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Abstract: Morquio A syndrome is a lysosomal storage disease associated with 

mucopolysaccharidosis. It is caused by a deficiency of the lysosomal enzyme, N-acetylgalactosamine-

6-sulfate sulfatase, which leads to accumulation of keratan sulfate and condroitin-6 sulfate in mul-

tiple organs. Patients present with multisystemic complications involving the musculoskeletal, 

respiratory, cardiovascular, and digestive systems. Presently, there is no definitive cure, and current 

management options are palliative. Enzyme replacement therapy and hematopoietic stem cell 

therapy have been proven effective in certain lysosomal storage diseases, and current investiga-

tions are underway to evaluate the effectiveness of these therapies and others for the treatment 

of Morquio A syndrome. This review discusses the current and emerging treatment options for 

Morquio A syndrome, citing examples of the treatment of other mucopolysaccharidoses.
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Introduction
Mucopolysaccharidoses (MPSs) are inherited lysosomal storage disorders caused by 

enzymatic defects in the catabolism of glycosaminoglycans (GAGs). Presently, there 

are eleven different enzymatic defects associated with seven different types of MPS. 

The lack of enzymatic activity leads to tissue-specific intracellular accumulation of 

substrates. Clinically, patients present with multisystemic complications associated with 

organ-specific dysfunction secondary to the intracellular substrate accumulation.

In 1929, Luis Morquio, of Uruguay, described four family members with features 

of dysostosis multiplex, corneal clouding, aortic valve disease, and urinary excretion 

of keratan sulfate.1 MPS type IV, also known as Morquio syndrome, is an autosomal 

recessive disorder and is subclassified into type IV-A (MPS IV-A, Morquio A) and 

type IV-B (MPS IV-B). Morquio type IV-A is caused by a defect in N-acetylgalac-

tosamine-6-sulfate sulfatase (GALNS; EC 3.1.6.4) – a lysosomal enzyme essential 

for catabolism of keratan sulfate (KS) and condroitin-6-sulfate (C6S); MPS IV-B is 

caused by β-galactosidase-1 deficiency essential for the catabolism of glyconjugates 

with terminal β-galactosyl residues. Recent molecular analysis demonstrated that most 

of MPS IV-A cases result from misfolding of GALNS.2 The inability to catabolize 

GAGs, such as KS and C6S, results in their accumulation within the lysosomes and 

subsequent cellular and organ dysfunction. As a consequence, patients with Morquio 

syndrome present with progressive complications specific to cellular involvement of 

osseous, corneal, valvular, and other organ-specific tissue.

The incidence of MPS IV-A in the United States has not been established. In 

British Columbia, Canada, the estimates are 1 per 200,000 live births, and in Europe, 
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the incidence varies from 1 per 76,000 in Northern Ireland to 

1 in 450,000 live births in The Netherlands and Portugal.3–5 

Neonatal screening for lysosomal storage diseases will allow 

for better quantification of the incidence of MPS IV-A.

