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Abstract: Psoriasis is one of the most common chronic, inflammatory, T-cell-mediated 

autoimmune diseases. Over the past decade, increased knowledge of disease pathogenesis has 

fundamentally changed psoriasis treatment, with the introduction of biologics, and this has led 

to a multitude of improved selective targets providing potential therapeutic options. Indeed, 

numerous pathogenesis-based treatments are currently in development, as psoriasis has also 

become increasingly relevant for proof-of-concept studies. The purpose of this review was to 

summarize current knowledge of psoriasis immunopathogenesis, focusing on the T-cell-mediated 

immune response and its initiation. The authors describe recent advances in psoriasis treatment 

and discuss pathogenesis-based therapies that are currently in development or which could be 

envisioned for the future. Although current biologics are well tolerated, several issues such as 

long-term efficacy, long-term safety, and high costs keep driving the search for new and better 

therapies. With further advances in understanding disease pathogenesis, more genomic data 

from psoriasis patients becoming available, and potentially the identification of autoantigens 

in psoriasis, current research should lead to the development of a growing arsenal of improved 

targeted treatments and to further breakthrough immunotherapies.
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Introduction
Psoriasis is a chronic, inflammatory, T-cell-mediated autoimmune disease that affects 

mainly skin and joints. It is one of the most common inflammatory skin diseases, 

affecting 2%–3% of the population. Psoriasis is characterized by the presence of 

sharply demarcated, red plaques with adherent silvery-white scales and a tendency for 

symmetrical distribution over the body. The clinical presentation is mirrored histologi-

cally by dramatic hyperplasia of the epidermis (acanthosis) with loss of the granular 

layer, regular elongation of the rete ridges (papillomatosis), thickening of the corneal 

layer (hyperkeratosis), and incomplete keratinocyte differentiation with retention of 

nuclei in the stratum corneum (parakeratosis). The inflammatory infiltrate is made 

up mainly of macrophages, different types of dendritic cells, and T cells within the 

dermis, as well as neutrophils and some T cells in the epidermis. The redness of the 

lesions is caused by an increased vascularity – an increased number of dilated and 

tortuous capillaries in the dermal papillae.

However, psoriasis does not affect skin and joints only. It is a multisystem disease 

associated with a multitude of comorbidities and thus psoriasis has become increas-

ingly important for all medical fields, beyond just dermatology and rheumatology. 

Psoriasis patients show an increased risk for cardiovascular events.1,2 The prevalence 
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of metabolic syndrome – a combination of obesity, dyslipi-

demia, impaired glucose regulation, and hypertension – is 

elevated in psoriasis patients.3 The prevalence of depression 

is increased, and psoriasis can have a substantial psycho-

logical impact on patients.4,5 In addition to this, psoriasis is 

often associated with other immune-mediated inflammatory 

disorders. Intriguingly, chronic inflammatory bowel disease, 

diabetes, and psoriasis have been associated with the same or 

similar susceptibility genes.6,7 Although the mechanisms of 

inheritance are still poorly understood, nowadays psoriasis 

is accepted as a genetic disease with a complex interplay of 

genetic and environmental factors providing the basis for 

disease development.

Over the past decade, psoriasis has become more and 

more important as a model disease for scientists working on 

chronic inflammation and autoimmunity. Psoriasis has also 

become increasingly relevant as a first-choice disease for 

proof-of-concept studies investigating the efficacy of newer 

pathogenesis-based treatments.

The purpose of this review was to summarize current 

knowledge of psoriasis immunopathogenesis, focusing on 

the T-cell-mediated immune response and its initiation. This 

review will span a bridge from pathogenesis of psoriasis and 

its classical treatment to the new avenues of biologics – the 

authors describe recent advances in psoriasis treatment and 

discuss pathogenesis-based therapies that are currently in 

development or which could be envisioned for the future.

