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Abstract: It is fascinating to consider the analytical improvements that have occurred since 

glycated hemoglobin was first used in routine clinical laboratories for diabetes monitoring around 

1977; at that time methods displayed poor precision, there were no calibrators or material with 

assayed values for quality control purposes. This review outlines the major improvements in 

hemoglobin A
1c

 (HbA
1c

) measurement that have occurred since its introduction, and reflects on 

the increased importance of this hemoglobin fraction in the monitoring of glycemic control. 

The use of HbA
1c

 as a diagnostic tool is discussed in addition to its use in monitoring the patient 

with diabetes; the biochemistry of HbA
1c

 formation is described, and how these changes to the 

hemoglobin molecule have been used to develop methods to measure this fraction. Standard-

ization of HbA
1c

 is described in detail; the development of the IFCC Reference Measurement 

Procedure for HbA
1c

 has enabled global standardization to be achieved which has allowed global 

targets to be set for glycemic control and diagnosis. The importance of factors that may interfere 

in the measurement of HbA
1c

 are highlighted.

Keywords: glycated hemoglobin, HbA
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Introduction
Diabetes mellitus is one of the most common noncommunicable diseases globally, 

affecting an astounding 382 million people worldwide in 2013, and estimated to 

increase to 592 million by 2035. Predominantly, affected individuals are between the 

ages of 40–59 years and 80% of the affected population are in low- and middle-income 

countries. However, the number of individuals with type 2 diabetes continues to rise 

in every country.1

The Expert Committee on the Diagnosis and Classification of Diabetes Mellitus 

refers to diabetes mellitus as a group of metabolic disorders characterized by the 

presence of hyperglycemia due to defective insulin secretion, insulin action, or both.2 

Additionally, the World Health Organization (WHO) describes diabetes mellitus as a 

metabolic disorder with heterogeneous etiologies determined by chronic hyperglycemia 

and disturbance to carbohydrate, protein, and fat metabolism, which induces the risk 

of microvascular damage.3 The long-term complications of diabetes are extensive, 

with retinopathy leading to vision loss, nephropathy leading to chronic kidney disease, 

and peripheral neuropathy being the most common microvascular complications. In 

addition, cardiovascular disease, peripheral artery disease, and stroke are common 

macrovascular complications.

The American Diabetes Association further classifies diabetes mellitus into four 

categories: type 1, type 2, gestational, and other specific types.2 These classifications 
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replaced the outdated terms “insulin-dependent diabetes 

mellitus”, and “noninsulin-dependent diabetes mellitus”, 

which divided patients according to treatment rather than 

the etiology of their disease process. Type 1 diabetes mel-

litus is a disorder that arises from the destruction of the 

β-cells of the islets of Langerhans through autoimmune 

action or idiopathic mechanisms. The most common form 

of diabetes is type 2 diabetes mellitus, a heterogeneous 

group ranging from primarily insulin resistance and a rela-

tive lack of insulin action, through to a defect in secretion 

with concomitant insulin resistance. The other specific 

types include genetic defects, drug induced, infection 

related, endocrinopathies, and various others. Gestational 

diabetes is a carbohydrate intolerance resulting in hyperg-

lycemia of variable severity with onset or first recognition 

during pregnancy.4

Hemoglobin A1c (HbA1c)  
as a clinical tool
In 1969, Rahbar et al5 made the connection between elevated 

levels of HbA
1c

 and diabetes, and further studies investigated 

this link in a number of small patient cohorts.6,7 Early studies 

indicated that monitoring of HbA
1c

 levels allowed changes 

in therapy and subsequent reduction of measured HbA
1c

 

levels, but did not show that this improved patient outcome.8 

However, there was an evident lack of standardization in 

these studies, both in terms of analytical performance and 

clinical utility. There were no uniform HbA
1c

 target values 

for maintaining blood glucose control; accordingly, there 

was no consensus on whether strict glucose control was 

of benefit in improving patient outcomes. The increase 

in popularity of HbA
1c

 as a marker of glycemic control 

came with the publication of the Diabetes Control and 

Complications Trial (DCCT)9 and the UK Prospective 

Diabetes Study (UKPDS)10 studies. These large longitudinal 

studies, involving people with type 1 and type 2 diabetes, 

respectively, addressed the question of whether tight control 

of glucose levels in these patients resulted in a decrease in 

complication rates.

