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Abstract: Viruses encapsulating inorganic nanoparticles are a novel type of nanostructure 

with applications in biomedicine and biosensors. However, the encapsulation and assembly 

mechanisms of these hybridized virus-based nanoparticles (VNPs) are still unknown. In 

this article, it was found that quantum dots (QDs) can induce simian virus 40 (SV40) capsid 

assembly in dissociation buffer, where viral capsids should be disassembled. The analysis 

of the transmission electron microscope, dynamic light scattering, sucrose density gradient 

centrifugation, and cryo-electron microscopy single particle reconstruction experimental results 

showed that the SV40 major capsid protein 1 (VP1) can be assembled into ≈25 nm capsids in 

the dissociation buffer when QDs are present and that the QDs are encapsulated in the SV40 

capsids. Moreover, it was determined that there is a strong affinity between QDs and the SV40 

VP1 proteins (K
D
 = 2.19E-10 M), which should play an important role in QD encapsulation in 

the SV40 viral capsids. This study provides a new understanding of the assembly mechanism 

of SV40 virus-based nanoparticles with QDs, which may help in the design and construction 

of other similar virus-based nanoparticles.

Keywords: quantum dots, simian virus 40, self-assembly, encapsulation, virus-based 

nanoparticles

Introduction
Virus capsids are delicate protein shells that are formed by self-assembly.1 Due to their 

useful characteristics, such as a uniform nanoscale size,2 symmetric structure,3 easy 

fabrication,4 and easy modification,5 viral capsids have been used as nanoplatforms.6 

Various types of virus-based nanoparticles (VNPs) have been developed.7–12 Typically, 

VNPs are spherical shells formed from viral capsid proteins, which can encapsulate 

inorganic nanoparticles (eg, quantum dots [QDs], gold nanoparticles, and magnetic 

nanoparticles),13 resulting in hybridized nanoparticles.6 Some of these VNPs also show 

potential for use in biosensors and biomedicine.14 However, the encapsulation and 

assembly mechanisms of the hybridized VNPs are still unknown.15

In the authors’ previous studies, several types of VNPs based on the simian virus 

40 (SV40) capsid, which is assembled from the SV40 major virus capsid protein 1 

(VP1), were developed. For example, VNPs of SV40 capsids that encapsulated QDs 

were constructed and it was demonstrated that the VNPs act the same as wild type SV40 

during the initial infection steps.16 The capsid protein VP1 was used to encapsulate QDs 

with different surface coatings, including negatively, neutrally, and positively charged 

QDs.17 Gold nanoparticles were also assembled in the SV40 capsids.18 The SV40 VNPs  

have the ability to guide the assembly of discrete, three-dimensional (3D), hybrid 
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nanoarchitectures with one QD inside a VNP and a tunable 

number of gold nanoparticles attached to the outer surface 

of the VNP.19,20 By changing the ratio of wild type VP1 to 

mutant VP1, the number of gold nanoparticles attached to 

the VNPs can be controlled.21 With more studies on these 

constructed SV40 VNPs being conducted, the assembly 

mechanism of SV40 capsids with inorganic nanoparticles 

becomes an intriguing subject. Are there basic principles for 

viral capsid assembly with inorganic nanoparticles? Here, an 

interesting phenomenon was found where QDs can induce 

SV40 capsid assembly in the dissociation buffer, which may 

provide some insight into the assembly mechanism.

Normally, the SV40  major capsid protein VP1 can 

only be assembled into capsids in an assembly buffer that 

contains assembly promotion factors, such as certain ionic 

strengths,22–24 concentrations of calcium ion (Ca2+), or nucleic 

acids.25–28 However, in this study, it was discovered that 

VP1 can be assembled into capsids when there are QDs in 

the dissociation buffer and that the QDs are encapsulated 

in the SV40 capsids. Analysis of the transmission electron 

microscopy (TEM), dynamic light scattering (DLS), sucrose 

density gradient centrifugation (SDGC), and cryo-electron 

microscopy (cryo-EM) single particle reconstruction data 

verified this result. Moreover, the affinity measurements 

showed that there is a strong interaction between the QDs 

and SV40 VP1 proteins.

