
International Journal of Nanomedicine 2006:1(1) 31–40
© 2006 Dove Medical Press Limited. All rights reserved

31

R E V I E W

Abstract: Macromolecular gadolinium (Gd)(III) complexes have a prolonged blood circulation

time and can preferentially accumulate in solid tumors, depending on the tumor blood vessel

hyperpermeability, resulting in superior contrast enhancement in magnetic resonance (MR)

cardiovascular imaging and cancer imaging as shown in animal models. Unfortunately, safety

concerns related to these agents’ slow elimination from the body impede their clinical

development. Polydisulfide Gd(III) complexes have been designed and developed as

biodegradable macromolecular magnetic resonance imaging (MRI) contrast agents to facilitate

the clearance of Gd(III) complexes from the body after MRI examinations. These novel agents

can act as macromolecular contrast agents for in vivo imaging and excrete rapidly as low-

molecular-weight agents. The rationale and recent development of the novel biodegradable

contrast agents are reviewed here. Polydisulfide Gd(III) complexes have relatively long blood

circulation time and gradually degrade into small Gd(III) complexes, which are rapidly excreted

via renal filtration. These agents result in effective and prolonged in vivo contrast enhancement

in the blood pool and tumor tissue in animal models, yet demonstrate minimal Gd(III) tissue

retention as the clinically used low-molecular-weight agents. Structural modification of the

agents can readily alter the contrast-enhancement kinetics. Polydisulfide Gd(III) complexes

are promising for further clinical development as safe, effective, biodegradable macromolecular

MRI contrast agents for cardiovascular and cancer imaging, and for evaluation of therapeutic

response.
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Introduction
Magnetic resonance imaging (MRI) is a clinical diagnostic modality based on

differences in the longitudinal and transverse relaxation rates (1/T1 or 1/T2) of water

protons in different tissues (Liang and Lauterbur 2000). MRI signal intensity reflects

the value of the relaxation rate of tissues. Contrast agents have been developed and

used to enhance MR image contrast and to improve diagnostic accuracy. Paramagnetic

metal chelates, eg, Gd(III), Fe(III), and Mn(II) complexes, can alter the relaxation

rate of the surrounding water protons to allow for more effective MRI contrast

enhancement (Caravan et al 1999). Gadolinium (Gd)(III) ions have seven unpaired

electrons and a large paramagnetic moment. Gd(III) chelates with high stability, eg,

Gd-DTPA, Gd-DOTA, or their derivatives, have been mainly developed as MRI

contrast agents, which increase both 1/T1 and 1/T2 relaxivities (Weinmann et al 1984;

Magerstadt et al 1986; Hayne et al 1989). Currently, Gd-containing contrast agents

are used in approximately 30% of MRI examinations.
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The Gd chelates approved for human use are nonspecific

and have unfavorable pharmacokinetics. These low-

molecular-weight agents rapidly extravasate from the

vasculature and nondiscriminatively distribute in the

extracellular space. The agents have a very short blood half-

life and a short time window for contrast-enhanced imaging.

In many situations it is difficult to estimate the timing for

optimal imaging, impeding accurate diagnostic imaging.

Macromolecular Gd(III) complexes have been developed

to improve contrast-enhanced MR imaging. Macromolecular

contrast agents are prepared by the conjugation of Gd(III)

DTPA, DOTA complexes, or their derivatives to synthetic

polymers (Schuhmann-Giampieri et al 1991; Bogdanov et

al 1993; Wiener et al 1994; Kobayashi and Brechbiel 2004;

Langereis 2004) or natural macromolecules (Lauffer and

Brady 1985; Wang et al 1990; Sirlin et al 2004), or by

copolymerization of the low-molecular-weight contrast

agents (Kellar et al 1997; Ladd et al 1999; Duarte et al 2001).