The DCCT study was a multicenter, randomized clinical 

trial involving 1,441 people with type 1 diabetes. The study 

was designed to assess if intensive therapy could be used to 

prevent or delay the progression of early vascular or neuro-

logical complications, using retinopathy as the primary study 

outcome. The treatment goal for the conventional therapy 

group was an absence of symptoms attributable to glycosuria 

or hyperglycemia, whereas the intensive therapy group targets 

were near-normal glucose levels.9 

The primary outcome measure of the study was a 

sustained change in levels of retinopathy; over the mean 

follow-up period of 6 years, the intensive therapy reduced 

the adjusted mean risk by 76% (P,0.001).9 

The Epidemiology of Diabetes Interventions and 

Complications (EDIC) study11 followed the patients enrolled 

in the DCCT study for a further 20 years with no attempt 

to formally continue the original therapy regimes of the 

DCCT study, although mean HbA
1c

 values have converged 

between the two groups as a result of the change in practice 

brought about by the results of the original trial. Data from 

the EDIC follow-on study showed that the reduction in 

risk for any fatal and nonfatal cardiovascular disease event 

(including confirmed angina, or the need for coronary artery 

revascularization) was 42% in intensive versus conventional 

treatment streams and 5% in fatal and nonfatal myocardial 

infarction and stroke.11

The UKPDS study recruited 3,867 newly diagnosed 

patients with type 2 diabetes who were randomized by weight, 

then into conventional and intensive therapy regimes.10 The 

conventional regime aimed to avoid marked hyperglycemia 

(fasting plasma glucose [FPG] .15 mmol/L and/or symp-

toms of hyperglycemia) and was primarily based on diet and 

lifestyle advice alone. The intensive therapy group aimed to 

achieve an FPG of ,6.0 mmol/L with treatment using insulin 

or sulfonylureas. Unlike the DCCT study, a target value of 

HbA
1c

 was not assigned in either of the therapy groups.

In regards to the study endpoints, the reduction in 

microvascular complications was the most significant, 

with a reduction of 25% in the intensive therapy group, 

predominantly attributable to retinopathy (two-stage progres-

sion of disease).10 

After the completion of the UKPDS, the patients contin-

ued to be monitored in a follow-up study to determine if there 

were longer-term effects of the therapy regimes.12 No attempt 

was made to maintain the initial therapy randomization; 

patients were returned to routine care with clinic follow-ups 

for the first 5 years and questionnaires for the following 

5 years. The between-group differences in HbA
1c

 levels 

were lost within the first year of follow-up, but, overall, the 

levels decreased over the time of the post-trial study. This 

may, in part, be due to the implementation of guidelines for 

stricter glycemic control in diabetic patients that arose as 

an outcome to the original study. Results of the follow-up 

showed a 24% risk reduction in microvascular complica-

tions, 15% risk reduction in myocardial infarction (MI), 

and 13% risk reduction for all-cause mortality. This risk 

reduction despite the loss in differences of HbA
1c

 has been 
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termed the “legacy effect”. When the relative risk profiles 

for micro- and macrovascular complications are compared, 

they show a significantly different profile; higher HbA
1c

 

values contribute to a greater proportional risk in cases of 

microvascular disease, but a wider range of HbA
1c

 (includ-

ing lower “nondiabetic”) values contribute to increased risk 

in macrovascular disease. The data from these two seminal 

trials showed that early, intensive therapy could significantly 

reduce the risk of a range of complications, even after the 

initial therapy has been discontinued. Accordingly, these 

studies permitted the establishment of precise target HbA
1c

 

values for treatment goals.

HbA1c as a diagnostic tool
An International Expert Committee, appointed by the 

American Diabetes Association (ADA), the International 

Diabetes Federation (IDF), and the European Association 

for the Study of Diabetes (EASD) published a report in 2009 

recommending the use of glycated hemoglobin (HbA
1c

) for 

the diagnosis of diabetes.13 HbA
1c

 reflects average plasma 

glucose over the previous 8–12 weeks, providing a precise and 

consistent indicator of circulatory glucose levels, allowing for 

accurate assessment of glycemic control as well as the poten-

tial to act as a diagnostic marker of type 2 diabetes. Based on 

the evidence that HbA
1c

 level correlates with adverse disease 

outcomes and the fact that HbA
1c

 targets are used for patient 

treatment, use of HbA
1c

 as a diagnostic tool seemed a logical 

progression. The committee proposed a diagnostic cut-off 

point of 48 mmol/mol (6.5%) HbA
1c

.13

In 2011, the WHO also endorsed the use of HbA
1c

 for 

the diagnosis of type 2 diabetes, stating that HbA
1c

 can be 

used as a diagnostic test provided the following conditions 

are met:

·	 Stringent quality assurance tests are in place

·	 Methods are standardized to the International Reference 

Measurement Procedure

·	 An HbA
1c

 cut point of 48 mmol/mol (6.5%) is recom-

mended for diagnosing diabetes.3

In addition the WHO suggest that a diagnosis of diabetes 

(when based on a glucose criteria) is not excluded if Hba
1c

 

is below 48 mmol/mol (6.5%).3

There are numerous advantages to HbA
1c

 compared 

to glucose testing: HbA
1c

 can be performed at any time 

throughout the day and does not require the patient to fast, 

and HbA
1c

 can avoid the day-to-day variability of glucose 

values, therefore making it the preferred diagnostic test.14–16 

There are, however, various limitations to the use of HbA
1c

 for 

the diagnosis of diabetes linked to several physiological and 

pathological conditions that influence HbA
1c

 concentration. 