Material and methods
Expression and purification of SV40 VP1
The pET32a plasmid containing the SV40 VP1 DNA sequence 

was transformed into the Escherichia coli Rosetta™ (DE3) 

strain (EMD Millipore, Billerica, MD, USA). The cells 

were shaken at 200 rpm and 37°C to an optical density at 

600 nm of 0.6 and induced with 1 mM of isopropyl-β-D-

thiogalactopyranoside at 25°C and 150 rpm for 9 hours. The 

bacteria were washed with a high-salt assembly buffer (10 mM 

tris[hydroxymethyl]aminomethane hydrochloride (pH 7.2), 1 

M sodium chloride, 1 mM calcium chloride, and 5% glycerol). 

The cells were pelleted again and then resuspended in the 

high-salt assembly buffer. After resuspension, the cells were 

sonicated. The fragments were centrifuged at 10,000 rpm 

for 30 minutes at 4°C. To deposit the protein, a saturated 

ammonium sulfate solution was added dropwise at a rate 

of 0.5 mL/minute into the stirring supernatant. When the 

protein solution became opaque, it was continually stirred 

for 30 minutes. After the turbid liquid was sedimented at 

10,000 rpm for 30 minutes at 4°C, the sediment was dissolved 

in 25 mL of the high-salt assembly buffer. The undissolved 

proteins were removed by centrifugation at 10,000 rpm for 

30 minutes. The protein solution was concentrated to 5 mL 

in an Amicon® Ultra-25 centrifuge tube (30 kDa molecular 

weight cutoff; EMD Millipore) for preparation of the SV40 

VNPs. After ultracentrifugation at 55,000 rpm for 1 hour in 

a Type 90 Ti rotor (Beckman Coulter, Brea, CA, USA), the 

VNPs were collected and then dissolved in 30 mL of the 

dissociation buffer (10 mM tris[hydroxymethyl]aminomethane 

hydrochloride (pH 8.8), 250 mM sodium chloride, 2 mM 

ethylenediaminetetraacetic acid, 30 mM β-mercaptoethanol, 

and 5% glycerol) for 24  hours. The excess VNPs were 

removed by ultracentrifugation at 55,000 rpm for 1 hour, and 

the VP1 pentamers were stored at −80°C. A Bio-Rad Protein 

Assay Kit II #500-0002. (Bio-Rad Laboratories, Hercules, 

CA, USA) was used to measure the VP1 concentration.

Preparation of 3-mercaptopropionic 
acid (MPA)-modified QDs
Core/Shell cadmium selenide/zinc sulfide QDs Powder 

(QSP-610-05, 5 mg; Ocean NanoTech, Springdale, AR, USA) 

with a 600 nm emission wavelength was dissolved in 1 mL 

of toluene. Then, 200 µL of QDs were mixed with 200 µL 

of excessive MPA ($99%; Sigma-Aldrich, St Louis, MO, 

USA) and vortexed in a vortex oscillator for 40 minutes. 

The sediment was collected at 6000 g/minute for 5 minutes. 

After discarding the supernatant, the QD sediments were 

resuspended in a borate saline buffer (pH 8.2). QDs dissolved 

in water were centrifuged at 15,000 rpm for 15 minutes, and 

the supernatant was stored at 4°C.

VP1 assembly in buffers
The VP1 was mixed with the MPA-QDs (molar ratio 

was 60:1) and dialyzed against the dissociation buffer or 

assembly buffer (10 mM tris[hydroxymethyl]aminomethane 

hydrochloride (pH 7.2), 1 mM calcium chloride, 250 mM 

sodium chloride, and 5% glycerol) at 4°C overnight by 

dialysis bag (molecular weight cutoff is 3000 Da). The buffer 

was renewed every 6 hours.

SDGC
The solution containing the VP1 protein and MPA-QDs 

was layered on top of the 10%–40% sucrose gradient 

prepared using the dissociation buffer or assembly buffer 

and sucrose in an SW40 Ti rotor (Beckman) transparent 

centrifuge tube, followed by centrifugation at 38,000 rpm 

and 4°C for 4.5 hours. The VP1 and VP1-QD solutions were 

absorbed from the top to the bottom in eight separate mean 

fractions (F0–F7), and the protein content in each fraction 
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was determined by sodium dodecyl sulfate polyacrylamide 

gel electrophoresis. The fluorescence band of the VP1-QD 

solution in dissociation buffer was collected using the 

excitation produced by a portable ultraviolet lamp, and this 

was followed by TEM analysis.