Patients with MPS IV-A appear normal at birth, but 

initial presenting symptoms often manifest after 1 year of 

age.6 Musculoskeletal complications are the most common 

presenting features of MPS IV-A; patients may also develop 

complications involving the cardiac, respiratory, and diges-

tive systems. Unlike most other MPS conditions, MPS IV-A 

does not affect neurologic function, and patients maintain 

normal intellect, although behavioral problems with anxiety, 

depression, and attention have been associated with MPS 

IV-A.7 Morbidity can vary from mild to severe disease – 

those with severe disease present at an earlier age and have 

more pronounced and rapidly progressive comorbidities, 

while patients with the attenuated form have a slower rate 

of progression. Yet the cumulative effect of the disease pro-

gression in the mild cases leads to debilitating comorbidities 

by adulthood. Patients with severe disease die in the second 

or third decade, while mild disease allows for life into the 

seventh decade; most patients die of pulmonary infections, 

cervical instability, and valvular heart disease.8

There is no definitive cure for Morquio syndrome; the 

current standard of care is medical and surgical management 

of the involved systems with the goal of palliation, preven-

tion, and slowing of the progression of complications.6,8 

Once diagnosed, treatment of Morquio syndrome requires a 

system-specific and multidisciplinary approach, often involv-

ing primary care physicians, orthopedists, pulmonologist, 

cardiologists, and anesthesiologists. Other MPS and lyso-

somal storage diseases – Hurler syndrome (MPS I), Hunter 

syndrome (MPS II), Maroteaux-Lamy syndrome (MPS VI), 

Gaucher disease, Fabry disease, and Pompe disease – are 

currently being treated with enzyme replacement therapy 

(ERT). Hematopoietic stem cell therapy (HSCT) has played 

an important role in the treatment of Hurler syndrome and 

is currently under intensive study for the treatment of other 

MPSs. The role of ERT and HSCT for the treatment of MPS 

IV-A is also under investigation.

The present review discusses the complications of 

MPS IV-A and reviews the current and emerging treatment 

options.

Complications and current 
management options
The musculoskeletal system is often first to be afflicted 

and involves the appendicular and axial skeletons. 

Radiologic evidence of osseous involvement can be diagnostic 

as early as 6 months of age and often precedes physical mani-

festation of MPS IV-A.8,9 Obvious orthopedic involvement 

often becomes evident between 2 and 3 years of age, and 

most patients are diagnosed by 5 years of age.6 Patients often 

present with weakness, stunted growth, dwarfism, pectus 

carinatum, and genu valgum. Ligamentous laxity and direct 

bone involvement lead to a delay in ability to walk, limb 

instability, and a waddling gait. These findings result from 

accumulation of KS within bone, cartilage, and ligaments that 

lead to defects in tissue formation. As the disease progresses, 

patients develop more serious orthopedic complications. The 

most serious musculoskeletal manifestation of MPS IV-A is 

odontoid dysplasia and C1-2 instability, which is found in 

all patients with MPS IV-A. This predisposes to atlantoaxial 

subluxation with cervical cord compression and progressive 

myelopathy that leads to gradual or abrupt neurologic defi-

cits, such as muscle weakness, cervical myelopathy, bowel 

and bladder dysfunction, hemiplegia, quadriparesis, and 

death.10 The risk of cervical spinal cord compression poses a 

dilemma when the need for intubation arises in patients with 

cervical instability, as there is a significant risk of iatrogenic 

damage to the cervical cord at the time of intubation. The 

risk is further compounded as most patients require multiple 

surgeries and undergo major surgical interventions by the age 

of 10, with the neck being the most common musculoskel-

etal surgical site.6,11 Magnetic resonance imaging is used to 

screen for involvement of the cervical spine and prophylactic 

occipito-cervical fusion has been recommended to prevent 

the associated complications.12–14

Difficulty in perioperative airway control is further com-

pounded by previous cervical fusion, chest habitus, short 

neck, and GAG deposition in the tissues of the airway.15 

These factors may also delay extubation and predispose 

patients to tracheostomy. A thorough preoperative evalua-

tion and plan, involving an anesthesiologist experienced with 

MPS, are essential ahead of surgical intervention requiring 

intubation.15–17 In our experience with an adult MPS IV-A 

patient requiring intubation for surgery, awake oral fiberoptic 

intubation was necessary due to diffuse abnormalities of the 

vertebral bodies and disc spaces, and thoracolumbar kyphosis 

and dextroscoliosis.18 Aside from the aforementioned issues 

involving operative airway management, involvement of 

the respiratory system in MPS IV-A predisposes patients to 

serious complications. Excessive KS deposition in the air-

way tissue, along with kyphoscoliosis, leads to progressive 

and debilitating restrictive and obstructive lung processes.8 

Patients with MPS IV-A develop airway obstruction and sleep 
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apnea and are prone to frequent upper respiratory tract infec-

tions and pneumonia, which can be a source of significant 

morbidity.6,8 Formal sleep studies should be undertaken to 

evaluate the severity of sleep apnea; some patients require 

continuous positive airway pressure devices for obstructive 

sleep apnea, and home oxygen may be necessary in severe 

disease. Breathing exercises should also be encouraged. 