Pathogenesis
As clinical appearance is characterized by hyperkeratosis 

and silvery-white scales due to hyperproliferating keratino-

cytes, for a long time psoriasis was considered a keratinocyte 

disease. Only the effective use of cyclosporin A in psoriasis 

patients in the late 1970s8 and therapeutic agents targeting 

T cells but not keratinocytes (eg, DAB389IL-2, anti-CD4)9,10 

led to a paradigm shift from epidermal keratinocytes to vari-

ous immunocyte populations. Nevertheless, the discussion 

about the primary instigator of psoriasis is still ongoing. 

Recent evidence from mouse models and translational 

research strongly indicates that psoriasis is actually caused 

by a combination of both a primary defect in keratinocytes 

and an inappropriate innate and adaptive immune response–

driven type I interferon (IFN) and that it is mediated mainly 

by resident and infiltrating T cells (Figure 1).11–14

In individuals with a genetic predisposition, external 

stimuli such as trauma (known as Koebner phenomenon), 

infections, stress, drugs, and alcohol can all trigger an initial 

episode of psoriasis. This initial trigger activates the innate 

immune system. Complexes of the antimicrobial peptide 

LL-37 and host DNA/RNA, both released by keratinocytes 

after common epidermal damage, activate plasmacytoid 

dendritic cells (pDCs) to produce large amounts of IFN.13,15 

Physiologically, pDCs are sensors of viral nucleic acid and 

induce protective immunity.16 In psoriasis, IFN produc-

tion by pDCs is an early key event in disease development 

by driving autoimmunity. IFN induces the activation and 

maturation of conventional dendritic cells (cDCs), which are 

key stimulators of T cells, thereby bridging the gap between 

innate and adaptive immunity.12 Subsequently, autoreactive 

T cells proliferate and migrate into the epidermis, another 

key event in psoriasis pathogenesis and controlled by the 

expression of alpha 1 beta 1 integrin on effector T cells.14 This 

T-cell expansion and migration into the epidermis precedes 

the onset of psoriasis and is essential for the development 

of characteristic epidermal changes. Although the putative 

(epidermal) autoantigen in psoriasis remains elusive, T cells 

show oligoclonal expansion, indicating a common antigen 

for autoimmune T cells.17,18 In psoriasis, these autoreactive 

T cells are IFN-gamma-secreting type 1 T helper (Th1) 

cells19 and Th17/Th22 cells producing interleukin (IL)-17 

and IL-22.20,21 Th1 and Th17 cells seem to show concomitant 

presence in various inflammatory pathologies, but they – 

along with Th22 cells – represent distinctly polarized Th cell 

types.22–24 Research has recently focused on Th17/Th22 cells 

and IL-23,25–27 which induces IL-17 and IL-22 production by 

T cells.28 These cytokines are key mediators linking adaptive 

immune response and epithelial dysregulation in psoriasis.29,30 

IL-22 induces hyperproliferation of keratinocytes (leading 

to typical acanthosis), and both IL-17 and IL-22  increase 

production of the antimicrobial peptide LL-37.31–33 In turn, 

the increased LL-37 production leads to continuous activation 

of the immune system, as described earlier. Therefore, these 

cytokines potentially not only cause the typical epidermal 

changes seen in psoriasis but also lead to a self-sustained 

feedback loop and chronification of the disease.34 Indeed, in 

contrast to the transient skin expression of LL-37 in response 

to skin injury in healthy individuals,35 high levels of LL-37 

appear to persist in psoriatic skin lesions. Subsequently, the 

maintained production of IFN leads to uncontrolled activation 

of cDCs and eventually to autoimmunity.