These agents have a long blood circulation time and can

preferentially accumulate in solid tumor tissue depending

on the hyperpermeability of the tumor vasculature

(Gerlowski and Jain 1986; Hobbs et al 1998). As a result,

they provide superior contrast enhancement in the blood

pool and in solid tumor tissue in animal models (Gossmann

et al 1999; Turetschek et al 2001; de Lussanet et al 2005).

A number of macromolecular Gd(III) complexes have

been investigated as blood-pool contrast agents (Schuhmann-

Giampieri et al 1991; Bogdanov et al 1993; Shibata et al

1995; Van Beers et al 1995; Roberts et al 1997; Kobayashi

et al 2001b; Li et al 2001; Lee 2003; Sirlin et al 2004).

These agents show molecular-weight-dependent or size-

dependent plasma half-lives (Vexler et al 1994; Kobayashi

et al 2001a,b), and agents with higher molecular weights

and longer blood half-life produced the better contrast

enhanced vascular imaging. Higher-molecular-weight

chelates were prepared to increase their intravascular

retention time for longer and clearer visualization of the

neovascularity of neoplastic tissue (Weissleder et al 2001).

Macromolecular agents with relatively high molecular

weight (> 20 kDa, linear size) have a potential to detect and

characterize individual tumors more specifically and

accurately due to their ability to measure tumor

microvascular permeability, microvascular density, and

vascular recruitment. For example, albumin-(Gd-DTPA)

(92 kDa) does not accumulate in benign tumors, but can

gradually diffuse into the interstitial spaces of malignant

tumors, which may be useful to accurately differentiate

between these tumors (Gossmann et al 1999; van Dijke

1996).

Although macromolecular Gd(III) complexes have clear

advantages as blood-pool contrast agents, their slow body

clearance is also a disadvantage with respect to toxicity.

Free Gd(III) ions are highly toxic, with an LD50 as low as

0.5 mmol/kg in rat models (Weinmann et al 1984). The

dissociation of Gd(III) complexes and release of Gd(III)

ions can be lethally toxic (Cacheris et al 1990). The longer

body retention time increases the probability of metabolism

of the macromolecular complexes and release of Gd(III)

ions. The clearance rate decreases with the increase of

molecular weight of the contrast agents (Kobayashi 2003).

It has been reported that a Gd-DTPA polypropyleneimine

dendrimer (generation 2) conjugate (7 kDa) resulted in the

retention of 45% of injected dose in rats 14 days after

injection (Wang 2003). The conjugation of Gd-DO3A to

carboxylmethyl hydroxylethyl starch resulted in a

macromolecular agent (72 kDa) that had about 47% of

injected dose detected in rat body 7 days after the injection

(Helbich et al 2000). Because of this safety concern, clinical

development of macromolecular contrast agents has been

limited.

Biodegradable polymers including poly(L-lysine),

dextrans, and proteins have been used in the synthesis of

macromolecular contrast agents. However, in vivo

degradation of these materials takes place primarily in

intracellular enzymatic compartments. MRI contrast agents

are mostly extracellular agents and have low cellular uptake.

In addition, the extensive chemical conjugation on the

polymers can significantly reduce their biodegradability

(Crepon et al 1991). Consequently, contrast agents prepared

from these polymers have longer body retention times and

result in significant accumulation of Gd ions in tissues

(Bogdanov et al 1993; Franano et al 1995; Helbich et al

2000). Innovative approaches are needed for the design and

development of safe, effective macromolecular contrast

agents for clinical application.

We have recently designed and developed novel

extracellular biodegradable macromolecular Gd(III)

complexes based on polydisulfides to facilitate Gd(III)

elimination and to minimize its tissue retention (Lu et al

2004). These complexes act as macromolecular agents for

MR contrast enhancement and rapidly excrete as low-

molecular-weight Gd(III) chelates after the macromolecules

are broken down by the endogenous thiols via the disulfide-

thiol exchange reaction. Here, we summarize the rationale

of the biodegradable macromolecular contrast agents, their
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physicochemical and biological properties, and in vivo

contrast enhancement in animal models.

