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Abstract: In this review, we hypothesized the importance of the interaction between the brain 

glutathione (GSH) system, the proteolytic tissue plasminogen activator (t-PA)/plasminogen/

plasmin system, regulated by plasminogen activator inhibitor (PAI-1), and neuroserpin in 

the pathogenesis of Alzheimer’s disease. The histopathological characteristic hallmark that 

gives personality to the diagnosis of Alzheimer’s disease is the accumulation of neurofibroid 

tangles located intracellularly in the brain, such as the protein tau and extracellular senile plaques 

made primarily of amyloidal substance. These formations of complex etiology are intimately 

related to GSH, brain protective antioxidants, and the proteolytic system, in which t-PA plays 

a key role. There is scientific evidence that suggests a relationship between aging, a number 

of neurodegenerative disorders, and the excessive production of reactive oxygen species and 

accompanying decreased brain proteolysis. The plasminogen system in the brain is an essential 

proteolytic mechanism that effectively degrades amyloid peptides (“beta-amyloidolysis”) through 

action of the plasmin, and this physiologic process may be considered to be a means of preven-

tion of neurodegenerative disorders. In parallel to the decrease in GSH levels seen in aging, 

there is also a decrease in plasmin brain activity and a progressive decrease of t-PA activity, 

caused by a decrease in the expression of the t-PA together with an increase of the PAI-1 levels, 

which rise to an increment in the production of amyloid peptides and a lesser clearance of them. 

Better knowledge of the GSH mechanism and cerebral proteolysis will allow us to hypothesize 

about therapeutic practices.
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Introduction
Sporadic or common Alzheimer’s disease (AD) is a chronic process of complex 

etiology, without any existing effective treatment, with aging being the main etiological 

factor of universal risk.

The histopathological characteristic that gives personality to the diagnosis of AD is 

the accumulation of neurofibroid tangles located intracellularly in the brain, such as pro-

tein tau1–6 and senile plaques with extracellular amyloid beta (Ab) substance.7–13 These 

deposits are produced as a consequence of a biological disorder in their production and 

elimination/clearance from the brain.10,13–17 These formations of complex etiology are 

intimately related to glutathione (GSH), brain protective antioxidants, and proteolysis, 

in which tissue plasminogen activator (t-PA) plays a key role.18,19

Our review suggests that GSH may play an essential role in the physiopathology 

of the different components of the proteolytic mechanisms in the brain, and focuses 

on its relation to t-PA and the plasminogen/plasmin system.
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Brain GSH
GSH (L-gamma-glutamyl-L-cysteinylglycine) is a tripeptide 

present in large quantities in all mammal cells and in small 

amounts extracellularly,20–22 being mainly located in the 

cytosol, mitochondria, and endoplasmic reticulum.23 It plays a 

very important role in many biological processes involved in 

organism homeostasis, most notably, in neutralizing the free 

radicals that produce reactive oxygen species (ROS) (due to 

its great antioxidant activity),20,24–28 since oxidation is a basic 

process in the genesis of neurodegenerative disorders.29

GSH is the most important component of the antioxidant 

mechanism of the brain.30 It has a relatively homogeneous 

distribution in rat brains,31–33 reaching its highest levels in the 

brain cortex, corpus striatum, and the glia31,34 but it diminishes 

significantly with aging.32,34,35 GSH levels in neuronal cells 

are lower than in glia cells.36–38 This difference can be due 

to a smaller reserve of precursors for the GSH synthesis, 

especially of cysteine.