HbA
1c

 cannot be used for the diagnosis of diabetes in 

children, for the diagnosis of gestational diabetes, or for 

type 1 diabetes.17 Additionally, HbA
1c

 should not be used for 

the diagnosis or monitoring of patients with diabetes with 

certain hemoglobinopathies or with disorders that affect red 

cell lifespan.18

Biochemistry of HbA1c
The International Federation of Clinical Chemistry and 

Laboratory Medicine (IFCC) committee on Nomenclature, 

Properties and Units defined HbA
1c

 as “Haemoglobin beta 

chain(Blood)-N-(1-deoxyfructos-1-yl)haemoglobin beta 

chain; substance fraction”.19

This definition describes HbA
1c

 as modified hemoglobin, 

with a stable adduct of glucose (covalently linked) to the N-ter-

minal valine of the β-chain. Normal adult hemoglobin consists 

predominantly of HbA (α
2
β

2
), HbA

2
 (α

2
δ

2
), and fetal hemoglo-

bin ([HbF] α
2
γ

2
) (97%, 2.5%, and 0.5% of total hemoglobin, 

respectively). About 6% of total HbA is termed HbA
1
, which 

in turn is made up of HbA
1a1

, HbA
1a2

, HbA
1b

, and HbA
1c

.20 

These fractions are defined by their electrophoretic and chro-

matographic properties, which differ slightly from those of the 

major component HbA
0
, despite the amino acid sequences of 

HbA
1
 and HbA

0
 being identical. HbA

1c
 is the most abundant 

of these minor fractions and comprises approximately 5% of 

the total HbA
1
 fraction. Structural and chemical investiga-

tions elucidated that glucose, in the open chain format, binds 

to the N-terminal to form an aldimine (Schiff base) before 

undergoing an Amadori rearrangement to form a more stable 

ketoamine.21–23 This is a nonenzymatic process that occurs 

continuously in vivo.24 Glycation of hemoglobin occurs pre-

dominantly between glucose and the N-terminal valine of the 

β-chain of hemoglobin to form HbA
1c

.25 In individuals with 

poorly controlled diabetes, the amounts of these glycated 

hemoglobins are greater than in the healthy population.

Methods of HbA1c analysis
The measurement of HbA

1c
 is based on changes that occur 

following glycation of the hemoglobin molecule; glycation of 

the N-terminal residue changes its structure and decreases the 

positive charge of HbA. Methods make use of this difference 

in charge between HbA
1c

 and HbA
0
, or the structural 

differences between glycated and nonglycated forms of 

hemoglobin. The slight difference in isoelectric point between 

HbA
1c

 and HbA
0
 allows them to be separated by charge, 

or the presence of the glucose adduct on HbA
1c

 allows for 

the separation by structural difference.26 Thus, methods of 
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HbA
1c

 analysis can be divided into two categories: methods 

based on the charge differences and methods based on the 

structural differences.

Methods based on charge differences
Cation-exchange chromatography
When glucose binds at the beta N-terminal valine of 

hemoglobin to form HbA
1c

, the hemoglobin molecule 

undergoes a conformational change that results in the mole

cule presenting with an extra negative charge. This results in 

HbA
1c

 and HbA
0
 having a subtle difference in their isoelectric 

points, allowing them to be separated on this basis.

Cation-exchange chromatography allows for the separation 

of hemoglobin species based on the difference in isoelectric point 

between HbA
1c

 and HbA
0
. Separation is achieved by utilizing 

differences in ionic interactions between the cation exchange 

group on the column resin surface and the hemoglobin com-

ponents in the sample. Ion-exchange chromatographic methods 

include procedures ranging from those that employ disposable 

microcolumns through to high-performance automated systems 

that also quantify several minor hemoglobin species.