Rationale of polydisulfide
macromolecular MRI contrast
agents
The ideal MRI contrast agent would be an agent able to

accumulate in the tissue of interest long enough for imaging

with conventional or dynamic MRI, then rapidly clear from

the body. Currently available MRI contrast agents are

primarily low-molecular-weight Gd(III) chelates, which

have transient tissue retention and clear rapidly from the

body. Macromolecular Gd(III) complexes exhibit long tissue

retention and excrete slowly. We hypothesize that the

incorporation of biodegradable structures into the backbone

of macromolecules containing Gd(III) chelates can result

in MRI contrast agents that will provide sufficient blood

pool and tissue retention for effective contrast enhanced MR

imaging. The structures will then react with biomolecules

present in plasma or tissues to break down the macro-

molecules into smaller Gd(III) complexes that can be readily

excreted (Lu et al 2004).

The disulfide-thiol exchange reaction plays a crucial role

in biological systems. Free thiols including cysteine,

glutathione (GSH), cysteinylglycine (Cys-Gly), and

homocysteine are important endogenous biomolecules, with

a total concentration of 15 µM in human blood plasma and

about 10 mM in the cytoplasm (Andersson et al 1995;

Deneke 2000). We have incorporated disulfide bonds into

the backbone of macromolecular Gd(III) complexes to

prepare biodegradable macromolecular MRI contrast agents.

The disulfide bonds in the polymer chains can be readily

cleaved by the thiols via disulfide-thiol exchange reaction

to break down the macromolecules into smaller Gd(III)

complexes, which can be excreted through renal filtration.

Since Gd(III) chelates are mostly extracellular agents and

the plasma thiol concentration is low, the degradation of

the macromolecular agents is a slow process, which allows

the agents to reside for an acceptable period in the circulation

for effective contrast-enhanced MR imaging.

The concept of extracellular biodegradable macro-

molecular MRI contrast agents was validated with the first

polydisulfide agent, Gd-DTPA cystamine copolymers

(GDCC) (Lu et al 2004). GDCC was gradually degraded

into smaller Gd(III) complexes by the cleavage of the

disulfide bonds in the polymer backbone via the disulfide-

thiol exchange reaction in the presence of 15 µM cysteine

(Figure 1). The structures of degradation products were

verified by MALDI-TOF mass spectrometry. GDCC

resulted in more significant and prolonged contrast

enhancement in the cardiovascular systems in rat than a

clinical agent, Gd-(DTPA-BMA), and excreted rapidly via

renal filtration. Metabolic degradation products were

identified by mass spectrometry in the rat urine samples.

The structure of the polydisulfides can be readily

modified to alter the physicochemical properties, pharmaco-

kinetics, and in vivo contrast enhancement of the

biodegradable MRI contrast agents. Functional groups have

N
NN Gd3+

COO-

N
H

O O
S

S
H
N

COO- COO-
n

O X

O Y

X, Y: OH                   GDCP
X, Y: OEt                  GDCEP
X: OH, Y: NHPEG    PEG-GDCP

Figure 2 Structure of Gd-DTPA cystine copolymers (GDCP) and modified
GDCP.
Abbreviations: OEt, ethoxy group; PEG, poly(ethylene glycol); GDCEP, Gd-
DTPA cystine diethyl ester copolymer.
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been introduced around the disulfide bonds by replacing

cystamine with cystine. The chemistry of cystine is more

versatile and the carboxylic groups in cystine can be further

modified to design and prepare biodegradable macro-

molecular contrast agents with different properties (Mohs

et al 2004; Zong et al 2005). Different substituents have

been attached to cystine (Figure 2), and the modified agents

demonstrated different degradability, pharmacokinetics, and

in vivo contrast enhancement. The chemistry, physico-

chemical and pharmaceutical properties, and in vivo contrast

enhancement of the polydisulfide agents are discussed in

the following sections.