In patients with frequent respiratory infections, seasonal 

influenza vaccine may be offered, and a low threshold for 

starting antibiotic regimen when infection is evident is justi-

fied; tonsillectomy and adenoidectomy are often indicated in 

most patients to further prevent infections.6,8,19

Cardiovascular complications are common in MPS and 

can affect the cardiac valves, the coronary arteries, and the 

aorta.20–22 Excessive GAG accumulation in valve, coronary, 

and aortic tissue leads to thickening of the tissue and subse-

quent valvular dysfunction, coronary artery intimal sclerosis, 

and weakening of the aortic wall. Specifically, the accumula-

tion of GAG within tissue is associated with activation of 

toll-like receptors and inflammatory pathways that likely 

contribute to the associated cardiovascular complications 

that predispose patients to valvular stenosis or insufficiency, 

ischemic heart disease, and aortic aneurysms.20–23 These 

processes are progressive and patients present with symp-

tomatic disease in adulthood. Valvular disease is a common 

complication in MPS; the left-sided heart valves are affected 

more than right-sided heart valves, and the mitral valve is 

most often involved.20,24 Surgical correction of symptomatic 

valvular disease is warranted but can be complicated, and at 

times avoided because the severe comorbidities associated 

with the late presentation impart significant and cumula-

tive surgical risks. In MPS IV-A, the aortic valve is most 

often involved, although the mitral valve is also frequently 

involved; the pathophysiology is similar to that of other MPSs 

and is secondary to excessive KS deposition in the valve tis-

sue and likely activation of inflammatory processes.23,25,26 We, 

amongst others, were successful in aortic valve replacement 

in a patient with Morquio syndrome.18,27,28

Involvement of other organ systems in patients with MPS 

IV-A predisposes to non–life threatening, but significant, 

morbidities. Patients develop visual disturbances from exces-

sive GAG deposition in corneal tissue. This leads to corneal 

clouding with increased light scatter and photophobia; wear-

ing darkened glasses and peaked cap are recommended to 

alleviate the symptoms.8 Hearing loss is common in MPS 

IV-A. Several factors contribute to the severity of hearing 

loss, which is due to both conductive and neurosensory defi-

cits. Symptoms of hearing loss are associated dysostosis of 

the auditory bones and recurring middle ear infections that 

cause scarring and abnormalities in the inner and middle 

ears.8,19 Patients with severe recurring ear infections may 

benefit from early placement of ventilating tubes, although 

many patients ultimately require hearing aids.8,19 Patients 

are also predisposed to dental problems. MPS IV-A patients 

have unique dental features with small and wide-spaced teeth, 

spade-shaped incisors, and thin and weak enamel. Patients 

are predisposed to frequent caries and require meticulous 

hygiene; prophylactic antibiotics for bacterial endocarditis 

are necessary in patients requiring dental treatment.

Emerging treatment options
ERT
The concept of ERT was first described in 1964 by Christian 