Interestingly, IFN has recently been shown to specifi-

cally upregulate IL-22-receptor expression on keratinocytes 

and thereby increase responsiveness to IL-22.36 Thus, in 

psoriasis pathogenesis, IFN seems to have multiple roles: 

it drives immune activation with the induction of IL-22- 

(and IL-17-) producing T cells through cDC activation and 
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IL-23 induction; in addition, it provides the interface between 

immune activation and epidermal remodeling by increasing 

keratinocyte responsiveness to IL-22.36,37 Intriguingly, IL-22 

was indeed shown to be critical for the imiquimod mouse 

model, in which Toll-like receptor 7/8 activation induces 

IFN-driven psoriasiform skin inflammation.38 A third poten-

tial effect of IFN could be an enhanced expression of major 

histocompatibility complex class I on keratinocytes, which 

may promote presentation of putative autoantigens to intra-

epidermal T cells.39 In psoriasis, this may lead to enhanced 

activation of pathogenic autoimmune T cells.

Taken together, a sustained LL-37-IFN-Th17/Th22 

axis seems to be crucial for psoriasis pathogenesis. 

Intriguingly, several genetic variants that have been associ-

ated with psoriasis provide a direct genetic basis for this 

axis; these susceptibility genes include RAGE and IFN 

regulatory factor 540 (involved in activation of pDCs and 

IFN induction), certain major histocompatibility complex 

class I molecules40,41 (involved in autoantigen presentation 

and activation of T cells), gene polymorphisms of IL-23 

and IL-23 receptor42,43 (involved in Th17 polarization and 

expansion), and gene copy number polymorphisms of anti-

microbial peptides.44

In addition to the well-established role for conventional 

T cells in psoriasis pathogenesis already described in this 

review, recent studies have indicated a potential contribu-

tion of innate gamma-delta (γδ) T cells. Dermal γδ T cells 

constitutively express IL-23 receptor and rapidly produce 

large amounts of IL-17 upon stimulation with IL-23.45–47 

Thereby, γδ T cells may amplify Th17 responses and induce 

autoimmunity.45 Intriguingly, in the imiquimod mouse 

model, γδ T cells were essential and sufficient to induce 

psoriasiform skin inflammation.46,48 Although relevance for 

human disease remains to be shown, γδ T cells accumulate 

in psoriasis plaques and this indicates a possible functional 

role in psoriasis pathogenesis.46 This hypothesis is further 

supported by the identification of a novel proinflammatory 

Vγ9Vδ2 T-cell subset that is rapidly recruited into psoriatic 

skin and potentially mediates an immediate tissue response 

upon koebnerization.49 Similarly, natural killer (NK) cells and 

pDC
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IL-17, IL-22
IL-22

IL-23
Th17, Th22

Self-DNA/RNA
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of AMP
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Autoimmune T cells

AMP
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Figure 1 Psoriasis pathogenesis: upon skin injury, known as koebnerization, antimicrobial peptides (AMPs) such as LL-37 produced by keratinocytes or deposited by 
infiltrating neutrophils form complexes with self-nucleic acids (DNA and RNA) released by dying cells.
Notes: These complexes are transported into intracellular compartments, leading to the activation of plasmacytoid dendritic cells (pDCs) via endosomal Toll-like receptors 
7 and 9 and thereby leading to the production of type I interferons (IFN alpha [IFN-α], IFN beta [IFN-β]) early in psoriasis pathogenesis. Subsequently, type I IFNs trigger 
maturation and differentiation of conventional dendritic cells (cDCs), and these cDCs then stimulate autoreactive T cells through interleukin (IL)-23. Thereby, psoriatic 
autoimmune T cells are biased to produce T helper (Th)17 cytokines IL-17 and IL-22. Interestingly, these cytokines induce expression of AMPs in keratinocytes, suggesting a 
positive feedback loop that further sustains innate activation of pDCs and leads to type I IFN-driven autoimmunity. In addition, type I IFNs directly upregulate IL-22 receptor 
(IL-22R) on keratinocytes, increasing their responsiveness to IL-22, which inhibits terminal differentiation and induces hyperproliferation of keratinocytes leading to epidermal 
hyperplasia, a hallmark of psoriasis.
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natural killer T (NKT) cells have been proposed as essential 

players in psoriasis pathogenesis. Thus, further studies will 

have to show if γδ T cells, NK cells, or NKT cells also provide 

potential therapeutic targets for psoriasis.

