-sphingomyelin membrane nanodomains (D). Note that the intercellular membrane nanotubes are still present 
following the application of methyl-β-cyclodextrin in low concentration (1 mM) (C), and that ostreolysin labeling on the cell surface is much reduced (D). 
Abbreviations: LPPS, lipoprotein poor serum; mβCD, methyl-β-cyclodextrin; Oly, ostreolysin.
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A B

C D

E F

G H

I J

Control10 µm LPPS

2mM mβCD 4mM mβCD

8mM mβCD6mM mβCD

10mM mβCD 12mM mβCD

20mM mβCD16mM mβCD

Figure 2 Phase-contrast images of T24 cells revealing the loss of intercellular membrane nanotubes upon increasing concentration of methyl-β-cyclodextrin treatment. The 
images show the growth of T24 cells in control (A) and cholesterol-free medium (lipoprotein poor serum) (B), and the morphological changes of T24 cells in lipoprotein poor 
serum following 2–20 mM methyl-β-cyclodextrin 2-hour treatment (C–J). The intercellular membrane nanotubes, observed following 4 mM methyl-β-cyclodextrin treatment, are 
thinner, longer (C; see arrow), and less frequent than in the control experiment (A; see arrow). The removal of cholesterol from the membrane causes the inward contraction of 
the cell plasma membrane (D and E). The formation of large vesicular dilations along the intercellular membrane nanotube (E; see arrow) could be due to the curvature mismatch 
between the remaining membrane components and the tube curvature. Above 6 mM methyl-β-cyclodextrin, the cells become isolated and spherical (F–J). 
Abbreviation: mβCD, methyl-β-cyclodextrin.
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of mβCD from 4 mM to 6 mM (Figure 4). This shows that 

there might be a threshold of cholesterol content in the cell 

membrane, below which there is a dramatic decline in ICN 

density.

The coupling between ICN density  
and cell shaping
To shed light on the dynamic changes in cell morphol-

ogy following cholesterol depletion, live cell imaging 

techniques were employed using confocal laser scan 

microscopy. The hypothesis was that the disruption of ICNs 

and the change from a polygonal to a spherical cell shape 

were mechanically coupled. Using a confocal microscope 

(LSM 510) and time-lapse imaging, the cell morphologic 

changes were tracked during treatment of 5 mM mβCD. 

Figure 5A shows that ICNs are disrupted somewhere in 

the middle, and then retracted towards the parent cell 

membrane. F urthermore, the disconnection of ICNs caused 

the abrupt cell separation and the rounding of a T24 cell  

(Figure 5).

A B C D E

F G H I J

Control

A
ct

im
D

A
P

I
10 µm

LPPS 2 h LPPS 4 h 4mM mβCD 2 h 4mM mβCD 4 h

Figure 3 Fluorescence microscope images of T24 cells revealing the integrity of actin filaments and cell nucleus following the growth in cholesterol-free (lipoprotein 
poor serum) or methyl-β-cyclodextrin treatments. The actin labeling of T24 cells in the control experiment reveals the cell surface ruffling (A). The growth of T24 cells in 
lipoprotein poor serum causes the smoothing of the cell surface (retraction of the membrane protrusions) as well as the formation of actin stress fibers, which is observed 
more after 4-hour (C) than 2-hour (B) treatment. The morphological changes in T24 cells following methyl-β-cyclodextrin treatment are similar to the changes observed 
following growth in lipoprotein poor serum (D and E). Using a DNA label (4′,6-diamidino-2-phenylindole), the integrity of the cell nuclei in the corresponding lipoprotein 
poor serum and methyl-β-cyclodextrin treatments is revealed (F–J). 
Abbreviations: DAPI, 4′,6-diamidino-2-phenylindole; h, hours; LPPS, lipoprotein poor serum; mβCD, methyl-β-cyclodextrin.
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Figure 4 Summary statistics of changes in intercellular membrane nanotube density among T24 cells grown in different growth mediums and following different methyl-β-
cyclodextrin concentration treatments. The statistical differences are calculated with respect to the control case. Note that the reduction in intercellular membrane nanotube 
density becomes significant from 4 mM methyl-β-cyclodextrin 2-hour treatment and highly significant above this concentration. 
Note: Data are mean ± standard deviation; *P , 0.05; **P , 0.01. 
Abbreviations: ICN, intercellular membrane nanotube; mβCD, methyl-β-cyclodextrin.
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Possible mechanisms for mβCD-induced 
morphological changes of T24 cells
There are three possible mechanisms responsible for the 