TEM statistics
For the TEM analysis, a carbon-coated copper grid was 

covered with a sample drop for 1  minute, removed with 

filter paper and negatively stained for 30  seconds. The 

samples were identified using a Tecnai™ G2 20 TWIN 

electron microscope (FEI Company, Hillsboro, OR, USA) 

operating at 200 kV and imaged with a Cantega G2 bottom-

mounted CCD TEM camera (Olympus Corporation, Tokyo, 

Japan). Cryo-EM micrographs were obtained by a Titan 

Krios™ (300 kV; FEI). The TEM images were processed 

and analyzed using iTEM (Olympus). The particle number 

statistics of four micrographics (25,000×  magnification) 

were determined for each sample by eye, and the diameters 

statistics of VNPs (≈400 particles) were measured by iTEM 

software (version 5.0).

DLS
DLS measurements of MPA-QDs, VP1-QDs, and VP1  in 

the dissociation buffer without glycerol were taken using a 

Zetasizer® Nano ZS (Malvern Instruments, Malvern, UK), 

as previous described.16,29 The VP1 concentration of each 

sample was 0.6 mg/mL and the MPA-QD concentration was 

4 µM. The samples were filtered using a 0.22 µm syringe 

filter. The dispersant refraction index was 1.330 (water) and 

the material refraction index was 1.450 (protein).

3D reconstruction
The 3D reconstruction of VP1-QDs was carried out by using 

the EMAN2  software suite.30 The particles were selected 

with the e2boxer program from the cryo-EM images for 

reconstruction. Initial models were generated by the e2 initial 

model program. The final model was Gaussian filtered to 

generate low-pass filtering for a 0.05 cutoff frequency. In 

the initial model generation and 3D refinement, icosahedral 

symmetry was applied. The final 3D reconstruction was 

visualized with Chimera software (University of California, 

Santa Cruz, CA, USA).31

Affinity measurements
Finally, the binding kinetics of VP1 to MPA-QDs and VP1 

pentamers were measured using the ForteBio® BioLayer 

Interferometry of the Octet® RED96 system (Pall Corporation, 

Port Washington, NY, USA). VP1 was modified with biotins. 

First, the VP1 proteins were dialyzed to the phosphate 

buffered saline dissociation (PBS) buffer (conventional 

PBS buffer with 2 mM ethylenediaminetetraacetic acid and 

30 mM β-mercaptoethanol added). Then, triple molarity of a 

biotin agent (NHS-LC-LC-Biotin; Thermo Fisher Scientific, 

Waltham, MA, USA) was mixed with VP1 proteins and 

incubated for 1 hour. Then, the mixture was dialyzed to the 

PBS dissociation buffer for removing redundant biotin. All 

interaction analyses were conducted at 30°C in the PBS 

dissociation buffer. Streptavidin sensor tips were prewet for 

5 minutes in the buffer immediately prior to use, and the 

96-well microplates used in the Octet were filled with 200 µL 

of the sample or buffer per well and agitated at 1000 rpm. 

Biotinylated VP1 (350  µg/mL) was loaded to saturation 

onto the streptavidin capture biosensors, and then the loaded 

biosensors were washed in the buffer for 120 seconds and 

transferred to wells containing MPA-QDs at concentrations 

of 100 nM, 50 nM, 25 nM, 12.5 nM, 6.25 nM, and 0 nM in 

the buffer, and containing VP1 at concentrations of 2988 nM, 

1493.6 nM, 746.8 nM, 373.4 nM, 186.7 nM, 93.36 nM, and 

0 nM. The binding kinetics of VP1 to SV40 genome double-

stranded DNA (dsDNA) was also measured. SV40 genome 

dsDNA was amplified by polymerase chain reaction with 

biotin-16-dUTP (Biotin-16-dUTP; Roche Diagnostics, 

Basel, Switzerland) from pSV21-C plasmid. The biotinylated 

SV40 genome dsDNA was loaded to the sensors, and the 

association of dsDNA with VP1 was measured at VP1 

concentrations of 390.8 nM, 195.3 nM, 97.7 nM, 48.8 nM, 

24.4 nM, 12.2 nM, and 0 nM. The associations were measured 

for 15  minutes and the dissociations were measured for 

30  minutes. The kinetic parameters (K
on

 and K
off

) and 

affinities (K
D
) were calculated from a nonlinear global fit of 

the data using the Octet software (version 6.4.0.20) with a 

mass transport model.