Traditional therapy
Even without modern knowledge of psoriasis pathogenesis, 

patients have benefited from the constant improvement 

of conventional therapies. Most of the currently accepted 

systemic treatments for psoriasis were developed empiri-

cally or were found by pure chance. However, modern 

knowledge has shed light on the mode of action of some of 

these classic treatments. Fumaric acid and cyclosporine are 

mainly immunosuppressive, retinoids target keratinocytes, 

and methotrexate affects both keratinocytes and immune 

cells.8,50–53 Even though these therapies continue to play an 

important role in psoriasis treatment, they have not fully met 

the needs of patients.54 Although these therapies are effective 

in the majority of patients, potentially serious toxicities can 

in some cases limit their long-term use. Methotrexate has a 

potential for hepatotoxicity and is teratogenic. Cyclosporin 

may lead to impaired renal function and hypertension, 

increased risk of infections, and hypertrichosis. Concerns 

about lymphoma and a potential increase in other malignan-

cies are known adverse effects after long-term treatments. 

Retinoids, which are preferentially used in cases of pustular 

psoriasis, are teratogenic and may lead to dyslipidemia and, 

in rare cases, to hepatotoxic side effects.

Targeted therapy
Over the past 15 years, the increasing knowledge of disease 

pathogenesis has fundamentally changed psoriasis treatment. 

Based on the detailed insight into psoriasis that this increase 

in knowledge has provided, a new generation of therapeutic 

agents, called biologics, has been in development. These 

agents are derived from recombinant DNA technology 

and include monoclonal antibodies and receptor-antibody 

fusion proteins that specifically target the activity of T cells 

or cytokines responsible for the inflammatory nature of the 

disease. By inhibiting specific components of the immune 

system, biologics may not affect cells of other organs, thus 

limiting side effects. Dermatologists have subsequently 

moved from serendipitous choices among the available 

therapeutic options to interventions based on greater insight 

into psoriasis immunopathogenesis. The proof of principle 

of pathogenesis-based therapies in dermatology has created a 

multitude of opportunities for the development of new drugs 

with new therapeutic targets. Indeed, numerous biologics 

are currently moving through different phases of clinical 

development (Table 1) or are already available as therapeutic 

options for patients and doctors.

Tumor necrosis factor (TNF) alpha is a pleiotropic 

cytokine that plays an important role in inflammation 

and is an end-stage product of the inflammatory cytokine 

cascade.55 Indeed, TNF levels are increased in the serum 

and cutaneous plaques of patients with active psoriasis and 

in joints of patients with psoriatic arthritis. Thus, TNF was 

a logical candidate for initial targeted therapies in chronic 

inflammatory diseases such as Crohn’s disease, arthritis, and 

psoriasis. While the first studies were based on anecdotal 

experience with infliximab, a chimeric anti-TNF antibody, 

in a patient with Crohn’s disease and concomitant psoriasis,56 

anti-TNF therapy has become the gold standard for psoriasis 

treatment. Today, several anti-TNF antibodies and fusion 

Table 1 Psoriasis trials: a summary of clinical trials of targeted therapy for psoriasis currently in development

Molecule Mechanism Phase Status Sponsor ClinicalTrials.gov  
identifiera

Indication

ILV-095 Anti-IL-22 I Completed Pfizer NCT01010542 Safety in psoriasis
AIN457 Anti-Th17 II Completed Novartis NCT00941031 Safety and efficacy in psoriasis
Ixekizumab Anti-Th17 III Recruiting Eli Lilly NCT01646177 Superiority to etanercept
MK3222 Anti-IL-23 III Recruiting Merck NCT01722331 Safety and efficacy in psoriasis
BT-061 T regulatory cell 