de Duve when he speculated, “… any substance which is 

taken up intracellularly in an endocytic process is likely to 

end up within lysosomes. This obviously opens up many pos-

sibilities for interaction, including replacement therapy.”29,30 

In-vivo and in-vitro studies have demonstrated hydrolysis 

of sucrose in acid-maltase deficient cells of Pompe disease 

treated with the enzyme interlase.29,31 This corroborated 

the idea of de Duve and led to other important studies in the 

early development of ERT. The concept of lysosomal storage 

diseases was new at the time of these studies, and significant 

progress was made after the identification and purification of 

the deficient enzymes of several lysosomal storage diseases.29 

Aside from Pompe disease, many of the early studies were 

of Hurler syndrome, Hunter syndrome, inclusion cell dis-

ease, and Gaucher type 1. Further progress was made after 

successful identification of the recognition signal essential 

for intracellular uptake of the deficient enzymes. This was 

demonstrated with glucocerebrosidase deficiency in Gaucher 

type I, which became the first lysosomal storage disease to 

be treated with ERT. Of the MPSs, the first to be treated 

with ERT was Hurler syndrome (MPS I) using recombinant 

human α-L-iduronidase. Presently, ERT is being used to 

treat patients with MPS I, MPS II, MPS VI, Fabry, Gaucher, 

and Pompe disease. ERT for the treatment of MPS IV-A is 

currently under investigation.

ERT is a lifetime therapy that involves regular intrave-

nous infusions of the recombinant enzyme. Therapy is often 

associated with infusion reactions that vary from headache, 

flushing, fever, and/or urticaria to potentially life threatening 

anaphylactic reactions. Such reactions are due to the devel-

opment of antibodies against the recombinant enzyme; the 

incidence may increase concomitantly with the increase in 

dosage.32–36 If such reactions become limiting, patients may 
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require pretreatment with anti-pyretics and/or anti-histamines 

in order to prevent severe anaphylactoid reactions; patients 

may be able to be desensitized over time as well.32 Therapy 

is therefore given in a controlled hospital setting, although a 

home infusion regimen has been described as a feasible and 

safe alternative for some patients.32

ERT has demonstrated substantial improvements in 

disease-related comorbidities of MPSs, but ERT does 

not cross the blood–brain barrier, and the effects on neu-

rocognitive and developmental deterioration have been 

suboptimal. In patients with Hurler syndrome, treatment with 

recombinant human α-L-iduronidase results in decreased 

lysosomal storage in the liver and significant improvement 

in hepatosplenomegaly; improvement in maximal range of 

shoulder flexion and elbow extension as well as improvement 

in ambulation; and improvement in sleep apnea.32,34 In Hunter 

syndrome, compared with placebo, patients treated with 

recombinant human iduronate-2-sulfatase were able to walk 

greater distances on the 6-minute walk test, had an increase 

in the percentage of predicted forced vital capacity, and an 

increase in absolute vital capacity.32,35 ERT was approved for 

Hunter syndrome in the United States and Europe in 2006 

and in Japan in 2007. Similar improvements have also been 

demonstrated in patients treated with human recombinant 

arylsulphatase B for Maroteaux-Lamy syndrome. These 

patients experienced clinical improvement in walking and 

stair climbing, and improved joint range of motion; patients 

also demonstrated improvement in pulmonary function.32,35–37 

ERT in the treatment of these MPSs demonstrated a notable 

decrease in urinary GAG levels. ERT has not demonstrated 

significant improvements in neurologic deterioration in 

MPS patients. In all three MPSs treated with ERT, patients 

developed some degree of infusion-associated reaction and 

antibody formation to the recombinant enzyme; although, 

patients with severe Maroteaux-Lamy syndrome toler-

ated higher doses of recombinant enzyme therapy and had 

greater clinical gains.38 Furthermore, in sibling case studies 

of all three of the above MPSs treated with ERT, improved 

response and benefits in clinical outcomes were demonstrated 

in the younger siblings diagnosed at birth and started on ERT 

in the first 6 months of life.32,39–42 These findings highlight 

the importance of early diagnosis and associated positive 

response to early treatment of MPS.

Continued understanding of ERT and the disease process 

of the lysosomal storage diseases has set the stage for further 

application of the treatment in other MPSs. ERT for MPS 

IV-A is ideal given the lack of neurologic deterioration in 

these patients. Current investigations to isolate a suitable 

recombinant GALNS for replacement therapy in humans 

are underway, and preliminary results in animal models are 

promising. A knockout mouse model of MPS IV-A has been 

successful; and GALNS enzyme has been produced and 

purified using Chinese hamster ovary (CHO) cells and is a 

source of selectively secreted human recombinant enzyme.43 

Another potential source of purified recombinant GALNS 

enzyme under investigation is that derived from Escherichia 

coli.43,44 These findings have allowed for in-vivo studies of 

ERT and have set the stage for clinical studies in humans. 