Results
Expression and purification of VP1 
pentamers
As described previously,18 wild type SV40 VP1 was expressed 

in E. coli and purified using ammonium sulfate precipitation 

and ultracentrifugation. After maintaining the VP1  in 

dissociation buffer for 2 days, SV40 VP1 existed as pentamers 

dissolved in the buffer, and there were no VNPs (Figure 1).

QDs induce VP1 assembly into VNPs
Interestingly, when MPA-QDs were added to the SV40 

VP1 that was dissolved in the dissociation buffer and 
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incubated at 4°C overnight (VP1-QD sample), assembly 

particles of VNPs-QDs were formed (Figure 2A). VNPs-

QDs show a core/shell structure. For each of the VNPs-

QDs, an electron dense core of QD was encapsulated in 

the gray protein shell of VNP (Figure  2A). When there 

were no QDs, VP1 could not assemble into VNPs in the 

dissociation buffer during an overnight incubation at 4°C 

(the control sample VP1; Figure 2B). TEM and statistical 

analysis verified that the number of assembled VNPs in the 

protein solution with QDs was significantly larger than in 

the solution without QDs (Figure 2C). The mean diameter 

of the VNPs encapsulating the QDs was calculated to 

be 25.5 ± 2.0 nm; the modal diameter is 25.5 nm (≈400 

particles).

Characterizing the diameters and surface 
potentials of QD-induced VNPs
DLS measurements were conducted to detect the distribution 

of the hydrodynamic diameter for the VP1-QDs formed 

in the dissociation buffer. As shown in Figure 3, the mean 

hydrodynamic diameter of the VP1-QDs was 25.8 nm, which 

is similar to the diameter measured using TEM (25.5 nm). 

When there were no QDs, the diameter of VP1 pentamers 

was 10.6  nm in the dissociation buffer. Meanwhile, the 

diameter of MPA-QDs was 5.4 nm (Figure 3). To understand 

the electrostatic interaction between the VP1 pentamers 

and MPA-QDs, the surface potentials were measured using 

DLS. The results show that the surface potentials of the VP1 

pentamers and MPA-QDs were –4.71 mV and –16.3 mV, 

respectively. This result indicates that there was no strong 
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Figure 1 (A) Sodium dodecyl sulfate polyacrylamide gel electrophoresis of 
VP1. (B) Transmission electron microscope image of VP1 pentamers.
Abbreviation: VP1, major virus capsid protein 1.

100 nm 100 nm

A B

120

100

80

60

40

20

0
0 10 20

Diameter (nm)

VP1-QDs

30 40 50

N
u

m
b

er

D
400

300

200

N
u

m
b

er

100

0
VP1-QDs VP1

C

Figure 2 Transmission electron microscope images of simian virus 40 VP1 (A) mixed with 3-mercaptopropionic acid-modified quantum dots and (B) alone in the dissociation 
buffer. The zoomed version in (A) shows a single particle of the virus-based nanoparticle with quantum dots, with a core/shell structure of an electron dense core (quantum 
dots) encapsulated in the gray VP1 protein shell (scale bar = 10 nm). (C) The yields of virus-based nanoparticles for VP1-QDs and VP1 were calculated based on four random 
25,000× transmission electron micrographs. (D) Diameter statistics of virus-based nanoparticles in VP1-QDs.
Abbreviations: VP1, major virus capsid protein 1; VP1-QDs, major virus capsid protein 1 with quantum dots.
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surface electrostatic interaction between the VP1 protein and 

MPA-QDs.

Purification and determination of  VNPs 
encapsulating QDs
The VP1-QDs were also analyzed and purified by SDGC. 

As shown in Figure  4A, the fluorescence of the QDs 

was condensed into a narrow band in the SDGC tube. 

