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Abstract: Gliclazide (G) is an antidiabetic drug commonly used in type 2 diabetes. It has 

extrapancreatic hypoglycemic effects, which makes it a good candidate in type 1 diabetes (T1D). 

In previous studies, we have shown that a gliclazide-bile acid mixture exerted a hypoglycemic 

effect in a rat model of T1D. We have also shown that a gliclazide-deoxycholic acid (G-DCA) 

mixture resulted in better G permeation in vivo, but did not produce a hypoglycemic effect. In 

this study, we aimed to develop a novel microencapsulated formulation of G-DCA with uni-

form structure, which has the potential to enhance G pharmacokinetic and pharmacodynamic 

effects in our rat model of T1D. We also aimed to examine the effect that DCA will have when 

formulated with our new G microcapsules, in terms of morphology, structure, and excipients’ 

compatibility. Microencapsulation was carried out using the Büchi-based microencapsulating 

system developed in our laboratory. Using sodium alginate (SA) polymer, both formulations 

were prepared: G-SA (control) at a ratio of 1:30, and G-DCA-SA (test) at a ratio of 1:3:30. 

Complete characterization of microcapsules was carried out. The new G-DCA-SA formulation 

was further optimized by the addition of DCA, exhibiting pseudoplastic-thixotropic rheologi-

cal characteristics. The size of microcapsules remained similar after DCA addition, and these 

microcapsules showed no chemical interactions between the excipients. This was supported 

further by the spectral and microscopy studies, suggesting microcapsule stability. The new 

microencapsulated formulation has good structural properties and may be useful for the oral 

delivery of G in T1D.

Keywords: type 2 diabetes, bile acids, gliclazide, polymer

Introduction
Diabetes mellitus is a metabolic disorder classified as type 1 diabetes (T1D) or type 2 

diabetes (T2D). T1D is an early-onset autoimmune disease marked by the destruction 

of β-cells of the pancreas, resulting in a partial or complete lack of insulin production 

and the inability of the body to control glucose homeostasis.1 T2D is a metabolic 

disorder with later onset and is most common in the overweight population.2 T2D is 

caused by genetic and environmental factors, with recent studies showing that loss of 

function gene variants in GPR120 have a strong association with increased risk of T2D 

complications.3,4 Gliclazide (G) is an antidiabetic drug used in T2D to enhance insulin 

secretion, and has beneficial extrapancreatic effects that render it potentially useful 

in T1D.5 In general, controlled absorption of G from the gut is required in order to 

prevent sharp fluctuations in the blood glucose levels after food intake. About 30% of 

a G dose undergoes enterohepatic recirculation, which may contribute to the observed 

high bioavailability, but also high interindividual variability in its absorption after an 
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oral dose.6 Thus, bile acids (BAs) may play an important role 

in enhancing G ileal absorption and optimize its efficacy and 

safety profiles.

BAs are known to act as permeation enhancers for 

antidiabetic drugs through the ileal mucosa and through the 

blood–brain barrier.7,8 BAs have also shown potential health 

benefits in diabetes treatment through their endocrinological, 

metabolic, energy expenditure, and other known and 

unknown effects.9,10 Combining BAs with G is anticipated 

to optimize G’s antidiabetic effect. Our studies have shown 

the significant antidiabetic effects of the combination in a rat 

model of T1D.8,11 One of the potential applications of BAs 

on G is through enhancing its permeation. A recent study in 

our laboratory has demonstrated that the BA, deoxycholic 

acid (DCA), enhanced G permeation through the blood–brain 

barrier in T1D rats.8 In order to design this microencapsulated 

formulation of gliclazide-deoxycholic acid-sodium alginate 

(G-DCA-SA), a suitable polymer is needed.

Commonly used polymers in drug microencapsulation 

technology include sodium alignate (SA), chitosan, and 

pectin.12 They are biocompatible and present no signs of 

clinical toxicity.12 SA is the salt of alginic acid, a natural 

polysaccharide derived from seaweed, and consisting of 

variable percentages of (1–4)-linked β-d-mannuronic acid 

and α-l-guluronic acid residues.13 In order to design a novel 

microencapsulated formulation that targets the lower intes-

tine, low-viscosity SA (LVSA) is a good choice.14,15

This study aimed to design a novel G-DCA-SA micro-

encapsulated formulation, using LVSA, that is uniform, bio-

compatible, and thermally stable and which has the potential 

for optimized G delivery.