Synthesis of polydisulfide Gd(III)
complexes
The synthetic procedure of polydisulfide Gd(III) complexes

is described in Figure 3 with GDCC as an example. DTPA

dianhydride is first copolymerized with a disulfide-

containing diamine, eg, cystamine or cystine, by

condensation copolymerization under basic conditions to

give a polymeric ligand. Different solvents and bases can

be used according to the solubility of disulfide monomers.

Dimethyl sulfoxide was used as the solvent and triethyl-

amine as the base for the monomers soluble in organic

solvent. For cystine, which is not soluble in organic solvent,

the copolymerization was performed in aqueous solution

of sodium carbonate or sodium hydroxide. Polydisulfide

Gd(III) complexes are then prepared by the complexation

of the polymeric ligands with GdCl3 or Gd(OAc)3 at

pH 5–6. The pH of the reaction mixture with GdCl3

decreases significantly during the complexation because of

the release of HCl, and NaOH is added to maintain the pH

at 5–6. There is no significant change of pH in the reaction

with Gd(OAc)3.

The molecular weight of polydisulfides from the

condensation copolymerization can be as high as

100 000 Da. There is a significant decrease of apparent

molecular weight of copolymers after complexation with

Gd(III) because of the change of hydrodynamic volume of

the copolymers after complexation. The molecular weights

of some paramagnetic copolymers are listed in Table 1. The

polydisulfides are negatively charged and have a large

hydrodynamic volume. Once the polydisulfide ligands

chelate with Gd3+, the polydisulfide Gd(III) complexes are

neutral or less charged and have reduced hydrodynamic

volume.

The structure of polydisulfide Gd(III) complexes have

been modified by grafting PEG of different lengths to the

carboxylic groups in Gd-DTPA cystine copolymers (GDCP)

(Mohs et al 2004, 2005). Monomethoxy-PEG amine

Table 1 Physicochemical parameters of some polydisulfide Gd(III) complexes

Polymeric Molecular weight (kDa) Relaxivity PEGylation
contrast agent Mw Mn Mw/Mn mM–1sec–1 PEG size (Da) PEG/Gd

GDCC 17.7 15.0 1.2 4.4 (1.5T)
35.0 27.0 1.3 6.3 (1.5T)

GDCP 10.1 10.0 1.0 5.5 (3.0T)
GDCEP 10.2 9.4 1.1 5.9 (3.0T)
PEGa-GDCP 24.5 21.0 1.2 16.3 (3.0T) 2000 0.33
PEGb-GDCP 22.9 19.9 1.2 12.7 (3.0T) 2000 0.76
PEG2000-GDCP 37.7 28.5 1.3 8.7 (3.0T) 2000 1.2
PEG1000-GDCP 37.8 31.1 1.2 7.8 (3.0T) 1000 1.3
PEG550-GDCP 33.7 30.8 1.1 7.8 (3.0T) 550 1.3

Abbreviations: PEG, polyethylene glycol; GDCC, Gd-DTPA cystamine copolymer; GDCP, Gd-DTPA cystine copolymer; GDCEP, Gd-DTPA cystine diethyl ester
copolymer; Mw, averaged molecular weight; Mn, averaged molecular number.

Figure 3 Synthesis of the polydisulfide agent Gd-DTPA cystamine copolymers
(GDCC).
Abbreviations: DMSO, dimethyl sulfoxide; TEA, triethylanine.
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(MPEG-NH2) was attached to GDCP in the presence of a

coupling agent, 1-ethyl-3-(3-dimethylaminopropyl)

carbodiimide hydrochloride, in aqueous solution (Figure 4).

The grafting degree can be readily manipulated by altering

the ratio of mPEG-NH2 to GDCP. The modification

increases apparent molecular weights of the copolymers at

a low grafting degree depending on the size of PEG. Further

increase of grafting degree with PEG of the same size does

not further increase apparent molecular weight of the

copolymers.