Whole-blood samples are diluted with a hemolysis reagent 

to break open the red blood cells and release the hemoglobin 

for analysis. The hemolysate is then injected via an autosampler 

into the analytical column of known volume. A programmed 

buffer gradient of increasing ionic strength (the mobile phase) 

is delivered to the column and the hemoglobins are then sepa-

rated based on their ionic interactions with the column mate-

rial. The stationary phase surface displays negatively charged 

functional groups that interact with positively charged cations 

in the sample; physical characteristics such as surface charge, 

as well as the presence of hydrophilic and hydrophobic groups, 

determine the rate at which each hemoglobin species migrates 

through the column. More highly charged molecules are more 

tightly bound to the resin, and so travel slowly and are eluted 

later, moderately charged molecules equilibrate between the 

resin and the moving buffer more readily, and less charged 

molecules bind less strongly to the resin, equilibrate with 

the moving buffer more readily, and so travel rapidly and are 

eluted sooner. Upon elution from the column, the separated 

hemoglobins pass through the spectrophotometric detector at 

different rates where detection occurs via measured changes 

in the absorbance at a wavelength of 415 nm.

Capillary electrophoresis
Capillary electrophoresis uses the principle of liquid-

flow capillary electrophoresis in free solution. With this 

technique, charged molecules are separated by their 

electrophoretic mobility in an alkaline buffer with a specific 

pH. Separation also occurs according to the electrolyte pH 

and electro-osmotic flow. The separation of the different 

hemoglobin fractions takes place in silica capillary tubes of 

internal diameter ,25 µm, and the migration is performed at 

a high voltage (eg, 9,800 volts) under tight temperature con-

trol using a Peltier device. The high voltages allow for short 

run times and the high surface-to-volume ratio in the capillary 

tube allows for good dissipation of the heat generated. The 

hemoglobins are directly detected at a specific absorption 

wavelength of 415 nm at the cathodic end of the capillary 

using an optical detector. Current automated methods use 

a very small sample size and offer the potential for precise 

separation of different hemoglobin fractions.27

Methods based on structural differences
Immunoassay
The immunoassay technique is based on the binding of 

antibodies targeted against the β-N-terminal glycated 

tetrapeptide or hexapeptide group. Assay design is variable, 

but, in principle, an excess of antibodies, which bind 

specifically to HbA
1c

, is added to a hemolyzed sample. 

After binding to the HbA
1c

 the excess antibodies agglutinate 

and the resultant turbidity from the immunocomplexes is 

measured using a turbidimeter or nephelometer. In parallel, 

the total hemoglobin concentration is measured bichromati-

cally in the pre-incubation phase.28,29 There are a number 

of commercial assays that are applicable to a broad variety 

of general chemistry analyzers. Immunochemical assays 

are not affected by problems related to electrical charge 

and can be adapted easily for use in the routine medical 

laboratory. However, they all suffer with the general draw-

back of immunochemistry, ie, nonlinear calibration, which 

requires multilevel calibration. As stability of the reagent 

is limited (variably from test to test), relatively frequent 

recalibration is needed. Also, to quantitate HbA
1c

, as a ratio, 

total hemoglobin is measured separately, using a different 

analytical principle that introduces additional uncertainty 

to the outcome.

Affinity chromatography
Affinity chromatography is a separation method that uses a 

biologically/structurally related agent, or “affinity ligand”, 

as a stationary phase to selectively retain analytes or to 

study biological interactions. The affinity ligand can consist 

of a large variety of binding agents, for example, affin-

ity separation of glycated hemoglobin typically utilizes 

m-aminophenylboronic acid and depends on a specific 
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interaction between the glucose on glycated hemoglobin and 

the immobilized boronic acid.

A whole-blood sample hemolysate is applied to the 

affinity column and the glycated hemoglobin that contains 

coplanar cis-diol groups interacts strongly with boronic 

acid immobilized on an agarose gel. Ionic and hydrophobic 

forces also contribute to this interaction. The nonglycated 

hemoglobin elutes directly off the column with the first 

buffer. After elution of the nonglycated fraction, bound 

hemoglobin (the glycated fraction) can be dissociated by 

the use of a counter-ligand, which effectively competes 

with bound glycated hemoglobin for the boronic acid sites 

on the gel surface. The absorbance of each of the hemo-

globin fractions can be measured at 415 nm and the ratio 

determined. The results are expressed as a ratio of glycated 

to total hemoglobin.

Enzymatic assay
Enzymatic assays utilize proteases to cleave the β-chain 

of hemoglobin to liberate peptides that are then reacted 

in a two-step reaction to quantify HbA
1c

. After lysis, the 

whole-blood samples are subjected to extensive proteolytic 

digestion; this process releases amino acids, including gly-

cated valines, from the hemoglobin β-chains. In the direct 

enzymatic HbA
1c

 assay, glycated valines serve as substrates 

for a specific recombinant fructosyl valine oxidase enzyme. 