This fluorescent band was excised and dialyzed against 

the dissociation buffer to desugar it. The TEM micrograph 

showed the regular structure of the VNP-QD particles in 

the fluorescent band sample (Figure 4B). The sample in the 

SDGC tube in Figure 4A was also divided into eight fractions 

(F0–F7), which were then collected for sodium dodecyl sulfate 

polyacrylamide gel electrophoresis analysis (Figure 4C). In 

Figure 4C, SDGC of the VP1 without QDs in the dissociation 

buffer was conducted as a control. From Figure 4C, it can 

clearly be seen that the VP1 protein in the VP1-QD sample 

was distributed in the F3–F4 fractions, which correspond to 

the fluorescence bands of the VNP-QDs. For the VP1 samples 

without QDs, the protein was mainly distributed in the F0 

fraction. The SDGC analysis results of VP1-QDs assembled 

in the dissociation buffer (Figure S1A) were compared with 

the VP1-QDs assembled in assembly buffer (Figure S1B) as 

a control. The fluorescent bands stayed at the same position 

in the centrifuge tube for the two analyses (Figure S1).

3D reconstruction of VNPs with QDs
To further characterize the structure of VNPs for the purified 

VP1-QDs, the 3D reconstruction was constructed using 

cryo-EM single particle analysis with EMAN2 software.30 

Figure  5  shows the cryo-EM micrograph of VP1-QDs, 

which presented as a dark spot (QD) surrounded by a gray 

shell (VP1 proteins) (Figure  5A), and 3D reconstruction 

structure of VP1-QDs (Figure 5B). From the cryo-EM 3D 

reconstruction, it can be seen that VNP-QDs have a regular 

icosahedron structure. This result further verifies that QDs 

induced the assembly of virus capsids.
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Abbreviations: VP1, major virus capsid protein 1; VP1-QDs, major virus capsid 
protein 1 with quantum dots.
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VP1 with SV40 genome dsDNA was 1.11E-8 M (Figure S3 

and Table S2).

Discussion
Normally, SV40 VP1 proteins cannot assemble into VNPs 

in the dissociation buffer. However, in this work it was 

found when QDs were added, VNPs encapsulating QDs 

were assembled. These VNPs exhibited a uniform diameter 

and regular shape, just as the T = 1 VNPs of SV40 did. In 

the dissociation buffer, the disulfide bonds are broken by 

β-mercaptoethanol, and the Ca2+ that stabilizes the VNP 

structures is chelated by ethylenediaminetetraacetic acid.27,32 

The low ionic strength and the lack of disulfide bonds lead to 

the collapse of the VNPs. This means that the concentrations 

of salt and Ca2+ significantly contribute to the formation of 

VNPs.22–24,28,33 However, QDs can promote VP1 to assemble 

into VNPs in the absence of a high concentration of salt and 

Ca2+, indicating that the QD-induced assembly of VNPs 

might occur through a different path.

A potential analysis showed that the QDs and VP1 pen-

tamers both carry weak, negative charges, which indicates 

that the electrostatic attraction between the QDs and pen-

tamers may not be the determining factor of the assembly. 

In previous work, it was found that there is no correlation 

between the encapsulation efficiency and the surface charge 

of the QDs.17 These results indicate that the electrostatic 

A B

50 nm

Figure 5 (A) Cryo-electron micrograph of major virus capsid protein 1 with 
quantum dots assembled in the dissociation buffer. (B) Three-dimensional 
reconstruction structure of the virus-based nanoparticles.

Affinity between QDs and VP1 pentamers
To further understand the assembly of VP1 and QDs, a 