The coordination feature of Gd(III) in the polydisulfide

complexes is the same as that in Gd-(DTPA-BMA), a clinical

MRI contrast agent. The Gd(III) is coordinated to 3 tertiary

amine nitrogen atoms, 3 carboxylic groups, and 2 carbonyl

groups of the amides of the DTPA bisamide. Gd-(DTPA-

BMA) is a nonionic agent and has low acute toxicity in

mice (LD50 = 14.8 mmol/kg ) because of high stability and

low transmetallation with Ca2+ (Cacheris et al 1990).

Relaxivity of polydisulfide Gd(III)
complexes
The paramagnetic chelates decrease both T1 and T2

relaxation times, or increase the relaxation rates of

surrounding water protons, resulting in increased signal

intensity in T1-weighted imaging and decreased signal

intensity in T2-weighted imaging. The chelates have a more

significant effect on the relaxation rate of water protons in

the coordination sphere of Gd(III) ions, less effect on water

molecules immediately surrounding the chelate, and little

direct effect on the bulk water molecules. Therefore, an

effective Gd(III) chelate contrast agent should have at least

one coordination site for water molecules. The complexed

water molecule rapidly exchanges with bulk water, resulting

in efficient relaxation of bulk water. The net change of the

relaxation rate of water protons depends on the concentration

of Gd(III) chelates and water exchange rate at the

coordination site. Relaxivity is the measurement of the

efficiency of a contrast agent to change the

relaxation rate and can be determined from the equation

(1/Ti)obs = (1/Ti)d + ri[Gd] (i = 1, 2), where (1/Ti)obs refers to

the measured relaxation rate, (1/Ti)d the relaxation rate

without a contrast agent, and ri the T1 or T2 relaxivity.

Gd(III) chelates are primarily used in T1-weighted,

contrast-enhanced MRI. High r1 of Gd(III) chelates will

result in strong relaxation or contrast enhancement.

Polydisulfide Gd(III) complexes have higher T1 relaxivity

than Gd-(DTPA-BMA) and the relaxivity varies based on

the structure of the complexes (Table 1). GDCC, GDCP,

and Gd-DTPA cystine diethyl ester copolymer (GDCEP)

have similar relaxivity in the range of 4.5–6.5 mM–1sec–1. It

appears that the degree of PEGylation in poly(ethylene

glycol) (PEG)-modified GDCP has a more significant

impact on its relaxivity than the PEG chain length. PEG-

GDCP copolymers with different PEG lengths have similar

relaxivity at the same grafting degree (Mohs et al 2005).

For PEG-GDCP copolymers with the same PEG length

(2000 Da), the increase of grafting degree significantly

decreases relaxivity. The T1 relaxivity of PEG2000-GDCP

with grafting ratios of 0.33, 0.76, and 1.2 mM–1s–1 decreases

from 16.3 to 12.7, and 8.73 mM–1s–1, respectively. A high

density of PEG on the backbones of the copolymers may

interfere with the interaction of water molecules to the

Gd(III) complexes because PEG can associate with water

molecules via hydrogen bonding (Mohs et al 2004).

Degradability of polydisulfide
Gd(III) complexes
Polydisulfide Gd(III) complexes with different structures

demonstrate different degradation characteristics in the

presence of cysteine. There was no degradation of GDCP

in the incubation with 15 µM cysteine for 6 hours at

pH 7.4 and 37 ºC. GDCC gradually degraded under the

same conditions and its molecular weight decreased

approximately 28%, 33%, and 50% at 5, 15, and 60 minutes

Figure 4 Synthesis of PEGylated Gd-DTPA cystine copolymer (GDCP).
Abbreviations: MPEG-NH2, monomethoxy-PEG amine; NHS, N-hydroxyl-
succinimide; EDC, 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide
hydrochloride.
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in the reaction (Lu et al 2004). The degradation of GDCEP

was relatively slow in the first 60 minutes of incubation

compared with GDCC, and its molecular weight decreased

approximately 6%, 11%, and 24% at 5, 15, and 60 minutes.