The recombinant fructosyl valine oxidase specifically cleaves 

N-terminal valines and produces hydrogen peroxide in the 

presence of selective agents. This, in turn, is measured using 

a horseradish peroxidase catalyzed reaction and a suitable 

chromagen. The signal produced in the reaction is used to 

directly report the %HbA
1c

 of the sample using a suitable lin-

ear calibration curve expressed in %HbA
1c

. Enzymatic assays 

include oxidizing agents in the lysis buffer that react with 

the whole-blood sample to eliminate low-molecular-weight 

and high-molecular-weight signal-interfering substances. 

In parallel, the total hemoglobin concentration is measured 

photometrically.30

Point-of-care testing  
(POCT) devices
The use of POCT has increased dramatically over recent 

years with the advantage of more timely availability of results 

and the subsequent expedient modification of therapy or 

interventions.31 There are several POCT devices available for 

the measurement of HbA
1c

 that are generally based on either 

affinity separation or immunoassay techniques. Performance 

of these analyzers is variable, with some performing as 

well as mainstream larger analyzers and some with poor 

performance. In a recent study, six out of eight POC devices 

tested did not meet accepted analytical performance criteria 

and all showed considerable variability depending on the 

reagent lot numbers used.32

Standardization of HbA1c analysis
The need for standardization
Early HbA

1c
 methods, which were introduced into routine 

practice in the late 1970s, produced significantly different 

results with between-laboratory coefficient of variation (CV) 

values of 11.2%–20.1% observed.33,34 The disparate results 

obtained were because of the range of methods being used 

by laboratories, the lack of standardization, and lack of a 

primary reference material. Although the new generation 

of HbA
1c

 methods now demonstrate a degree of preci-

sion that could not be imagined 30 years ago, comparison 

of results from different laboratories would remain, at 

best, difficult – or, more likely, impossible – if not for 

standardization schemes.

Harmonization
The publication of the DCCT accelerated the need for the 

standardization of HbA
1c

 methods in order to implement safe 

and accurate patient monitoring. Early nationally based sys-

tems include the National Glycohemoglobin Standardization 

Program (NGSP), the Japan Diabetes Society/Japanese 

Society for Clinical Chemistry program, and the Swedish 

standardization program. These national programs achieved 

HbA
1c

 harmonization but, due to the variety of approaches 

used, still yielded variable results.

IFCC standardization and Reference  
Measurement Procedure (RMP)
While these systems provide excellent harmonization of 

HbA
1c

 values, they cannot replace uniform worldwide 

standardization anchored on a metrologically sound 

international reference measurement system comprising:

•	 a clear definition of the analyte based on its molecular 

structure;

•	 a primary reference material containing the analyte in a 

pure form; and 

•	 a validated reference method that specifically measures 

the analyte in human samples.35

In 1995, the IFCC formed its Working Group on HbA
1c

 

Standardization with the objective to develop a reference mea-

surement system for the measurement of HbA
1c

 based on these 

metrological principles.36 The IFCC Working Group decided 
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to base the standardization of HbA
1c

 on the stable adduct 

of glucose to the N-terminal amino group of the β-chain of 

HbA
0
 (N-[1-deoxyfructosyl] hemoglobin). The rationale was 

that HbA
1c

 is biochemically well characterized; is the major 

form of glycated hemoglobin in human blood; and most of 

the commercial glycated hemoglobin tests claim to measure 

this fraction. Even affinity chromatography methods can be 

standardized against an HbA
1c

 comparison method since there 

is a close correlation between the total glycated hemoglobin 

measured by affinity chromatography and HbA
1c

.

The RMP is based on the enzymatic cleavage of the intact 

hemoglobin molecule with endoproteinase Glu-C to obtain 

the β-N-terminal hexapeptides of HbA
1c

 and HbA
0
 (thus 

avoiding the heterogeneity created by modifications of other 

glycation sites of the hemoglobin molecule). The peptides 

are then separated by reverse-phase high-performance liquid 

chromatography, and quantified by electrospray ionization 

mass spectrometry or by capillary electrophoresis. Both 

methods have been proven to be specific for the measured 

defined. The RMP is used to assign values to whole-blood 

panels that serve as calibrators for manufacturers. The 

manufacturers then subsequently use these to assign values 

to the calibrators provided in their kits, providing traceability 

from the patient sample back through the RMP to the defined 

pure materials.

There is no interference from abnormal hemoglobins such 

as sickle-cell hemoglobin (HbS) and HbC and no interference 

from acetylated or carbamylated hemoglobin. Importantly, 

both methods are linear in the clinically relevant concentra-

tion range from 27–97 mmol/mol (2.5%–11%) HbA
1c

.