quantitative analysis of their affinities was conducted using 

the Octet RED96 system. Briefly, biotinylated VP1 proteins 

were loaded onto streptavidin sensors and balanced in the 

dissociation buffer to obtain baseline signals. Then, QDs 

with a series of concentration gradients were added to the 

sensors to acquire association signals and dissociation signals 

(Figure 6). From the baseline signals, binding signals, and 

dissociation signals, the affinities of VP1 with QDs could 

be calculated. Using this method, the K
D
 value of the VP1 

pentamers with QDs was determined to be 2.19E-10 M 

(Table 1). Additionally, the K
D
 value of the VP1 pentamers 

was 1.32E-7 M (Figure S2 and Table S1) and that of the 
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Figure 6 Affinity measurement signal curves of major virus capsid protein 1 pentamers with quantum dots (for different concentrations).
Notes: The whole process is as follows: baseline (0–120 seconds), major virus capsid protein 1 pentamers loading (120–720 seconds), baseline (720–840 seconds), quantum 
dots association (840–1740 seconds), and quantum dots dissociation (1740–3540 seconds). Sensors A2–G2 represent a quantum dots concentration of 100 nM, 50 nM, 25 nM, 
12.5 nM, 6.25 nM, 3.125 nM, and 0 nM, respectively (the blue curve shows the nonspecific binding to the sensor of quantum dots).
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force should not play an important role in the assembly of 

SV40 VNPs.

Interestingly, it was discovered that there is high affinity 

between VP1 and MPA-QDs (K
D
 = 2.19E-10 M). The K

D
 

value of VP1 and SV40 genome dsDNA was 1.11E-8 M in 

the same condition, which is similar to the reported K
D
 value 

of VP1 and DNA (5.3E-9 M).34,35 Thus, the affinity between 

VP1 and MPA-QDs is similar to the affinity between VP1 

and DNA. It is thought that the interaction between VP1 and 

DNA drives the virus assembly and DNA encapsulation.26,27,34 

The strong interaction between VP1 and MPA-QDs may 

play a role similar to that of the interaction between VP1 

and DNA, and this interaction may act as the driving force 

behind the assembly of QD VNPs encapsulated in viral 

capsids. It was reported that the amino acids histidine, 

cysteine, methionine, and tryptophan have high affinity with 

cadmium selenide/zinc sulfide QDs,36 so it is supposed that 

these amino acids of VP1 should play roles in triggering the 

assembly between VP1 and QDs. The interaction among 

the VP1 pentamers was also measured. The K
D
 value was 

1.32E-7 M, which shows a weak affinity (Table S1). This 

work offers a possible mechanism by which QDs facilitate 

the formation of VNP. Like DNA, the strong interaction of 

VP1 and QD cause the binding of VP1 to the QDs, which 

act as scaffolds that increase local concentrations of VP1 

and as an allosteric effector that alter the tertiary structure 

of VP1.27,34 The strong interaction between VP1 and QDs 

Table 1 Affinities of the major virus capsid protein 1 pentamers with 3-mercaptopropionic acid-modified quantum dots

Index Concentration (nM) Response KD (M) Kon (Ms−1) Kon error Kdis (s
−1) Kdis error

1 100 4.5036 2.19E-10 2.50E+04 7.27E+01 5.48E-06 0.00E+00
2 50 3.4939 2.19E-10 2.50E+04 7.27E+01 5.48E-06 0.00E+00
3 25 1.557 2.19E-10 2.50E+04 7.27E+01 5.48E-06 0.00E+00
4 12.5 0.6879 2.19E-10 2.50E+04 7.27E+01 5.48E-06 0.00E+00
5 6.25 0.27 2.19E-10 2.50E+04 7.27E+01 5.48E-06 0.00E+00
6 3.125 0.1291 2.19E-10 2.50E+04 7.27E+01 5.48E-06 0.00E+00

Note: Index 1–6 show the KD, Kon, and Kdis values of major virus capsid protein 1 with quantum dots concentration gradient from 100 nM to 3.125 nM.

causes the binding of the VP1 proteins to the QDs, and this 

interaction results in the conformational change of VP1, 

which plays the similar role as the high concentrations of salt 

and Ca2+.24,28 The tight binding of VP1 with QDs stabilizes 

the VNP structures.

Based on the above experiments and analysis, it is inferred 

that the QD-induced capsid assembly is as follows (Figure 7): 

first, the QDs attract the VP1 pentamers surrounding them via 

a strong interaction. Then, the VP1 pentamers are rearranged 

on the QD surfaces due to the weak interactions between the 

pentamers37,38 and the uniform, regular, and stable VNPs with 

QDs are assembled.