observed reduction in the ICN density during mβCD 

treatment. The first mechanism is that the “gaps” created 

in the cell membrane, due to cholesterol depletion from 

the external leaflet and fluid areas, were filled by the 

surrounding membrane, thereby causing the contraction of 

the cell membrane and the partial retraction of membrane 

protrusions. The second possible mechanism is based 

on the positive spontaneous curvature of a cholesterol-

phospholipid complex (nanodomain) (Figure 6). This 

spontaneous curvature could be due to an area difference 

between the two membrane leaflets, assuming that more 

cholesterol molecules might reside in the outer than 

in the inner membrane leaflet (Figure 6A), or due to a 

spontaneous curvature of the cholesterol-phospholipid 

complex (Figure 6B). The plasma membrane of the 

1 h 3 m 18 s

10 µm

A

B
1 h 10 m 18 s 1 h 10 m 36 s

Cell seperation

Rupturing of an ICN

1 h 10 m 54 s 1 h 11 m 12 s

1 h 4 m 36 s 1 h 5 m 12 s 1 h 6 m 54 s

Figure 5 Phase contrast images demonstrating the coupling between intercellular membrane nanotube disconnection and cell separation. At time zero, the T24 cells were 
treated with 5 mM methyl-β-cyclodextrin. The disruption of intercellular membrane nanotubes was observed using time-lapse confocal microscopy for the indicated times (A). 
Note that the intercellular membrane nanotube (see inset) is disrupted midway and then retracted. The disconnection of intercellular membrane nanotubes, possibly due to 
stretching, causes the abrupt cell separation, accompanied by morphological alterations from a polygonal to a spherical cell shape (B). 
Note: Scale bar is 10 µm. 
Abbreviations: h, hours; ICN, intercellular membrane nanotube; m, minutes; s, seconds.

Large area diff.

Cholesterol-phospholipid
complex

Cholesterol

Phospholipid

B

A

mβCD

mβCD

Small area diff.

Hm = 0Hm > 0

Figure 6 Schematic diagram for the possible effects of methyl-β-cyclodextrin on the curvature of cholesterol-enriched nanodomains. A larger cholesterol content in the 
outer than in the inner membrane leaflet would increase the local curvature of a membrane region (A). Note that cholesterol depletion from the outer membrane leaflet 
is predicted to reduce the area difference between the two membrane leaflets. Due to cholesterol short sterol backbone, a cholesterol-phospholipid complex might have a 
positive spontaneous curvature, which is reduced upon methyl-β-cyclodextrin treatment (B). 
Abbreviations: Hm, spontaneous mean curvature of the nanodomain; mβCD, methyl-β-cyclodextrin.
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human erythrocyte contains in the outer membrane leaflet 

65%–75% of the phosphatidylcholine and .85% of the 

sphingomyelin, while in the inner membrane leaflet there is 

80%–85% of the phosphatidylethanolamine and .96% of 

the phosphatidylserine.42 Since the outer membrane leaflet 

is enriched in sphingomyelin, the preferred interaction of 

cholesterol with sphingomyelin may justify the assumption 

of cholesterol residing more in the outer than in the 

inner membrane leaflet of the ICN. The third possible 

(complementary) mechanism is that cell separation stretches 

the ICNs, until the ICNs are disrupted in the middle or 

detached from the parent cell membrane.

To minimize the bending energy costs during the 

 formation of a thin tubular structure, cholesterol molecules 

could accumulate in the outer membrane leaflet. Therefore, 

the depletion of cholesterol from the outer membrane leaf-

let would increase the mismatch between the tube curvature 

and the spontaneous curvature of the remaining membrane  

nanodomains.