activator
II Completed Biotest NCT01072383 Safety and efficacy in psoriasis

ACT-128800 S1P1 agonist II Ongoing Actelion NCT01208090 Safety and efficacy in psoriasis
SCH527123 CXCR2 antagonist II Completed Schering-Plough NCT00684593 Efficacy in psoriasis
Tofacitinib JAK3 inhibitor II Approved Pfizer NCT01710046 Efficacy in psoriasis
Ruxolitinib JAK inhibitor II Completed Incyte NCT00820950 Efficacy in psoriasis
ASP015K JAK3 inhibitor II Completed Astellas Pharma NCT01096862 Efficacy in psoriasis
Apremilast PDE4 inhibitor II Ongoing Celgene NCT01172938 Efficacy in psoriatic arthritis
AN2728 PDE4 inhibitor II Completed Anacor Pharmaceuticals NCT01029405 Safety and efficacy in psoriasis
MK0873 PDE4 inhibitor II Completed Merck NCT01235728 Safety and efficacy in psoriasis

Note: aAll trials are registered under ClinicalTrials.gov and detailed information can be obtained through the ClinicalTrials.gov identifier (NCT number).
Abbreviations: CXCR2, CXC chemokine receptor 2; IL, interleukin; Th, T helper; S1P1, sphingosine-1-phosphate receptor 1; JAK, Janus kinase; PDE4, phosphodiesterase type 4.
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proteins – with diverging efficacies, response onsets, and 

frequencies of side effects57 – are approved for psoriasis 

treatment. Newer anti-TNF compounds such as different 

antibody fragments and antisense nucleotides are in the early 

phases of clinical development.

The recognition of the functional relevance of the 

IFN-IL-23-Th17/Th22 axis in psoriasis pathogenesis led 

to a fast developing group of reagents targeting this axis, 

with ustekinumab as the first approved and broadly used 

antibody of this class.58,59 Ustekinumab targets p40, the 

common subunit of the two heterodimeric cytokines IL-12 

and IL-23, thereby inhibiting both cytokines and their 

ability to drive Th1 and Th17 differentiation, respectively. 

Ustekinumab’s efficacy in patients with moderate to severe 

psoriasis has been shown to be superior to that of etaner-

cept, an anti-TNF fusion protein.60 Briakinumab, another 

anti-IL-12/23 antibody, has shown very impressive response 

in phase III clinical trials.61–63 However, the incidence of 

major adverse cardiovascular events (MACEs) associated 

with briakinumab treatment resulted in the withdrawal 

of its application in 2011. An independent meta-analysis 

was conducted to evaluate a potential association between 

IL-12/23 inhibition and MACEs.64 Although the increased 

rate of MACEs in patients receiving IL-12/23 antibodies 

was not significant, questions about the cardiovascular 

safety of these compounds remain, particularly as low 

IL-17 serum levels have recently been shown to be associ-

ated with a higher risk of MACEs in patients with acute 

myocardial infarction.65 These findings raise further possible 

concerns about the use of inhibitors of the IL-17 pathway in 

clinical settings associated with a high cardiovascular risk. 

Greater detailed insight can be expected from the multitude 

of biologic compounds targeting the IL-23-Th17/Th22 axis 

that are currently in development.

Targeting the subunit p19, which is specific to IL-23, 

has been shown to be efficient in a clinically relevant mouse 

model.27 In addition, blockage of IL-23 but not IL-12 may 

decrease the long-term risk for malignancies, as IL-23 has 

been associated with tumor promotion66 and IL-12 with 

antitumor and antimetastatic activity.67,68 Several specific 

anti-IL-23 agents are currently in clinical and preclinical 

phases of development.