Conclusion
An interesting phenomenon was observed where QDs can 

induce the assembly of the SV40  major capsid protein 

VP1 into VNPs in dissociation buffer, whereas in previous 

studies the SV40 capsids encapsulated QDs in assembly 

buffer. TEM, DLS, SDGC, and cryo-EM single particle 

reconstruction experiments verif ied that VP1 can be 

assembled into regular viral capsids when there are QDs in 

the dissociation buffer and that the QDs are encapsulated 

in the SV40 capsids. Furthermore, a high affinity was 

discovered between the QDs and SV40 VP1 proteins, and 

the K
D
 value was calculated to be 2.19E-10 M. This study 

provides a new understanding of the assembly mechanism 

of SV40 VNP-QDs, which may be helpful in designing other 

new nanoarchitectures.
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Supplementary materials

Figure S1 Sucrose density gradient centrifugation fluorescence image of major virus capsid protein 1 with quantum dots in (A) dissociation buffer and (B) assembly buffer.
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Figure S2 Affinity measurement signal curves of major virus capsid protein 1 pentamers with pentamers (for different concentrations).
Notes: The whole process is as follows: baseline (0–120 second), major virus capsid protein 1 pentamers loading (120–720 seconds), baseline (720–840 seconds), pentamers 
association (840–1740 seconds), and pentamers dissociation (1740–3540 seconds). Sensors A3–G3 represent major virus capsid protein 1 pentamers concentrations of 
2988 nM, 1493.6 nM, 746.8 nM, 373.4 nM, 186.7 nM, 93.36 nM, and 0 nM, respectively.
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Table S1 Affinities between the major virus capsid protein 1 pentamers

Index Concentration (nM) Response KD (M) Kon (Ms−1) Kon error Kdis (s
−1) Kdis error

1 2988 0.5692 1.32E-07 1.50E+05 7.89E+04 1.99E-02 1.04E-02
2 1493.6 0.4631 1.32E-07 1.50E+05 7.89E+04 1.99E-02 1.04E-02
3 746.8 0.3706 1.32E-07 1.50E+05 7.89E+04 1.99E-02 1.04E-02
4 373.4 0.2543 1.32E-07 1.50E+05 7.89E+04 1.99E-02 1.04E-02
5 186.7 0.1585 1.32E-07 1.50E+05 7.89E+04 1.99E-02 1.04E-02
6 93.36 0.0679 1.32E-07 1.50E+05 7.89E+04 1.99E-02 1.04E-02

Note: Index 1–6 show the KD, Kon, and Kdis values of major virus capsid protein 1 pentamers with concentration gradient from 2988 nM to 93.36 nM.
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Figure S3 Affinity measurement signal curves of simian virus 40 genome DNA with major virus capsid protein 1 pentamers (for different concentrations).
Notes: The whole process is as follows: baseline (0–120 seconds), simian virus 40 genome DNA loading (120–1020 seconds), baseline (1020–1200 seconds), pentamers 
association (1200–2100 seconds), and pentamers dissociation (2100–3900 seconds). Sensors A5–G5 represent major virus capsid protein 1 pentamers concentrations of 
390.8 nM, 195.3 nM, 97.7 nM, 48.8 nM, 24.4 nM, 12.2 nM, and 0 nM, respectively.

Table S2 Affinities between simian virus 40 genome DNA and the major virus capsid protein 1 pentamers

Index Concentration (nM) Response KD (M) Kon (Ms−1) Kon error Kdis (s
−1) Kdis error

1 390.8 0.076 1.11E-08 1.84E+04 1.73E+02 2.04E-04 1.58E-06
2 195.3 0.0804 1.11E-08 1.84E+04 1.73E+02 2.04E-04 1.58E-06
3 97.7 0.0314 1.11E-08 1.84E+04 1.73E+02 2.04E-04 1.58E-06
4 48.8 0.0711 1.11E-08 1.84E+04 1.73E+02 2.04E-04 1.58E-06
5 24.4 0.0269 1.11E-08 1.84E+04 1.73E+02 2.04E-04 1.58E-06
6 12.2 0.0271 1.11E-08 1.84E+04 1.73E+02 2.04E-04 1.58E-06

Note: Index 1–6 show the KD, Kon, and Kdis values of major virus capsid protein 1 pentamers with concentration gradient from 390.8 nM to 12.2 nM.
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