In studies of brain cells, the concentration of GSH in dif-

ferent neuronal cells has been found to vary considerably.39,40 

Likewise, the GSH concentration in astroglia cell cultures 

has also been found to vary widely.39,41,42 Other studies have 

shown lower GSH concentration levels in neurons than in 

astrocytes,39,43 with the concentration of endogenous neuronal 

GSH ten times lower than in astrocytes.44 The separation of 

neurons and glia cells in cocultures and then their later culture 

has shown a significantly decreased level of neuronal GSH 

whereas this remained constant in astroglia cells.43 This dif-

ference in GSH levels between astrocytes and neurons was 

observed in the cortex; nevertheless, the concentrations are 

very similar in other parts of the brain, like the midbrain and 

the stratium.45 It is possible that this presence and distribu-

tion in the brain is due to cellular specialization that confers 

a great capacity to generate free radicals, as a consequence 

of being an organ with high oxygen requirement (20% of the 

total consumption of the organism, in spite of being less than 

2% of the body weight in human adults).46

Astrocytes protect neurons against the toxicity of free 

radicals by increasing their GSH levels, by means of the 

transfer of sulfated amino acids or peptides as precursors 

(mainly cysteine and the dipeptide CysGly).30,44,47–49 An 

increase in cellular GSH concentration makes the neurons 

more resistant to cytotoxic injuries.50–52

Many cerebral functions are altered as a consequence 

of decrease in intra- and extracellular levels of GSH.53 This 

decrease can be due to either the inhibition of its synthe-

sis or its consumption in the conjugation with exogenous 

compounds.24,54 The progressive decrease of GSH levels 

resulting from aging and related illnesses, is of great interest 

for investigators.55,56 The decrease of GSH levels has been 

detected not only in humans, but also in lesser animals, such 

as rodents and insects.57 The decrease found with aging is 

linked to an increase of ROS.58 There is scientific evidence 

of a relationship between aging and a number of neurode-

generative processes due to the excessive production of free 

radicals and the imbalance between the oxidant species and 

antioxidant defenses.59–61

Buthionine sulfoximine (S-(n-butyl) homocysteine 

sulfoximine) (BSO), a selective and potent inhibitor of the 

gamma-glutamylcysteine synthetase,24,62 has been adminis-

tered in previous investigations. BSO inhibits GSH biosyn-

thesis and causes depletion of cellular GSH levels.21,22 In 

rats, the same GSH decrease has also been achieved with 

the administration of diethyl maleate – the diethyl maleate 

reacts with GSH, causing the formation of conjugated GSH, 

which is then excreted.31,62–64

The effect of pharmacological depletion of cerebral GSH 

following exposure to BSO and diethyl maleate, in cellular 

cultures or after their administration to animals, has been stud-

ied over the last 20 years. From an experimental point of view, 

the administration of BSO by systemic route to adults has not 

been very effective in producing GSH depletion in the brain,65 

being effective only in newborn rats or mice, where it was 

facilitated by the immaturity of the blood–brain barrier (BBB).66 

Low levels in adult animals have been achieved using a direct 

intracerebroventricular65,67 administration of BSO by means of 

stereotaxic technique68 or by intrathecal administration.69

The decrease of GSH levels in the brain of newborn 

rats has been shown to frequently lead the animal to a fatal 

situation, as a consequence of the accumulation of hydrogen 

peroxide and subsequent mitochondrial lesion, thus showing 

the great metabolic importance of GSH.66,70 Decrease in the 

number of cerebral mitochondria has also been observed71 

as well as the reduction in enzymatic activity of GSH 

reductase.72 In investigations of cerebral ischemia, it has been 

observed that GSH depletion exacerbates cortical infarction 

and edemas after ischemia, due to an increasing presence of 

ROS.73 In cultures of mesencephalic cells, incubation with 

BSO has caused a significant reduction of GSH, resulting in 

a loss of the integrity of the membrane and cellular death,74,75 

after the loss of mitochondrial GSH.76 The depletion of 

cerebral GSH has also been found to modify the interaction 

between astrocytes and neurons, diminishing the neuronal 

protection against oxidant agents.44,77

Given the GSH decrease that is progressively produced 

with aging,57,60,78,79 we cannot discard the hypothesis that 
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a defect in the mechanism of antioxidant cellular defense 

can be the silent trigger of the neurodegenerative process 

and neuronal death.72 It may be that an imbalance in the 

equilibrium between the formation of free radicals and their 

neutralization (oxidation–reduction) leads to a situation of 

oxidative stress with great organic risk that can be associated 

with neurodegenerative illnesses,73,79,80 including, most often, 

Parkinson’s disease25 and AD.33,74

Fibrinolytic activity and GSH
In 1959, Todd81 devised a histochemical fibrin slide technique 

with which he demonstrated the existence of areas of lysis in 

vascular walls that were related to the presence of the activators 

of fibrinolysis. Using immunohistochemical methods, it was 

revealed that t-PA was present in the blood vessels of most 

organs and that it was synthesized by endothelial cells.82,83

More than 20 years ago62 it was reported that the phar-

macological effect of administration of BSO or diethyl 

maleate in rabbits is a significant decrease in GSH levels, 

accompanied by the inhibition of f ibrinolytic activity 

important for the fibrin plate. This inhibition of plasmin 

activity results from a decrease in the liberation of t-PA at 

the cellular level and a significant increase in its inhibitor, 

plasminogen activator inhibitor (PAI-1), and occurs without 

any modification in the normal values of alpha-2 antiplas-

min. These results lead us to consider that GSH could play 

an essential role in regulation of the different components 

of the fibrinolytic system.