To achieve an even more specific intervention, recent 

research has focused on downstream Th17/Th22 effector 

cytokines, which mediate the adaptive immune response and 

provide the link to epidermal dysregulation in psoriasis. Anti-

IL-22 antibodies are in clinical and preclinical studies, and 

multiple anti-IL-17 and anti-IL-17-receptor inhibitors are 

in development, showing promising clinical results.69–71 

Furthermore, Th17 cytokines provide potential targets 

for therapeutic interventions, with IL-26 representing 

a very interesting candidate. IL-26 is a member of the 

IL-10 cytokine family and it is significantly upregulated in 

psoriasis.72 Intriguingly, single-nucleotide polymorphisms 

in or near the human IL26 gene have been associated with 

increased risk of developing autoimmune diseases.73–75 

Further studies will have to prove functional relevance for 

IL-26 in the pathogenesis of psoriasis and other auto immune 

diseases, as there is still little known about its biological 

functions.

As with anti-TNF blockers, increased risk for infections 

remains a concern for treatments targeting the IL-23-Th17/

Th22 axis. IL-17 has been shown to play a crucial role for 

host defense against fungi.76,77 Recent findings suggest that 

the IL-23/Th17 axis is a key factor regulating protective 

immunity against opportunistic fungi.78 Ongoing clinical 

trials and national registries will have to show if these agents 

lead to an excess of particularly fungal infections in com-

parison with other immune modulators.

The therapeutic potential of targeting T-cell function in 

psoriasis has been shown by the effective use of efalizumab79 

and alefacept.80 Efalizumab is an anti-CD11a antibody that 

inhibits T-cell activity by disrupting the interaction between 

leukocyte function–associated antigen-1 on T cells and 

intercellular adhesion molecule-1 on antigen-presenting 

cells. Efalizumab also prevents the adhesion of T cells to 

endothelial cells. Therefore, efalizumab blocks T-cell acti-

vation in the lymph node, T-cell trafficking into the skin, 

and reactivation of skin-resident T cells. Efalizumab was 

the first biologic to reach the market for psoriasis, but it was 

finally withdrawn because of a risk of progressive multifo-

cal leukoencephalopathy and other infections. Alefacept is 

a fusion protein that binds to the CD2 receptor expressed on 

T cells, blocking the binding of leukocyte function–associ-

ated antigen-3 on antigen-presenting cells, which provides 

the costimulatory second signal for T-cell activation; thus, 

T-cell activation and proliferation is inhibited. In addition, 

alefacept induces NK cell–mediated apoptosis of memory 

and effector T cells.

Based on these experiences, numerous potential thera-

peutic interventions could be evaluated and, indeed, sev-

eral specific inhibitors of T-cell activation are already in 

development. Like alefacept, the anti-CD2 antibody sipli-

zumab blocks the secondary costimulatory signal necessary 

for T-cell activation. Siplizumab has already been tested in 

clinical trials for psoriasis but it has not shown sufficient 

clinical efficacy.81 On the other hand, anti-CD4 antibodies 

have already been proven to be effective in psoriasis.10,82 CD4 
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is expressed mainly on Th cells and T regulatory cells, but 

it is also expressed on pDCs, cDCs, and monocytes; thus, 

CD4-depleting antibodies are highly immunosuppressive. 

A potentially less immunosuppressive, nondepleting anti-

body is currently in phase II clinical trials for psoriasis and 

rheumatoid arthritis (BT-061, Biotest). Its distinct effects 

on the various immune cells expressing CD4 will have to 

be analyzed, as the functional role of CD4 on dendritic cells 

remains elusive.

During psoriasis pathogenesis, dermal cDCs migrate 

upon stimulation to the draining lymph node where they 

activate T cells, and these T cells in turn enter blood vessels 

and migrate to the skin. Therefore, another potential thera-

peutic option is inhibition of the recruitment of circulating 

immune cells. Recently, lymphocyte egress from second-

ary lymphoid organs and thymus was found to depend on 

sphingosine-1-phosphate receptor 1 within lymphocytes.83,84 

An oral sphingosine-1-phosphate receptor 1 agonist (ACT-

128800, Actelion), currently in clinical development, 

deprives immune cells of this essential signal to egress from 

lymphoid organs and thus leads to the sequestration of T 

cells and reduces the availability of circulating effector T 

cells. Because of its mechanism of action, this novel immu-

nosuppressive drug could be envisioned for the treatment of 

a variety of autoimmune disorders.