International network  
of reference laboratories
The RMP is established in a network of 15 reference labo-

ratories located worldwide using either the electrospray 

ionization mass spectrometry or the capillary electro-

phoresis option. The purpose of this network is to assign 

values to a range of standard materials, including the blood 

panels used by manufacturers; the values are assigned 

to the material using the entire network of laboratories, 

rather than individual centers resulting in a very low level 

of uncertainty.

The International HbA1c Consensus  
Committee statement
In order to meet the criteria established by the WHO for the 

diagnosis of diabetes, patient samples should be measured 

using “assays [that] are standardized to criteria aligned 

to the international reference values”,3 which is only rep-

resented by the IFCC RMP. In addition to this, the IFCC 

recommends that the HbA
1c

 concentration of patients should 

be reported in units as per The International System of Units 

(SI). In order to corroborate this, in 2007, an International 

HbA
1c

 Consensus Committee was formed from members 

of the ADA, EASD, IDF, and the IFCC, which agreed a 

consensus statement, which was then updated in 2010.37,38 

The key points highlighted in the consensus statement 

included:

·	 Methods for the measurement of HbA
1c

 should be stan-

dardized to the IFCC Reference System, this is to ensure 

traceability to a defined reference material.

·	 HbA
1c

 values should be reported in SI (Système Interna

tional) units of mmol/mol and NGSP units (%) should be 

derived using the master equation for the two systems.

·	 In order to facilitate the move to SI units editors are 

strongly recommended to require that manuscripts present 

both units.

·	 HbA
1c

 is the term used to describe glycated hemoglobin 

(GHb) although A
1c

 may also be used in guidelines and 

educational materials.37,38

Master equations for the conversion between IFCC and 

NGSP units are as follows:

	 NGSP (%) =(0.0915 × IFCC [mmol/mol]) + 2.15.	 (1)

	 IFCC (mmol/mol) =(10.93 × NGSP [%]) - 23.50.	 (2)

Analytical goals for HbA1c analysis
In clinical practice, clinicians often consider a change 

in value of 5 mmol/mol (0.5%) in successive samples 

as a clinically significant change in the patient’s glyce-

mic control.39 Therefore, the within-laboratory (intra-

laboratory) CV of HbA
1c

 values should be ,3% (,2% 

with NGSP units). The overall between-laboratory (inter-

laboratory) CV should be ,5% (,3.5% with NGSP units) 

and the between-laboratory CV for the same method should 

be ,4.5% (,3% with NGSP units).40 The difference in 

values between the two units (SI and %) is due to the 

measurement of nonspecific interferences in the NGSP 

reference method.41

Analytical interferences  
of HbA1c testing
In certain situations in which hemoglobin variants or adducts 

(derivatives) are present, method-specific interferences may 

occur, and therefore HbA
1c

 could be unreliable. The most 
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HbA1c methodologies

Charge

Cationexchange
chromatography

Capillary
electrophoresis

Immunoassay

IFCC standardization

Affinity
chromatography Enzymatic assay

Structural

Figure 1 Overview of the different methodologies available for the measurement of HbA1c.
Abbreviations: HbA1c, hemoglobin A1c; IFCC, International Federation of Clinical Chemistry and Laboratory Medicine.

common analytical interferences are hemoglobin variants, 

elevated HbF, and hemoglobin adducts.42

Hemoglobin variants
The four most common hemoglobin variants worldwide 

are HbS (high prevalence in black Africans and Americans, 

Indians, and people of Mediterranean descent), HbE 

(Southeast Asians), HbC (black Africans and Americans), 

and HbD (globally distributed); each of these hemoglo-

bins has a single amino acid substitution in the β-chain.43 

These hemoglobin variants can interfere with HbA
1c

 

measurement in different ways depending on the technical 

features of the method used, independently of any effects 

caused by shortened erythrocyte survival.40 Approximately 

900 hemoglobin variants have been identified, many of which 

are clinically silent.29

With hemoglobin variants S, C, D, and E, the amino acid 

substitution results in an alteration of the net charge, which 

will cause interference with charge-based methods of HbA
1c

 