Materials and methods
Materials
G (99.92%), LVSA (99%), and DCA (99%) were purchased 

from Sigma-Aldrich Co (St Louis, MO, USA). Calcium 

chloride dihydrate ([CaCl
2
 ⋅ 2H

2
O] 98%) was obtained from 

Scharlab SL (Barcelona, Spain). All solvents and reagents 

were supplied by Merck (Darmstadt, Germany), and were of 

high-performance liquid chromatography (HPLC) grade and 

used without further purification.

Drug preparation
Stock suspensions of G (20 mg/mL) and DCA (1 mg/mL) 

were prepared by adding the powder to 10% Ultra-soluble 

gel of 100 mL HPLC water. The CaCl
2
 stock solution (2%) 

was prepared by adding CaCl
2
 powder to HPLC water. All 

preparations were mixed thoroughly at room temperature for 

4 hours, stored in the refrigerator, and used within 48 hours 

of preparation.

Preparation of microcapsules
Microcapsules of G-loaded LVSA were prepared using a Büchi-

based microencapsulating system that operates through jet-flow 

microencapsulation. Parameters were set in a frequency range 

of 1,000–1,500 Hz and a constant flow rate of 4 mL/min. Poly-

mer solutions containing SA and G with or without DCA were 

made up to a final concentration (of G-DCA-SA) in a ratio of 

1:3:30, respectively.16,17 This ratio was based on our previously 

published work and was found to exhibit maximum consistency 

and best morphology.18 Two formulations were prepared, one 

with G (1 mg/mL) in SA solution (30 mg/mL) and the other 

with G (1 mg/mL), and DCA (3 mg/mL). Microcapsules 

were collected from our microencapsulating system and, for 

each formulation, three independent batches were prepared 

and tested separately (n=3). All microcapsules (G-loaded 

and G-DCA-SA-loaded microcapsules) were prepared and 

treated in the exact same way. Microencapsulation efficiency 

was calculated as a percentage based on the total amount of G 

recovered, divided by total G used.

Characterization of loaded microcapsules
Morphology, size analysis, and chemical 
characterization of microcapsules
All microcapsules were freshly made, stored in the refrigera-

tor, and used within 48 hours of preparation. The appearance 

and size of microcapsules were examined using light micros-

copy followed by scanning electron microscopy (SEM) and 

energy dispersive X-ray (EDXR) spectrometry. The particle 

size distribution and mean particle size diameter were cal-

culated using SmartSEM V05.03NV software (Carl Zeiss 

AG, Jena, Germany).

SEM and EDXR spectroscopy
The surface morphology of the microcapsules was examined 

using SEM (Zeiss Neon 40EsB FIBSEM; Carl Zeiss AG) with 

0.8 nm calibrated resolution. The chemical characterization of 

the microcapsules was examined using EDXR (AztecEnergy 

EDS Analysis Software, Oxford Instruments, Oxfordshire, 

UK). Electron micrographs of G and G-DCA-SA microcap-

sules were obtained using SEM, and their chemical char-

acterization was obtained using EDXR. The samples were 

mounted on a glass stub with double-sided adhesive tape 

and coated under vacuum with platinum (5 nm) in an argon 

atmosphere prior to examination. Micrographs with different 

magnifications were recorded to study the morphological 
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and surface characteristics of the microcapsules. Multiple 

images at various scales and angles were taken, and those 

that best captured the details of the surface morphological 

changes were used.

Determination of dispersing  
media viscosity
Fifteen milliliter aliquots (n=3) of both preparations (G-SA 

and G-DCA-SA) were taken from freshly prepared solutions, 

and the viscosity was measured at room temperature using a 

Visco 88 viscometer (Malvern Instruments Limited, Malvern, 

UK). The temperature remained constant at 23°C throughout 

the experiment (monitored by the Visco 88).