While activated cDCs certainly migrate to draining lymph 

nodes to activate T cells, skin-resident immune cells have 

been shown to be sufficient for initiation and maintenance of 

psoriasis.85,86 Based on these findings, treatments should be 

considered for targeting skin-resident immune cells rather than 

systemic components of the immune system. Thus, possible 

future therapeutic options blocking the expansion and survival of 

tissue-resident immune cells might include the inhibition of local 

cytokines and chemokines, blockage of adhesion molecules and 

costimulatory molecules, targeting the skin microenvironment 

and extracellular matrix, and inhibiting emigration of dermal T 

cells into the epidermis. The last of these examples has already 

shown proven efficiency in a clinically relevant xenotrans-

plantation model,14 and antagonists of chemokine receptors 

(SCH527123, Schering-Plough, Kenilworth, New Jersey, USA) 

are currently in phase II clinical trials for psoriasis.

Other therapeutic targets currently being evaluated include 

protein kinase C (PKC) inhibitors, Janus kinase (JAK) inhibi-

tors, mitogen-activated protein kinase inhibitors, and phos-

phodiesterase type 4 (PDE4) inhibitors. PKCs are involved 

in diverse signal transduction pathways that modulate a wide 

variety of cellular events including activation, proliferation, 

differentiation, apoptosis, and autophagy. Several PKC 

isoforms play important roles in T-cell-mediated immune 

responses, with PKC theta being essential for T-cell activation 

and IL-2  secretion and PKC beta being relevant for IFN-

gamma production and Th1 responses. Sotrastaurin is the 

first in a new class of selective oral PKC inhibitors that offer 

highly potent inhibition of early T-cell activation.87 Sotrastau-

rin has been tested in clinical trials for transplant rejection 

and psoriasis and has shown promising results.88

The JAK family contains four members, JAK1, JAK2, 

JAK3, and tyrosine kinase 2, which phosphorylate and acti-

vate signal transducers and activators of transcription upon 

activation. JAKs have proven to be important for a multitude 

of immunological processes; they play an essential role in 

various autoimmune diseases and they also promote tumori-

genesis.89,90 The Janus kinase–signal transducer and activa-

tor of transcription pathway is the major signaling cascade 

downstream from cytokine and chemokine receptors. JAK3 

is the only JAK family member that associates with just one 

cytokine receptor subunit, with the common gamma chain, 

which is exclusively used by the receptors for IL-2, IL-4, 

IL-7, IL-9, IL-15, and IL-21. These cytokines are crucial 

for the immune system but not for the function of other 

organs, thus JAK3-specific inhibitors should have limited 

side effects. However, the inhibition of JAK1 and JAK2 has 

also been proven to be beneficial for the treatment of inflam-

matory diseases. Currently, numerous inhibitors of selective 

JAKs or of different JAK family members combined are in 

development for prevention of transplant rejection, treatment 

of psoriasis, rheumatoid arthritis, Crohn’s disease, and for 

various malignancies. Tofacitinib, a pan-JAK inhibitor with 

preference for JAK1 and JAK3, has shown good clinical 

response in psoriasis and is being evaluated as a systemic and 

topical therapy. Ruxolitinib, a specific JAK1/JAK2 inhibi-

tor initially developed for treatment of myeloproliferative 

neoplasms, has been tested as a topical therapy in clinical 

trials for psoriasis. Additionally, a specific JAK3 inhibitor 

(ASP015K, Astellas Pharma, Tokyo, Japan) has entered phase 

III clinical trial for psoriasis.