measurement.43 Thus, charge-based methods such as cation-

exchange chromatography and capillary electrophoresis are 

vulnerable to the effect of hemoglobin variants. Modern ana-

lyzers utilizing these methods can often indicate the presence 

of clinically silent hemoglobin variants from the abnormal 

peaks in the chromatograms, but some older-generation 

analyzers may lack the resolution required to differentiate 

between them.44 Inaccurate HbA
1c

 values can result when 

the variant hemoglobin, both glycated and nonglycated, 

cannot be separated from HbA or HbA
1c

; consequently, they 

co-elute or co-migrate with HbA
1c

, leading to a substantial 

overestimation of HbA
1c

.43

Hemoglobin variants may also affect methods based on 

structure, such as with immunoassay-based methods. Since 

these methods utilize antibodies that identify the N-terminal 

glycated amino acids in the first four to ten amino acids of 

the hemoglobin β-chain, any hemoglobin variants, such as 

HbS and HbC, with a mutation involving that particular 

epitope will interfere with HbA
1c

 measurement. In order to 

assess whether an individual analyzer is likely to be affected, 

readers are referred to the NGSP website, where a table of 

assay interferences details current knowledge covering a wide 

range of analyzers.45

An HbA
1c

 deviation of 10.9 mmol/mol (1%) reveals an 

approximate change of 1.4–1.9 mmol/L in average blood 

glucose concentration, therefore an inaccurate HbA
1c

 value 

due to a clinically silent hemoglobin variant can result in 

incorrect treatment for patients.46

HbF
Elevated HbF is another possible interference in the 

measurement of HbA
1c

. HbF contains two α-chains and 

two γ-chains and, in adults, the upper limit of normal is 
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Figure 2 Flow diagram of the IFCC Reference Measurement Procedure for HbA1c.
Abbreviations: CE, capillary electrophoresis; ESI-MS, electrospray ionization mass 
spectrometry; HbA1c, hemoglobin A1c; IFCC, International Federation of Clinical 
Chemistry and Laboratory Medicine; RP-HPLC, reverse-phase high-performance 
liquid chromatography; m/z, mass-to-charge ratio.

generally around 1%.43 An abnormal increase of HbF may 

occur due to pathologic conditions, such as thalassemia, 

sickle cell disease, leukemia, or a hereditary persistence of 

HbF. As HbF does not have β-chains and the γ-chain has a 

terminal glycine rather than a valine, it can only be glycated 

at lysine residues. Glycation of HbF is approximately one-

third that of HbA.

It is necessary to isolate HbF to reduce the risk of any 

possible interference of HbA
1c

 measurement.47 Currently, 

many of the ion-exchange high-performance liquid chro-

matography methods are able to separate normal level HbF, 

as well as elevated HbF, into a separate peak. Boronate affin-

ity methods, however, are affected by elevated HbF levels, 

as the method measures the ratio of glycated to nonglycated 

hemoglobin, irrespective of the hemoglobin structure, and 

elevated HbF can interfere with the measurement. Results 

may be falsely low due to a lower glycated rate for HbF than 

HbA and the concomitant elution of HbF in the nonglycated 

fraction. In addition, immunoassay results will be similarly 

affected with a decrease of approximately 7 mmol/mol for 

immunoassay and 10 mmol/mol for boronate affinity methods 

per 1% increase in HbF. This interference becomes significant 

at HbF levels exceeding 10%.29

Factors that affect the 
interpretation of HbA1c results
Carbamylation of hemoglobin
In addition to genetic variants, chemical modifications 

of hemoglobin may affect the measurement of HbA
1c

.48 

These modifications may lead to inaccurate HbA
1c

 results, 

particularly when charge-based methods of separation are 

used. The most common derivative is carbamylated hemo-

globin (carbamyl-Hb), which is elevated in uremic patients. 

Carbamyl-Hb has an isoelectric point similar to that of HbA
1c

 

and can therefore interfere with charge-based methods by 

co-eluting with HbA
1c

 and causing a false overestimation 

of HbA
1c

. In order to maintain accurate HbA
1c

 results, 

carbamyl-Hb must be sufficiently separated from HbA
1c

. 

Additionally, uremic patients are subject to factors that affect 

red cell turnover, such as shortened erythrocyte lifespan in 

hemodialysis patients, which will significantly affect the 

concentration of HbA
1c

. Most modern analyzers separate 

carbamyl-Hb sufficiently well to not cause a significant 

interference.

Acetylation of hemoglobin
Elevated concentrations of acetylated hemoglobin result from 

rare mutations at the NH
2
 terminus of the β-globin chain that 

causes an increase in formation of acetylated hemoglobin 

in vivo. Exposure of normal hemoglobin to aspirin may 

modify several sites, likely lysine residues on both the 

α- and β-chains of HbA. Acetylation of lysine residues with 

aspirin creates a negative charge on the modified protein. 