Differential scanning calorimetry  
(DSC) analysis
DSC thermograms of G, DCA, and LVSA powders, their 

physical mixture, and their microencapsulated formulations 

were carried out on a DSC instrument (DSC 8000; Perkin

Elmer Inc., Waltham, MA, USA). Five milligram samples 

were placed in sealed aluminum pans and heated at 20°C/

min under a nitrogen atmosphere (flow rate 30 mL/min) in 

the 35°C–240°C range. An empty aluminum pan was used 

as a reference. The equipment was calibrated for baseline 

and temperature with zinc metal.

Fourier transform infrared  
spectroscopy (FTIR) studies
FTIR spectra of the pure components, their physical mixture, 

and the microcapsules were recorded via an attenuated total 

reflectance FTIR spectrometer (Spectrum Two™; PerkinElmer), 

and infrared measurements were performed in transmission in 

the scanning range of 450–4,000 cm−1 at room temperature. The 

same G to SA and G to DCA to SA ratios as those analytically 

determined in the microcapsules were used for preparing the 

different physical mixtures that served as controls.

Results and discussion
Morphology, size analysis, and chemical  
characterization of microcapsules
Microcapsules were obtained using LVSA polymer, G, and 

DCA at a constant ratio of 30:1:3, respectively. Using our 

microencapsulation system, we were able to form microcap-

sules of a similar size. The mean diameters ranged from 1,000 

to 1,150 µm for all batches of both formulations. The mean 

particle size was not significantly affected by the presence of 

DCA (Figure 1). Microencapsulation efficiency remained simi-

lar, at 93%±5% for G-SA and 90%±7% for G-DCA-SA.

SEM
SEM studies of a G-SA microcapsule (Figure 2) and 

G-DCA-SA microcapsules (Figure 3) represent randomly 

selected microcapsules from a few freshly made batches. 

SEM results show microcapsules of consistent uniformity 

and well-defined spherical shapes. G-SA microcapsules 

(Figure 2) appeared slightly larger in size than the  

G-DCA-SA microcapsules (Figure 3). The microcapsule size 

difference between different formulations was not statistically 

significant. Due to the high-resolution images, we were able 

to conclude that the surfaces of the microcapsules were rough 

but consistent from one microcapsule to another in the sample 

used for all analyzed batches (Figures 2B–D and 3B–D). 

48.09 µm

1,006.30 µm

64.69 µm

95.16 µm

93.14 µm

1,141.81 µm
1,040.21 µmA B

1,064.09 µm

Figure 1 G-SA microcapsules (A) and G-DCA-SA microcapsules (B).
Abbreviations: G-DCA-SA, gliclazide-deoxycholic acid-sodium alginate; G-SA, gliclazide-sodium alginate.
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These high-resolution images also revealed ridges on the 

surface of the microcapsules with small crystal depositions. 

The small crystals distributed throughout the microcapsule 

surfaces were believed to be sodium chloride (NaCl), which 

was confirmed by EDXR spectroscopy studies, as discussed 

below (Figures 4 and 5).

EDXR spectroscopy
In order to further analyze the composition of the micro-

capsule surface for the G-DCA-SA formulation, EDXR 

was used to identify the various surface crystal depositions 

and microcapsule composition including, various ions 

present on the surface of the microcapsules. Analysis of 

200 µm

10 µm

EHT =3.00 kv Signal A=SE2 Aperture size =30.00 µm

WD =20.0 mm

EHT =3.00 kv Signal A=SE2 Aperture size =30.00 µm

WD =10.0 mm

EHT =3.00 kv Signal A=SE2 Aperture size =30.00 µm

WD =10.0 mm

EHT =3.00 kv Signal A=SE2 Aperture size =30.00 µm

WD =10.0 mm

1 µm

10 µm

A B

C D

Figure 2 Scanning electron micrographs of gliclazide-sodium alginate microcapsules.
Notes: 200 µm scale (A). Surface morphology at 1 µm scale (B) and 10 µm scale (C and D).