Both GDCC and GDCEP degraded into smaller oligomers

and complexes at 6 hours (Zong et al 2005). Figure 5 shows

size exclusion chromatograms of GDCEP in the incubation

with 15 µM cysteine at pH 7.4 and 37 ºC. All three

macromolecular agents degraded more rapidly at higher

cysteine concentration (150 µM) and completely degraded

into the smallest repeat units in the incubation with an excess

of cysteine, which was verified by mass spectrometry. GDCP

and GDCEP are more sterically hindered around the

disulfide bonds than GDCC, resulting in slower degradation.

GDCP also has negative charges around the disulfide bonds

at neutral pH, which further impede the access of the

negatively charged cysteine to the disulfide bonds (Hupe

and Wu 1980). Therefore, little reduction of the disulfide

bonds in GDCP occurs at low cysteine concentrations.

The modification of GDCP also resulted in macro-

molecular agents with different degradability based on the

length of PEG chains (Mohs et al 2004, 2005). The PEG-

modified GDCP was stable at low cysteine concentration

(circa 10 µM), similar to GDCP, and degraded with increased

cysteine concentration. It appears that GDCP modified with

short PEG chains degraded more rapidly than that with

long chains. The structural modification resulted in

macromolecular agents with different degradability towards

the disulfide-thiol exchange reaction, which may have

different pharmacokinetic properties and in vivo contrast

enhancement.

Pharmacokinetics and excretion of
polydisulfide Gd(III) complexes
Polydisulfide Gd(III) complexes should be able to circulate

in the vasculature for an acceptable time window for

effective contrast-enhanced MR imaging and then clear from

the body with minimal long-term tissue retention of toxic

Gd(III) ions. Pharmacokinetic data are the quantitative

measurement of the circulation, excretion, and retention of

the biodegradable macromolecular contrast agents in the

body. A pharmacokinetic study showed that the low-

molecular-weight agent Gd-(DTPA-BMA) rapidly extravasated

from the vasculature, while GDCC had a higher plasma

concentration in the first few minutes (approximately 5–15

minutes) post injection at the same dose (0.1 mmol-Gd/kg)

in rats (Figure 6). The size of the biodegradable macro-

molecular agent affected the initial plasma concentration

of the agent, but not the clearance from the vasculature.

GDCC with high molecular weight (Mw = 60 000 Da) had a

higher plasma concentration in the initial period (circa 5

minutes) after the injection than GDCC with low molecular

weight (Mw = 18 000 Da). The plasma concentration of

GDCC with both molecular weights reached the same level

at 20 minutes post injection. Because the breakdown of the

macromolecules is gradual, GDCC of the high molecular

weight may produce relatively large molecules and remain

in the blood at high concentration in the early stages of

degradation. The large molecules eventually degrade into

smaller complexes that are readily cleared via renal filtration.

Most of the degradation products were cleared in the

urine via renal glomerular filtration and more than 50% of

injected GDCC was excreted in the first 4 hours post-

Figure 6 Plasma pharmacokinetics of Gd(III) complexes in rats after
intravenous injection of Gd-(DTPA-BMA) ( ), GDCC-18 (18 kDa, ), and
GDCC-60 (60 kDa, ) at a dose of 0.1 mmol-Gd/kg
Abbreviations: GDCC, GD-DTPA cystamine copolymer.
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injection, similar to Gd-(DTPA-BMA). Consequently, rapid

degradation and excretion of GDCC resulted in minimal

retention of Gd(III) in the major organs and tissues 10 days

post-injection, which was at the same level as Gd-(DTPA-

BMA) (Wang et al 2005). The retention was much lower

than that of other macromolecular Gd(III) complexes. For

example, carboxymethyl hydroxyethyl starch-(Gd-DO3A)

still had approximately 47% of injected dose in the body of

experimental animals seven days after injection (Helbich el

al 2000).