This modified hemoglobin has altered electrophoretic and 

chromatographic (ion-exchange) properties, causing it to 

migrate ahead of HbA
0
, like HbA

1
. Although there is in vitro 

evidence to show interference by acetylation, it is ambigu-

ous as to what degree this is a disruption in vivo and to what 

extent, if any, chronic use of aspirin may have an effect on 

HbA
1c

 measurement.49

Labile HbA
Another common derivative is pre-HbA

1c
, or labile HbA.29 

Labile HbA
1c

 is an intermediate in the synthesis of HbA
1c

 

and is characterized by the reversible binding of glucose to 

hemoglobin as a Schiff base.50 The quantity of labile HbA
1c

 

is fairly variable from one patient to another and its biologi-

cal variation correlates to fluctuating glycemic levels. The 

formation of labile HbA
1c

 (as well as the retro reaction back 

to hemoglobin and glucose) proceeds fast, and therefore a 

steady state is reached after a couple of hours. At glucose 

levels of 30 mmol/L, the level of labile HbA
1c

 is 3.5%.51 
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Therefore, sufficient removal of the labile fraction is vital 

for accurate HbA
1c

 measurement.

Reduced lifespan of red blood cells
The lifespan of erythrocytes is a key determinant of hemoglo-

bin concentration, and any condition that shortens erythrocyte 

survival or lowers mean erythrocyte age in patients, as well 

as hemolytic anemia or acute or chronic blood loss, will 

cause inaccurate HbA
1c

 results, regardless of the method 

used. Hemolytic anemia and, in particular, renal anemia can 

lead to HbA
1c

 values that are lower than expected because of 

reduced red cell survival.52,53 However, iron deficiency anemia 

can lead to an inappropriate rise in HbA
1c

, which may fall 

after iron replacement therapy.54,55

Jaundice and hyperlipidemia
Patient samples that are severely icteric may give falsely 

elevated HbA
1c

 values with methods relying on charge sepa-

ration if whole-blood hemolysates are used, since bilirubin 

migrates with the fast hemoglobin and absorbs at the detect-

ing wavelength. Additionally, hyperlipidemia can also cause 

false elevation of HbA
1c

 depending on the method; lipids elute 

in the first HbA
1c

 fraction and are absorbed at 415 nm.56

Vitamins C and E
Another situation in which HbA

1c
 test results may be affected 

is with the use of vitamins C and E, which are reported to, at 

times, underestimate HbA
1c

 values.40 Vitamins C and E may 

reduce the rate of glycation of hemoglobin; however, the 

amount to which this occurs with pharmacological doses is 

unknown. Several cross-sectional studies indicate that there 

is no significant relationship between vitamin C and E and 

HbA
1c

 when taken at a normal clinical dose.57

Aging, ethnicity, and sex
Aging and ethnicity can affect HbA

1c
 results: older non-

diabetic individuals seem to have higher HbA
1c

 values 

than younger people. A meta-analysis of data from the 

Framingham Offspring Study and the National Health and 

Nutrition Examination Survey showed that, in nondiabetic 

patients, there is an approximate increase of 7 mmol/mol 

HbA
1c

 (0.6%) between the ages of 40 and 70 years.58 This 

suggests that nonglycemic factors may contribute to the 

HbA
1c

–age relationship.

Additionally, HbA
1c

 appears to be higher by a similar 

margin in Afro-Caribbeans than in white Europeans and is 

not explained by differences in glycemia.59 In a meta-analysis 

of data from six different population studies,60 comparison 

of white, black African, and Indian populations displayed 

significant differences in correlation between diagnosis with 

HbA
1c

 $48 mmol/mol and oral glucose tolerance tests. In 

two of the three white populations, over 90% of those with 

a diagnosis of diabetes by oral glucose tolerance test would 

also have an HbA
1c

 $48 mmol/mol, but this fell to 50% and 

62% in black African and Indian populations, respectively. 

The reasons for these differences in ethnicity are still rela-

tively unclear, and, although there are no current guidelines 

on interpretation of HbA
1c

 values in relation to race or ethnic-

ity, the evidence suggests that this is an area that warrants 

further investigation.

Although there is no difference in mean HbA
1c

 values 

between males and females, the intraindividual variation is 

greater in females than in males; however, the difference does 

not appear to be significant.14

Conclusion
The science of HbA

1c
 measurement has progressed in huge 

leaps since its first inception and, through the efforts of the 

IFCC, NGSP, and instrument manufacturers, improvements 

are continually being made. It is important from a global 

perspective to strive toward unified standardization of 

measurements and reporting of HbA
1c

 values to enable safe 

and effective patient care. The IFCC RMP represents the 

only valid anchor, and all manufacturers should align to 

this system. Users should be encouraged to ensure that the 

analytical instruments they are using for patient care are 

IFCC-aligned, especially if being used for the diagnosis of 

diabetes.
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