PDE4 is an enzyme ubiquitously expressed in inflamma-

tory cells that catalyzes the degradation of cyclic adenosine 

monophosphate (cAMP). cAMP is an intracellular second mes-

senger that controls a network of pro- and anti-inflammatory 

mediators. Thus, inhibition of PDE4 leads to an accumulation 

of cAMP and thereby elicits a broad anti-inflammatory effect 

leading to downregulation of TNF, IL-23, and other proinflam-

matory cytokines. Apremilast has shown efficacy in psoria-

sis91 and is currently evaluated mainly in psoriatic arthritis. 

Results from the phase III clinical trial have been made public 
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very recently and have demonstrated clinical efficacy and good 

safety for a treatment duration of 24 weeks. In addition, two 

topical PDE4 inhibitors (AN2728, Anacor Pharmaceuticals, 

Palo Alto, California, USA; MK0873, Merck, Darmstadt, 

Germany) are currently in clinical trials for psoriasis.

Conclusion
As discussed in this review, there are multiple new agents in 

clinical and preclinical development that are showing excit-

ing potential. Of the therapies currently in development, 

agents targeting the IL-23/Th17 axis will most likely have 

the biggest immediate impact when entering the market 

within the next few years. Although IL-22 directly induces 

epidermal hyperproliferation but not IL-17 does not, and 

although functional relevance of IL-22 in psoriasis develop-

ment has been shown in mouse models, IL-17 seems to be 

of greater importance than IL-22 in chronic inflammation 

of psoriasis.29 While initial clinical data on IL-22 inhibition 

in psoriasis have not been very promising, both anti-IL-17 

and anti-IL-17-receptor antibodies have shown excellent 

efficacy in clinical trials. With broad accessibility of IL-17 

blockers after marketing and a growing patient population 

treated with these agents, remaining questions about the 

safety of long-term inhibition of the IL-23/Th17 axis and 

particularly of IL-17 should be addressed: 1) Relevance and 

pathomechanism of the described aggravation of Crohn’s 

disease under anti-IL-17 therapy; 2) the potential association 

of low IL-17 serum levels with a higher risk of MACEs and 

the consequential possible risk of targeting the IL-17 pathway 

in patients with high cardiovascular risk. Nevertheless, anti-

IL-17 antibodies and biologics targeting the IL-23/Th17 axis 

will probably be at the forefront over the next years, together 

with well-established anti-TNF therapy.

In which clinical settings small molecules such as JAK 

inhibitors or PDE4 inhibitors will be used remains to be seen. 

Depending on long-term safety, and largely also on costs 

of these compounds, these small molecules may already 

be used in moderate psoriasis as first-line systemic therapy 

along with methotrexate and fumaric acid, or otherwise in 

more severe disease prior to expensive antibody treatments. 

If costs are similar to currently available biologic agents, 

post-marketing will tell if the benefit of oral availability and 

the clinical efficacy of these small molecules are sufficient 

to gain substantial market share.

In the long run, increasing knowledge of psoriasis patho-

genesis will certainly lead to the emergence of new promis-

ing targets such as IL-21 or IL-26 and, subsequently, to the 

development of additional therapeutic compounds.

Over the past decade, psoriasis has become more and 

more important as a model disease for research in the field 

of chronic inflammation and autoimmunity. Because of 

its easy accessibility and its frequency, psoriasis has also 

become increasingly relevant as a first-choice disease for 

proof-of-concept studies investigating the efficacy of newer 

therapies. Indeed, driven by fundamental and translational 

research, numerous pathogenesis-based therapies are under 

investigation and are currently moving through different 

phases of clinical development.

New insights into psoriasis pathogenesis have already 

led to a multitude of potentially new therapeutic targets. 

Although current biologics are well tolerated, several issues 

such as long-term efficacy, long-term safety, and high costs 

keep driving the search for new and better therapies. With 

further advances in understanding disease pathogenesis, more 

genomic data from psoriasis patients becoming available, 

and potentially the identification of autoantigens in psoriasis, 

current research should lead to the development of a grow-

ing arsenal of improved targeted treatments and to further 

breakthrough immunotherapies.
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