Following an administration of BSO, to rabbits at a dose 

of 4.5  mmol/kg body weight liver, it was seen that GSH 

concentrations were reduced, with the greatest decrease 

(51%) occurring 7 hours after administration and with values 

that remained lowered after 24  hours; however, at 3  days 

posttreatment, GSH concentrations did not significantly 

differ from those in the control groups. Treatment with 

diethyl maleate, at a dose of 3.2 mmol/kg body weight, also 

induced a significant reduction in hepatic GSH levels that 

were 54% lower than those of the controls, after 45 minutes. 

GSH concentrations in the aortic arch were equally reduced 

(0.24  ±  0.05  µmol/g liver and 0.20  ±  0.04  µmol/g liver) 

7 hours after BSO or 45 minutes after diethyl maleate were 

administered, respectively; concentration in the control group 

was 0.33 ± 0.04 µmol/g liver).62

A study of the fibrinolytic activity in the aortic arch 

revealed an extensive area of lysis in the endothelial wall 

in the control rabbit groups.62 Following an administration 

of BSO, fibrinolysis was inhibited (Figure 1A and B) and 

only reappeared 3  days later. Intraperitoneal injection of 

diethyl maleate also induced significant inhibition activity 

in the aorta.

Another similar study of the blood components in the 

fibrinolytic system revealed a significant reduction in t-PA 

activity (−29% and −22%) and a significant increase in PAI-1 

activity (+61% and +27%), following a treatment with BSO 

or diethyl maleate, respectively. Alpha-2-antiplasmin was not 

significantly affected by the administration of either GSH-

depleting agents.62

Plasminogen/plasmin systems in AD
The plasminogen system is a group of mechanisms whose 

interaction leads to the production of a protease involved 

in degrading substrates and avoiding their accumulation, 

and which is regulated by specific inhibitors.84 The cere-

bral plasminogen system does not differ from the systemic 

plasminogen system, as all the constituents of the systemic 

mechanism are present in the brain.85

Figure  1 Inhibition of fibrinolytic activity by BSO, on arterial walls in rabbits. 
Photomicrographs  of 30  µm cross sections of the aortic arch that were incubated 
with fibrinogen, plasminogen, and human thrombin and stained with Harris’ 
hematoxylin (×40). (A) Fibrinolytic activity of the aortic arch reveals an extensive 
area of lysis under the endothelial wall. (B) Seven hours after BSO administration, 
the inhibited fibrinolysis activity could be attributed to a lower release of t-PA. 
Note: Plasma t-PA levels were decreased following administration of BSO and only 
reappeared 3 days later, when the level of plasma glutathione was also normal.62

Abbreviations: BSO, buthionine sulfoximine; t-PA, tissue plasminogen activator.
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Ab is the target for proteolytic degradation by several 

proteases known as the Ab-degrading proteases.86 Among 

the different, best-known Ab-degrading proteases are: 