In an in-vivo study of an MPS IV-A mouse model, with 

12 weeks of intravenous treatments with two recombinant 

human GALNSs produced in CHO cell lines, there was 

improved lysosomal storage in visceral organs, heart valves, 

ligaments, and connective tissue; there was also a dose-

dependent clearance of storage tissue in the brain, and nor-

malization of blood KS levels.45 Although ERT is considered 

unable to cross the blood–brain barrier, the dose-dependent 

improvement in neurologic response to ERT in the mouse 

model has been observed by others and is associated with 

longer duration of treatment.46–48 In humans, much of the 

studies of ERT are early in the investigative process, and data 

are yet to be published. A human recombinant enzyme, BMN 

110 (BioMarin Pharmaceuticals Inc, Novato, CA, USA), is 

currently under investigation for use in humans. A Phase I/II 

human multicenter, open-label, dose-escalation study to 

evaluate safety, tolerability, and efficacy of BMN 110  in 

patients with MPS IV-A has been completed, and results 

have yet to be published (NCT00884949).49 Presently, there 

are several ongoing multicenter and multinational studies to 

investigate the effects of BMN 110 on MPS IV-A patients, 

and include: a Phase II study specific to patients with limited 

ambulation (NCT01697139); a randomized, double-blind, 

pilot study assessing the safety and physiologic effects of 

BMN 110 (NCT01609062); and several studies to assess 

long-term effects and safety of BMN 110 (NCT01242111, 

NCT01415427, NCT01275066), including those less 

than 5 years of age (NCT01515956).50–53 Furthermore, the 

response to BMN 110 therapy, and potentially other recom-

binant enzymes, was evaluated in a study of biomarkers of 

MPS IV-A; alpha-1-antitrypsin, lipoprotein(a), and serum 

amyloid P were reported as suitable candidate biomarkers, 

in addition to KS.54

While much work has yet to be done assessing ERT for 

the treatment of MPS IV-A, substantial progress has been 

made. The outcomes of the aforementioned clinical trials 

will dictate the role of ERT as a treatment option for MPS 

IV-A in the near future.
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HSCT
The basis of HSCT for the treatment of MPS and other 

inherited metabolic disorders was established in 1968 when 

Fratantoni, Hall, and Neufeld demonstrated correction of 

biochemical defects of skin fibroblasts from patients with 

Hunter and Hurler syndromes when these cells were mixed 

with each other or normal cells.55 Later studies with transfu-

sion of plasma and leukocytes demonstrated improvement 

in degradation of GAGs in patients with Hurler and Hunter 

syndromes.56,57 In 1980, bone marrow transplant was success-

fully performed in a 1-year-old boy with Hurler syndrome 

(described below).58

HSCT entails transplantation of multipotent hematopoi-

etic stem cells derived from bone marrow, peripheral blood, or 

umbilical cord blood from a healthy donor to a patient with 

innate cellular dysfunction to correct the dysfunctional cell 

line and the associated disease process. Appropriate human 

leukocyte antigen matching is essential for allogeneic graft 

transplantation, and complete ablation of the recipient’s 

immune system is necessary. This predisposes patients 

to complications of immune deficiency and serious graft-

versus-host disease reactions. In spite of improved methods 

of stem-cell matching, HSCT remains a high risk procedure 

with substantial morbidity and mortality; therapy is gener-

ally reserved for patients with severe phenotype. When 

considering HSCT, established practice guidelines should 

be followed and a multidisciplinary approach should be 

undertaken to ensure optimal benefit and minimal risk of 

therapy, with the goal of long-term survival and improved 

quality of life.59,60

HSCT is an evolving alternative for the treatment of MPS. 