The model of ICN stability  
and theoretical predictions
Phase-contrast images of T24 cells grown in LPPS and 

mβCD for 2 hours revealed that during cell separation the 

ICNs became thinner and longer and, eventually, disrupted 

(Figures 2 and 5). The aim of the present model was to 

elucidate the possible underlying mechanisms responsible 

for the disruption of ICNs. The computational model was 

an extension of a previous model.10 The model included 

only the ICN isolated, ie, it excluded the membrane of 

the parent cells (Figure 7C). The ICN was modeled as 

an axisymmetric shape of cylindrical symmetry. For the 

sake of  simplicity, the  membrane was composed of only 

one component (nanodomain). The component was a 

cholesterol-sphingomyelin membrane nanodomain, con-

sisting of cholesterol, sphingomyelin, protein, and other 

lipid molecules (Figure 7A). The spontaneous curvature 

of the nanodomain was assumed to be positive, which was 

based on either nonzero area difference between the two 

A

C D

B

 Cholesterol

+mβCD

Membrane
protein

Phospholipid

Intercellular
membrane nanotube

Cholesterol-sphingomyelin
nanodomain raft

Sphingomyelin

Cell I Cell II

0.1

1

0

0

1

1

0.2 0.7φ

φ

Req

[µm]

Hm,0

Hm,c

Hm,0 > 0Hm(φ) > Hm,0 > 0

Hm(φ)

[µm−1]

Figure 7 Schematic diagram for the possible model explaining the effects of cholesterol depletion on the intercellular membrane nanotube geometry. A cholesterol-
sphingomyelin membrane nanodomain is assumed to have a positive spontaneous curvature, which is reduced following cholesterol depletion (A). A linear relationship is 
assumed between the spontaneous curvature of the nanodomain and its cholesterol content (B). The same relationship is assumed for the spontaneous membrane curvature 
deviator. The intercellular membrane nanotube is modeled as an axisymmetric tubular structure, which is composed of cholesterol-sphingomyelin membrane nanodomain 
of positive spontaneous curvature (C). The equilibrium radius is obtained by the employed linear stability analysis and plotted as a function of cholesterol content (D). Note 
that cholesterol depletion (φ = 0) favors larger intercellular membrane nanotube radii. The parameter values used are as follows: spontaneous mean (Hm,0) and deviatoric 
(Dm,0) curvature of the cholesterol-free nanodomain = 1 µm−1, spontaneous mean (Hm,c) and deviatoric (Dm,c) curvature of the nanodomain = 25 µm−1, σ = 0.001 g s−2, and 
membrane bending rigidity κ = 500 kBT, where kB is the Boltzmann constant and T is temperature. 
Abbreviations: φ, cholesterol content; Hm(φ), spontaneous mean curvature of the nanodomain; Hm,0, spontaneous mean curvature of the cholesterol-free nanodomain; 
mβCD, methyl-β-cyclodextrin; Req, equilibrium radius.

submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

1898

Lokar et al

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


International Journal of Nanomedicine 2012:7

membrane leaflets (Figure 6A) or the intrinsic curvature 

of the cholesterol-phospholipid complex (Figure 6B). The 

underlying assumption of the model was the asymmetry in 

the cholesterol content between the inner and outer mem-

brane leaflets along the axisymmetric tubular structure, such 

that there were more cholesterol molecules in the outer than 

in the inner membrane leaflet of the ICN (Figure 6), influenc-

ing the nanodomain intrinsic (spontaneous) curvature. The 

sign of the membrane curvature was defined with respect 

to the outer membrane leaflet. The membrane bilayer was 

modeled as a single entity.

The membrane free (bending) energy is considered within 

continuum approach in the form:10,43

 E = H H D D dAm m
2

κ φ + κ φ− ( )( ) − ( )( ) +( )∫
2 σ  (1)

where κ is the membrane bending rigidity, φ is the relative 

density of cholesterol molecules in the outer membrane leaf-

let, H is the mean membrane curvature, D is the local mem-

brane curvature deviator, H
m
(φ) is the intrinsic (spontaneous) 

mean curvature of the nanodomain, D
m
(φ) is the intrinsic 

(spontaneous) membrane curvature deviator of the nanodo-

main, σ is the Lagrange multiplier, and dA is the infinitesimal 

membrane area element. The integral is taken over the surface 

of the axisymmetric tube. The mean membrane curvature 

takes into account the two principal curvatures of the axi-

symmetric cylindrical structure. The difference between the 

membrane curvature and the membrane intrinsic (spontane-

ous) curvature determines the energy cost for  bending the 

membrane away from its favorable curvature.43

The intrinsic (spontaneous) curvatures of the membrane 

nanodomain depend on the relative density of cholesterol 

molecules in the outer lipid layer, as follows:

 

H H H

D D D

m m m c

m m m c

( )

( )

, ,

, ,

φ φ

φ φ

= +

= +

0

0
 (2)

where H
m,0

 and D
m,0

 are the intrinsic (spontaneous) mean and 

deviatoric curvature of the cholesterol-free  nanodomain, 

 respectively, and H
m,c

 and D
m,c

 are the intrinsic (spontaneous) 

mean and deviatoric curvature of the cholesterol-replenished 

(maximum concentration) nanodomain, respectively.