200 µm EHT =5.00 kv Signal A=SE2 Aperture size =30.00 µm

WD =5.0 mm

1 µm EHT =5.00 kv Signal A=SE2 Aperture size =30.00 µm

WD =5.0 mm

20 µm EHT =5.00 kv Signal A=SE2 Aperture size =30.00 µm

WD =5.0 mm

10 µm EHT =5.00 kv Signal A=SE2 Aperture size=30.00 µm

WD =5.0 mm

A B

C D

Figure 3 Scanning electron micrographs of gliclazide-deoxycholic acid-sodium alginate microcapsules at various angles.
Notes: 200 µm scale (A). Surface morphology at 1 µm scale (B), 10 µm scale (C), and 20 µm scale (D).
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crystal depositions on the microcapsule surfaces (Figure 5) 

revealed high levels of Na and Cl ions, confirming that 

there were small crystals of NaCl on the surface of 

G-DCA-SA microcapsules; this was expected, given 

sodium chloride is a by-product of the ionic-gelation 

methodology of microcapsule production.16,19,20 Both 

formulations showed high levels of sulfur, oxygen, and 

carbon, confirming the presence of G within the polymer 

matrix for the formulation, although carbon and oxygen 

are also common to DCA and SA. As for the microcapsule 

surface composition, EDXR revealed high levels of cal-

cium, carbon, and oxygen, which were expected, given the 

microcapsule wall structure and DCA-reinforced calcium 

alginate matrix system.

Figure 4 Energy-dispersive X-ray spectra of the gliclazide-sodium alginate microcapsules.
Notes: Drug composition (A) and surface composition (B), with corresponding analysis (C and D). 1 in (A), and 2 in (B) represent the sites where EDXR spectroscopy 
analyses were undertaken.
Abbreviation: EDXR, energy dispersive X-ray.
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0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 0

O

Cl

DC

A

1

2

B

Ca

100 µm100 µm

Na

Cl

Cl

Ca

Ca

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
keV keV

Figure 5 Energy-dispersive X-ray spectra of the gliclazide-deoxycholic acid-sodium alginate microcapsules.
Notes: Drug composition (A) and surface composition (B), with corresponding analysis (C and D). 1 in (A), and 2 in (B) represent the sites where EDXR spectroscopy 
analyses were undertaken.
Abbreviation: EDXR, energy dispersive X-ray.
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The EDXR assessment of G-SA microcapsules is shown 

in Figure 4, which reveals the surface where analyses were 

done. Figure 4A shows the core of the G-SA microcapsule 

with the corresponding EDXR spectrum (Figure 4C). The 

spectrum shows a high concentration of the sulfur (S) atom, 

unique to the drug G, as no other excipient in the formulation 

contained S atoms. The spectrum also reveals high concen-

trations of calcium (Ca) and oxygen (O), which are likely to 

correspond to the surrounding calcium alginate membrane. 

Figure 4B, on the other hand, is an analysis of the surface, 

with the corresponding EDXR spectrum shown in Figure 4D. 

Figure 4D shows predominant Ca and O activity correspond-

ing to the general surface composition, with some S detected, 

likely due to the deposition of small drug crystals nearby 

or to the penetration of electron rays in the membrane deep 

enough to detect the encapsulated drug.

An example of an EDXR assessment of G-DCA-SA 

microcapsules is shown in Figure 5A, with the respective 

spectrum of the microcapsule surface. In Figure 5C, the 

microcapsule surfaces were not perfectly homogenous, thus 

varying crystal depositions could occur at selected sites 

across the microcapsule surface. Figure 5A exemplifies the 

core of the G-DCA-SA microcapsules, and Figure 5C shows 

a high concentration of S atoms, which is expected from G 

molecules. Figure 5B illustrates the surface surrounding 

the drug in the G-DCA-SA microcapsules, and Figure 5D 

shows a high concentration of Cl and Ca atoms, which are 

expected to adhere to the surface of the microcapsules. These 

atoms derive from the used vehicle carrying the formed 

microcapsules (CaCl
2
). Furthermore, Figure 5C and D 

show the chemical characteristics of the microcapsules, 

with dominant ions (Na, O, Ca, and Cl) that are expected 

for typical G-DCA-SA microcapsules prepared via ionic-

gelation methodology.