Ongoing replacement of the deficient lysosomal enzymes is 

achieved by transplanting the enzyme-deficient cell line with 

enzyme-competent donor cells capable of gaining access to 

the affected tissue, including the central nervous system. 

When compared with ERT, HSCT demonstrated superior 

reduction in substrate burden, and has been shown to prevent 

and/or cure associated musculoskeletal and organ-specific 

complications; unlike ERT, HSCT’s ability to access the 

central nervous system allows for treatment of neurocog-

nitive degeneration.61 In the first successful bone marrow 

transplant of a patient with MPS, a 1-year-old boy with Hurler 

syndrome, the patient developed acute graft-versus-host 

disease, but 13 months after transplant, there was reversal 

of hepatosplenomegaly and corneal clouding, leukocyte 

iduronidase activity increased to that of a heterozygote, and 

arrest in neurocognitive and developmental deterioration 

was notable.58,62 The preservation of neurocognitive and 

intellectual development in patients with Hurler syndrome 

treated with HSCT has been established with more recent 

studies, and is considered one of the most important benefits 

of HSCT.62–64 Other benefits of HSCT in Hurler syndrome 

include: improvement in hearing, joint mobility, respira-

tory function, and cardiac function.62 Given the associated 

high risk of morbidity and mortality of HSCT, the current 

guideline recommendations of the International Consensus 

Panel on the Management and Treatment of Mucopolysac-

charidosis I indicate a multidisciplinary approach on the 

decision to pursue HSCT; and HSCT must be performed 

early in the disease course – less than 2 years of age and 

before developmental deterioration begins – and is limited 

to patients with an intelligence quotient of $70%.62

While the effects of HSCT on Hurler syndrome are well 

established, HSCT for the treatment of other MPSs, particu-

larly the effect on the neurologic deficits, has yet to be fully 

elucidated. The delayed presentation of other MPSs and the 

subsequent late initiation of therapy have been associated 

with the suboptimal effects of HSCT on neurologic function 

in certain MPSs. In patients with Hunter syndrome, HSCT 

demonstrated improvement in visceral and soft tissue involve-

ment, but the effects on neurologic symptoms has not been 

substantial. Although, in a retrospective study of 21 patients 

with Hunter syndrome who received HSCT, 9.6 years 

after treatment, activities of daily living were maintained, 

improvements in cribriform changes and brain ventricular 

dilatation were noted, and stabilization of brain atrophy was 

also noted.65 Consistent with the idea that early diagnosis and 

initiation of treatment are important, the authors conclude 

that the effect of HSCT on the brain is optimized by treat-

ment prior to clinical manifestations of developmental delay; 

and the poor response to HSCT is associated with severity 

of the syndrome. Investigational data of HSCT for the other 

MPSs are few, and results for neurocognitive benefits are 

mixed.32 In patients with Sanfilippo syndrome, HSCT has 

stabilized disease but with less impact on cognition; in two 

patients transplanted under the age of 2 years, modest cog-

nitive gains were noted with improvement in behavior and 

sleeping patterns 3–5 years post transplant.59,66 Patients with 

Maroteaux-Lamy syndrome have reduced life expectancy and 

are candidates for HSCT; therapy has demonstrated improve-

ments in hepatosplenomegaly, cardiopulmonary function, 

visual acuity, and mobility.59,67

The role of HSCT in MPS IV-A is currently investigational. 

In a 2012 report by the Agency for Healthcare Research and 

Quality (Rockville, MD, USA) on the status of HSCT for 

Morquio syndrome and other childhood diseases, it was 
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concluded that “the strength of the body of evidence is insuf-