The equation of motion of the membrane height deflection 

along the cylinder main symmetry axis is given by:

 ϕ
δ

δ
∂h z

t
E

h z
( )

( )
,= −

∂
 (3)

where ϕ is the friction coefficient describing the drag of the 

fluid surrounding the membrane, t is time, and E is redefined 

as the membrane free energy per unit area. The system is 

investigated in the limit of small membrane deformation 

from the uniform radius of the ICN. By linearization of 

Equation (3), the following equation was obtained:

 ϕ
δ

δ
δ δ

h z
t

U L h O dA( ) ( ( ) ( )) ,= + +∫ 2  (4)

where the function L(h) describes the force in the limit of 

small and linear membrane undulations. The integral sign 

is for the calculation of the average force density. The force 

acting on the membrane in the equilibrium state is described 

by U. The equilibrium radius R
eq

 is obtained by assuming that 

the undulation U equals zero, which yields:

 R
( ( ) ( ) )

eq

m mH D
=

+ +

κ

σ φ φ κφ2 2 2 2
 (5)

It is important to note that the axisymmetric model of 

the ICN is stable even without anisotropy, since it is not 

considered as a membrane protrusion.

An aim of this study was to analyze the effects of changes 

in the relative density of cholesterol on the equilibrium 

radius of the tube. Figure 7D shows the equilibrium radius 

as a function of the relative area density of cholesterol. The 

equilibrium radius remains low at 0.15 µm for a relative den-

sity of 0.3. When the relative density is reduced below 0.2, 

the equilibrium radius is increased rapidly. A plausible range 

of cholesterol content in the plasma membrane is between 

20%–30%. According to calculations, the cholesterol content 

might be a critical parameter, having a role not only in the 

stability of membrane nanodomains but also affecting the 

radius of the highly curved structure. The complete depletion 

of cholesterol (φ = 0) from the outer leaflet of the tubular 

membrane is predicted to considerably increase the curvature 

mismatch between the spontaneous curvature of the remain-

ing membrane components and the tube curvature. To reduce 

the curvature mismatch, vesicular dilations could be formed 

during the retraction of the ICN (Figure 2E).

Discussion
This study demonstrates the presence of cholesterol-

sphingomyelin membrane nanodomains along ICNs, which 

was revealed by the addition of membrane raft marker Oly 

(Figure 1). However, the ICNs were negative for the binding 

of other membrane raft makers such as flotilin-1, caveolin-1, 
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and ganglioside GM1. The removal of cholesterol from the cell 

membrane by the application of mβCD led to the smoothing of 

the cell surface, the separation of cells, the stretching of ICNs, 

and the retraction of disconnected ICNs (Figure 2). Following 

cholesterol depletion, the labeling of actin filaments revealed 

the formation of actin stress fibers and the reorganization of 

the actin cytoskeleton (Figure 3). Statistical analysis revealed 

significant (P , 0.01) reductions in the density of ICNs 

upon exposure to high concentrations of mβCD (Figure 4). 

The change of cell shape from polygonal to spherical would 

increase the distance between neighboring cells, stretching the 

connected ICNs. A computational model was constructed to 

investigate the contributions of changes in the spontaneous 

(intrinsic) curvature of cholesterol-sphingomyelin membrane 

nanodomains to the shape and stability of ICNs (Figures 6 

and 7). It was theoretically predicted that the depletion of 

cholesterol from the outer membrane leaflet would favor a 

larger radius of the tubular structure. Actually, the reduction 

in the ICN radius was observed (Figure 5), which increases 

the curvature mismatch between the tube curvature and the 

spontaneous curvatures (H
m
(φ) and D

m
(φ)) of the remaining 

membrane components. This curvature mismatch could be 

reduced by the formation of large vesicular dilations along 

the ICN (Figure 2E), and by the detachment of ICNs from 

the parent plasma membranes (Figure 5A).