neprilysin,12,87,92 insulin-degrading enzyme,93,94 endothelin 

converting enzyme,93,95,96 matrix metalloprotease,97–99 and 

plasmin.100–102 Of greatest interest to the study of Ab clearance 

and elimination through the BBB, are neprilysin79,88,89,103,104 

and plasmin.105

The plasminogen system is an essential proteolytic mecha-

nism that, by the action of plasmin, effectively degrades Ab 

peptides (beta-amyloidolysis), prompting us to consider this 

physiologic process as a preventive mechanism of neuro-

degenerative processes.19,106 Nevertheless, the primary sub-

strate of degradation by plasmin in the brain is not very well 

known.107 Plasmin activity is diminished in the hippocampus 

and cortex of patients with AD.12,108 As mentioned earlier, the 

excessive production and lack of clearance of the peptide Ab 

creates the accumulation of senile plaques that define AD.18

A decrease in brain plasmin activity leads to a smaller 

clearance and an increase in the Ab deposits.15,16 Experimental 

studies in mice have shown an increase of Ab material 

deposits and an increase of PAI-1 in the process of AD.88,89 

Therefore, the inhibition of the t-PA by the PAI-1 facilitates 

the accumulation of Ab material and slows its degradation 

and later clearance; very important mechanisms in the gen-

esis of AD.18,102

For investigators, t-PA plays a significant role in the 

physiopathology of the central nervous system (CNS).109 

At the CNS level, t-PA has a specific inhibitor, neuroserpin 

(NSP), which is found in those regions where t-PA is pres-

ent. The coexpression of NSP and t-PA in the same regions 

of the brain suggests that NSP is a likely regulator of t-PA 

activity within the CNS. This complex t-PA/NSP contrasts 

with the formation of long-lasting, phyiologically irreversible 

complexes between t-PA and PAI-1 (due solely to differences 

in affinities of t-PA for PAI-1 versus NSP).110

In some studies, neurotoxicity has been attributed to 

the plasminogen system.111–120 In certain pathologies, such 

as in ischemia and cytotoxicity, activation of the plasmi-

nogen system occurs by t-PA, generating plasmin, which 

in turn, degrades the extracellular matrix by action on the 

laminin, producing neuronal loss.121 Other studies cast doubt 

on this action of t-PA, demonstrating that direct infusion 

does not lead to neuronal loss.114 Conversely, other results 

have conferred on t-PA a protective characteristic against 

cellular injury (both in vitro and in vivo)122 and considered 

it to be a regulator of vascular tone and permeability118 as 

well as a regulator of the BBB128 and a mediator in neuronal 

connection (synaptic plasticity).124,125 t-PA has been con-

sidered to have effects that are not related to its ability to 

activate plasminogen. For example, in mice lacking t-PA, 

neurons were found to be resistant to the damage caused 

by strokes.116 Further, t-PA increases microglia activation, 

without requiring any proteolytic activity.126 To sum up, t-PA 

is considered as a cerebral mediator, exercising both prote-

olytic and nonproteolytic actions, at a metabolic, functional, 

or morphological level.127

The relationship between GSH and the plasminogen sys-

tem is of great importance for cerebral function. The pharma-

cological depletion of GSH produces a significant inhibition 

of the plasminogen mechanism, secondarily inhibiting the 

generation of plasmin. As indicated previously, the lack of 

plasminic activity in the brain leads to the accumulation of 

Ab peptides and to the formation of the extracellular plaques 

and intracellular tangles, found in AD.18,106 PAI-1 increases 

in different pathologies associated with GSH depletion and 

oxidative stress.128

Throughout aging, normal mice have been shown to 

experience a progressive decrease of t-PA activity.129,130 In 

parallel, lower levels of GSH have been found in the cortex, 

cerebellum, striatum, thalamus, and hippocampus (although 

hepatic levels remain normal).35,112,129 This decrease in t-PA 

activity found in normal mice, is due to a decrease in the 

expression of t-PA and to an increase in the production of 

PAI-1, carrying with this an increase in the production of 

Ab peptides.114,129,130 The same results have been found in the 

cerebral tissue of patients with sporadic AD, where a negative 

correlation between proteolytic activity and the levels of Ab 

peptides has been observed.15

Clinically, there is evidence to suggest that cognitive status 

can be improved with decreases in the concentration of Ab 

peptide in the cerebrospinal fluid, and that short- and long-term 

resistance to cognitive deterioration can be achieved with the 

administration of heparan sulfate-dermatan sulfate (sulodex-

ide) (a glycosaminoglycan drug that crosses the BBB and acts 

by inhibiting PAI-1 and activating t-PA, with an accompanying 

increase in proteolytic activity).131–143 In a study conducted by 

us,144 two groups of patients were treated with sulodexide or 

with acenocoumarol. Follow up of these patients after 6 years 

revealed that patients treated with sulodexide experienced 

significantly less deterioration of cognitive status compared 

with the group treated with acenocumarol (Lasierra-Cirujeda, 

personal communication October, 2011).

In animal models as well as in clinical trials in humans, 

an enteral or parenteral supply of nutrients, including 

cysteine, methionine, N-acetyl-cysteine (NAC), and L-2-
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oxo-thiazolidine, were found to be suitable precursors for the 

synthesis of GSH and subsequently led to an increase in the 

intracellular level of GSH.28,51,145–147 Normalization of GSH 

levels improves the proteolytic cerebral capacity. After the 

administration of GSH to patients with diabetes mellitus type 

2, a significant reduction of plasma PA-1 levels, and an incre-

ment in the concentration of GSH in blood red cells were 

found. These results suggest the usefulness of GSH in the 

improvement of the plasminogen system.148–150

Finally, the supply of GSH precursors and the resulting 

increase in the antioxidant GSH has been found to promote 

cellular resistance to oxidative stress, by leading to an intra- 

and extracellular proteolytic improvement caused by both the 

decrease in PAI-1 and the increased clearance of the cerebral 

Ab proteins.150,151

In this review, we hypothesized the importance of the 

interaction between cerebral GSH and plasminogen systems 

in neurodegenerative diseases. In summary, the cerebral GSH 

and plasminogen systems are essential biological processes that 

combat the neurodegenerative processes that occur more sig-

nificantly with advancing age. With knowledge of the physiopa-

thology of neurodegenerative processes, both of these systems 

can be pharmacological targets, providing reason for hope of 

prevention of neurodegenerative diseases such as AD.
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