The degradation products of GDCC in the urine samples

were identified as monomeric and oligomeric Gd(III)

complexes by mass spectrometry. It appears that the in vivo

degradation of the polydisulfide Gd(III) complexes was

more complicated than the simple disulfide-thiol exchange

reaction. Most of the Gd(III) complexes identified in the

mass spectra were further metabolized after the cleavage of

the disulfide bonds. The degradation products have a mass

higher than the molecular weight of Gd-DTPA

(Mw = 547.6 Da), the basic chelating unit of the agent,

suggesting that the agent was excreted as stable Gd(III)

chelates after degradation. These results have demonstrated

that the polydisulfide agents have a relatively long blood

circulation as macromolecules in the blood pool at the early

stage after injection and then degrade into smaller Gd(III)

complexes that excrete rapidly from the body.

In vivo MRI contrast enhancement
The polydisulfide Gd(III) complexes present superior

contrast enhancement in the cardiovascular systems and

tumor tissue compared with the low molecular-weight agent,

Gd-(DTPA-BMA), as shown in animal models. Figure 7

shows the 3D maximum-intensity-projection (MIP),

contrast-enhanced MR images of rats with Gd-(DTPA-

BMA) and GDCC with molecular weights of 18 000 and

60 000 Da (0.1 mmol-Gd/kg). GDCC of both molecular

weights resulted in strong contrast enhancement in rat heart

and vasculature at 2 minutes post injection and the signal

intensity gradually decreased. Gd-(DTPA-BMA) was

rapidly extravasated from the vasculature and the contrast

enhancement was much less at 2 minutes post-injection than

with GDCC. GDCC with higher molecular weight resulted

in more significant contrast enhancement in the small blood

vessels than GDCC with lower molecular weight. Strong

contrast enhancement was observed in rat kidneys and then

the urinary bladder with GDCC, indicating that the

biodegradable macromolecular agent was eliminated from

renal filtration and accumulated in the urinary bladder. The

contrast enhancement in the cardiovascular system returned

to background levels at 15 minutes post-injection while the

signal intensity in the bladder significantly increased.

Structural modification of polydisulfide agents altered

in vivo contrast enhancement. PEGylation of GDCP resulted

in more significant and prolonged contrast enhancement in

the blood pool than GDCP. Both grafting ratio and PEG

size have a significant impact on contrast enhancement

profile. PEG2000-GDCP at a grafting ratio of 0.76 produced

Figure 7 Three-dimensional maximum intensity projection (MIP) MR images of
rats before (a) and 2 (b), 5 (c), 10 (d), and 15 (e) minutes after intravenous
injection of Gd-(DTPA-BMA) (A), Gd-DTPA cystamine copolymer GDCC-18 (B),
and GDCC-60 (C) at a dose of 0.1 mmol-Gd/kg.

Figure 8 Coronal MR images of mouse hearts before (a) and 1 (b), 5 (c), 15 (d),
30 (e), and 60 minutes (f) post intravenous injection of PEGa-Gd-DTPA cystine
copolymer (GDCP) (A), PEGb-GDCP (B), GDCP (C), and DTPA-BMA (D).
Polymeric agents were given at a dose of 0.03 mmol/kg and DTPA-BMA was
given at the standard clinical dose of 0.1 mmol-Gd/kg.
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of tumor-bearing mice contrast enhanced with GDCEP

(0.1 mmol-Gd/kg) after the mice were treated for a period

of 21 days with saline, a cationic polymer, anti-VEGF

siRNA, and siRNA-polymer complex. Significant contrast

enhancement was observed in the tumor rim of the mice,

which clearly defined tumor size in the mice in different

treatment groups. Mice treated with the siRNA and siRNA-

polymer complexes had much smaller tumor sizes than mice

treated with saline and cationic polymers as shown by

contrast-enhanced MRI.