ficient to draw conclusions on the comparative benefit of 

single HSCT compared with symptom management and or 

disease natural history with respect to neurocognitive and 

neurodevelopmental outcomes for MPS IV-A.”68 As it relates 

to MPS IV-A, HSCT has not been shown to substantially treat 

the severe skeletal manifestation; this is likely due to lower 

vascularization of bone tissue. But, the improvement and 

reversal of the somatic complications of other MPSs treated 

with HSCT substantiate consideration of HSCT for the treat-

ment of the hepatic, cardiovascular, respiratory, and digestive 

complications of MPS IV-A. The use of HSCT in MPS is 

limited to those with a severe phenotype with neurologic 

involvement. Although HSCT has demonstrated superiority to 

ERT, its use is limited by a poor safety profile.61 Consequently, 

clinical data of HSCT in milder phenotypes and in MPS where 

neurologic function is preserved – including MPS IV-A – are 

few and limited. Recent data have demonstrated improved 

survival with HSCT, making the case for the use of HSCT 

in milder phenotypes to allow for further investigations and 

understanding of treatment.69,70 While few data exist for HSCT 

in MPS IV-A, successful bone marrow transplantation was 

tolerated, with excellent survival, in patients with MPS IV-A 

transplanted for sickle cell anemia.71,72 In a recent description 

of a male patient with MPS IV-A treated with HSCT at an 

advanced age, 5 years after successful allogeneic bone marrow 

transplantation, the patient demonstrated recovery of GALNS 

activity in lymphocytes and improvements of motor func-

tion, respiratory function, and glaucoma; there was also an 

increase of bone mineral density and an overall improvement 

in quality of life.8 These findings suggest there is much to be 

learned about HSCT; as our understanding expands, HSCT 

may play a future role in the treatment of MPS IV-A. Further 

investigations are warranted to address the issues of safety 

of therapy, optimal time for transplantation, donor type, and 

other factors to ensure successful engraftment, and the role 

of HSCT in milder phenotypes of MPS.

Gene therapy
HSCT and ERT have shown promise for the treatment of 

MPS IV-A and other MPSs. Current alternative and potential 

adjunct therapies are under investigation to address the limita-

tions of HSCT and ERT; particularly, the limited effects on 

the central and musculoskeletal systems. One such therapy 

includes gene therapy; we briefly discuss this treatment 

option for MPS IV-A.

The goal of gene therapy is to correct the genetic defect 

by direct insertion of normal DNA into the affected cells to 

institute endogenous production of the deficient enzyme by 

these cells. Current methods include using viral vectors to 

directly treat affected tissue or using inherent cellular prop-

erties for cross-correction. Direct administration involves 

targeted gene therapy vectors into isolated organ tissue, such 

as the brain, to target specific dysfunctional organ tissue. 

Cross-correction employs the same principles of ERT and 

that of the early studies of HSCT, as affected cells take up 

the target enzyme produced and leaked by cells of another 

organ system treated with gene therapy, eg, the liver. These 

methods have demonstrated promising results in animal 

models of lysosomal storage diseases. Directly administer-

ing gene therapy via recombinant adeno-associated virus 

vector into the diaphragm of a mouse model of Pompe 

disease has resulted in improved diaphragmatic muscle and 

respiratory function.73,74 In another murine model of Pompe 

disease, liver-directed recombinant adeno-associated virus 

vectors demonstrated cross-correction of skeletal and cardiac 

muscle with improved function and glycogen storage.75,76 

Gene therapy may also play a role as an adjunct to HSCT, 

as autologous bone marrow or hematopoietic stem cells are 

treated with gene therapy to express the target enzyme prior 

to transplantation.77 These findings are promising, but much 

work is yet to be done to address the issues of immune reac-

tion, choice of vector, and optimal route of administration 

of gene therapy.

Conclusion
Morquio A syndrome is a lysosomal storage disease with 

severe musculoskeletal complications. Symptoms are pro-

gressive and involve other organ systems, including the 

heart, respiratory, and visceral organs. Presently, treatment 

is palliative and focused on alleviation of organ-specific 

complications. While the role of HSCT and gene therapy for 

the treatment of MPS IV-A has yet to be fully defined with 

further animal and human studies, the current data of ERT 

are promising. These findings suggest ERT will likely play 

a key role in the future treatment of MPS IV-A.
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