CDs have been mainly used for the rapid extraction of 

cholesterol molecules from cell membranes,39,40 while the 

release of phospholipids was only minimal.32,33 Previous 

studies have shown that the depletion of cholesterol by 

CDs might lead to a reduction in endocytosis and mem-

brane invagination.34–36 Yet, the underlying mechanism is 

probably different from the one in the present model, since 

membrane invaginations are enriched in cholesterol-based 

caveolin nanodomains, which do not contain sphingomy-

elin molecules. The underlying assumption of the present 

model is that the cholesterol-sphingomyelin complex has a 

positive spontaneous curvature, whereas, cholesterol-based 

caveolin nanodomains may have a negative spontaneous 

curvature. 

The depletion of cholesterol from the outer membrane 

leaflet may reduce the area difference between the two mem-

brane leaflets. As a result, the plasma membrane would favor 

more planar-like conformations, explaining the smoothing 

of the cell surface and the retraction of disconnected ICNs 

(Figure 2 and Figure 5A). Since it has been recently shown 

that cholesterol-sphingomyelin nanodomains were essen-

tial for microtubule-based protrusion growth,44 it could be 

also possible that the stability of the ICN depends on the 

binding of microtubules to the ICN membrane through 

cholesterol-based membrane nanodomains.

According to the theory of isotropic membrane elas-

ticity,45,46 the cell tubular membrane protrusion cannot be 

stabilized by isotropic membrane components alone,43 

but requires the accumulation of anisotropic membrane 

nanodomains.6,8,10,47,48 Previous theoretical studies provide 

insight into the stability of the tubular membrane protrusion 

following the disassembly of the inner rod cytoskeleton,4 or 

into the stability of actin-free filopodia.10,49 Accordingly, it is 

possible that the accumulation of cholesterol-sphingomyelin 

membrane nanodomains of anisotropic spontaneous curva-

ture may contribute to the tube stability by overcoming the 

decrease in configurational entropy during the process of 

lateral sorting of the nanodomains.8,6,10,48–50 Therefore, the 

loss of cholesterol-sphingomyelin rafts that may be con-

nected to reduced intrinsic anisotropy of the tube membrane 

might cause dynamic instability leading to the retraction of 

disconnected ICNs.

In a previous study, it has been shown that cholesterol-

sphingomyelin membrane domains protrude out of the 

membrane surface,51 thereby increasing the lateral tension 

between the protruding ordered nanodomain and the neigh-

boring disordered nanodomains. The increased membrane 

tension can be reduced by cholesterol molecules bridging 

the membrane height difference between the ordered and 

disordered nanodomains. It is also possible that the high 

curvature along ICNs would introduce additional membrane 

tension. Consequently, the cholesterol content in cholesterol-

sphingomyelin membrane nanodomains along ICNs could be 

greater than in similar nanodomains on the cell (spherical) 

plasma membrane.

In conclusion, the present experimental and theoretical 

results suggest that the transfer of cholesterol from the outer 

membrane leaflet of cell membranes of malignant T24 cells 

to CDs molecules causes the smoothing of the cell surface 

accompanied by the retraction of ICNs. A future study will 

investigate whether these morphologic alterations are due to 

the amounts of membrane lipids being depleted or due to the 

change in the spontaneous curvature of the cholesterol-free 

membrane regions. The possibility of different membrane 

nanodomain composition organized by the high cylindrical 

curvature of ICNs could be investigated using cholesterol/

sphingomyelin probe Oly.

As the ICNs are supposed to represent an important 

communication system enabling metastatic cancer cells to 

explore their surroundings,7 their reduction by cholesterol 

removal might represent a new target for anticancer therapy. 
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The exploitation of ICNs for the movement of pathogens 

(eg, viral particles such as human immunodeficiency 

virus)52 on top of the membrane nanotubes from infected to 

noninfected cells might be dependent on cholesterol-based 

membrane nanodomains. The contributions of hopanoids 

(the bacterial equivalent of cholesterol) to the stability of 

membrane nanotubes that confer antibiotic resistance53 could 

be explored in a future study. The present results regarding 

the functional link between the membrane composition and 

the stability of the ICN may shed light on the intercellular 

communication between neighboring cells.
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ments for interaction of ostreolysin, a lipid-raft binding cytolysin, with 
lipid monolayers and bilayers. Biochim Biophys Acta. 2006;1758(10): 
1662–1670.
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