Conclusion
Polydisulfide Gd(III) chelates have been designed and

synthesized as extracellular biodegradable macromolecular

MRI contrast agents. The disulfide bonds in the polymer

Figure 9 Coronal MR images of mouse hearts before (a) and 2 (b), 5 (c), 15 (d),
30 (e), and 60 minutes (f) post intravenous injection of PEG2000-Gd-DTPA
cystine copolymer (GDCP) (A), PEG1000-GDCP (B), and PEG500-GDCP (C) at a
dose of 0.05 mmol-Gd/kg.

Figure 10 Coronal MR images of tumor-bearing mice before (a) and 5 (b),
15 (c), 30 (d), and 60 (e) minutes after intravenous injection of Gd-DTPA cystine
copolymer (A), Gd-DTPA cystine diethyl ester copolymer (B), Gd-DTPA
cystamine copolymer (C), and Gd-(DTPA-BMA) (D) at a dose of 0.1 mmol-Gd/kg.

stronger and longer contrast enhancement in the blood pool

than PEG2000-GDCP of a lower grafting ratio (0.33), even if

the latter had higher relaxivity (Mohs et al 2004). Both

agents were more effective in contrast-enhanced blood-pool

imaging than GDCP (Mw = 11 400 Da) (Figure 8). With

similar grafting ratios, PEG-GDCP with different PEG sizes

had similar contrast enhancement in the blood pool during

the initial period (2 minutes) post-injection, but the duration

of the contrast enhancement decreased with decreasing size

of PEG (Figure 9). PEG2000-GDCP resulted in more

sustained enhancement than PEG1000-GDCP, while PEG550-

GDCP had the least duration of enhancement.

In tumor MRI, the polydisulfide agents resulted in

significant contrast enhancement in the tumor periphery.

Figure 10 shows the coronal MR images of tumor tissue

contrast enhanced by GDCC, GDCP, GDCEP, and Gd-

(DTPA-BMA) in mice bearing MDA-MB-231 breast

carcinoma xenografts. The biodegradable macromolecular

agents produced more significant contrast enhancement in

the tumor periphery than Gd-(DTPA-BMA). The modified

agents GDCP and GDCEP resulted in more effective

contrast enhancement than GDCC. Contrast enhancement

in the tumor interstitium was less significant, possibly due

to high interstitial fluid pressure, collapsed blood vessels

forced by rapidly growing tumor tissue, and the formation

of necrotic tissue in solid tumor (Padera et al 2004).

The polydisulfide agents provided clear visualization of

the periphery and size of solid tumor, which could be useful

for the evaluation of tumor response to treatment. GDCEP

has been studied in the noninvasive evaluation of the

therapeutic response of solid tumor to an anti-VEGF siRNA

in mice bearing MDA MB-231 breast carcinoma xenografts

(Wang et al 2004). Figure 11 shows the coronal MR images
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chains can be readily cleaved by endogenous thiols into

small and excretable Gd(III) complexes. The degradability

of the polydisulfides can be altered by structural

modification of the agents to achieve different in vivo

properties. A pharmacokinetic and biodistribution study

demonstrated that GDCC has a relatively longer plasma

retention time for effective contrast-enhanced MRI and is

rapidly excreted as low molecular-weight Gd(III)

complexes, resulting in minimal long-term Gd(III) tissue

accumulation comparable to Gd(DTPA-BMA). The

structural modification of polydifulfide Gd(III) complexes

can result in biodegradable macromolecular contrast agents

with various enhancement profiles in the blood pool. The

agents are effective for cardiovascular and cancer MR

imaging. The polydisulfide Gd(III) complexes have a great

potential to be developed as safe, effective, biodegradable

macromolecular MRI contrast agents for clinical

applications.
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