Viscosity of the microencapsulated  
formulation
Table 1 shows the viscosity, shear rate, shear stress, and torque 

force for all microencapsulated formulations under various 

speeds (20, 35, 61, 107, 187, 327, 572, and 1,000 rpm). The 

G-SA formulation was more viscous, but both formulations 

behaved as almost non-Newtonian fluids under shear stress. 

Thus, and as anticipated from our previous studies, both 

formulations behave as thixotropic non-Newtonian fluids 

under increasing stress, as evidenced by parallel reduc-

tions in their apparent viscosity.16,17 Further evidence of the 

thixotropic-pseudoplastic behavior of both formulations can 

be seen in the proportional increases in torque and shear rate 

following rising shear stress forces and associated decrease 

in the viscosity, characteristic of non-Newtonian fluid, and 

thixotropic behavior of the polymer.21–27 The application of 

the stirring rod in the solutions at increasing speeds resulted 

in the solutions forming rapid circular motions away from the 

site of centripetal force origin, suggesting that both formula-

tions also behaved in a non-Weissenberg fashion.27,28

Thermal analysis of the microcapsules
DSC is an important technology for the thermal character-

ization of various materials. DSC establishes a connection 

between temperature and specific physical properties of 

substances, such as crystallization and melting tem-

perature. It is commonly used to determine the enthalpy 

Table 1 Viscosities and related parameters of both microencapsulated formulations: G-SA and G-DCA-SA (n=3)

Formula code Setting Speed  
(rpm)

Viscosity  
(mPa⋅s)

Shear rate  
(s-1)

Torque  
(mN⋅m)

Shear stress  
(Pa)

G-SA 1 20 UD UD UD UD
2 35 UD UD UD UD
3 61 UD UD UD UD
4 107 37±0.35 124.9±0.1 0.17±0.01 4.6±0.04
5 187 34±0.34 221.8±0.25 0.28±0.03 7.7±0.01
6 327 30±0.3 385.1±0.4 0.43±0.05 11.6±0.04
7 572 26±0.26 680.5±0.7 0.64±0.04 17.3±0.02
8 1,000 21±0.2 1,194±1 0.93±0.06 25.4±0.06

G-DCA-SA 1 20 UD UD UD UD
2 35 UD UD UD UD
3 61 UD UD UD UD
4 107 UD UD UD UD
5 187 24±0.24 221.9±0.3 0.19±0.02 5.1±0.05
6 327 23±0.22 385.3±0.5 0.34±0.04 9.1±0.03
7 572 21±0.21 680.8±0.7 0.60±0.04 16.2±0.06
8 1,000 20±0.2 1,195±2 0.97±0.1 26.4±0.03

Abbreviations: G-DCA-SA, gliclazide-deoxycholic acid-sodium alginate; G-SA, gliclazide-sodium alginate; UD, undetected (below the instrument limit of detection).
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associated with the process of microencapsulation.29 In  

microencapsulation, DSC measures how physical properties 

of G and DCA molecules change, along with temperature 

against time.30,31 This occurs through determining the 

temperature and heat flow (35°C–240°C) associated with 

G transitions as a function of time. DSC spectra were ana-

lyzed for G powder (Figure 6A), DCA powder (Figure 6B), 

SA powder (Figure 6C), G-DCA-SA powder (Figure 6D),  

G-SA  microcapsules (Figure  6E), and G-DCA-SA 

microcapsules (Figure 6F).

DSC analysis of DCA powder (Figure 6B) showed a 

small peak at 178°C, indicative of a DCA melting point. 

A similar peak at 179°C was clearly observed with G analysis 

(Figure 6A), which is indicative of its melting point. The 

DSC analysis of DCA and G microcapsules (Figure 6F) 

showed transparent and interference-free integration of two 

predominant peaks - one corresponding to G, and the other 

a slight shift to the right when compared to individual DCA 

and SA powders, which could represent possible chemical 

interactions between SA and DCA in the microcapsule 

matrix, alterations in the crystallinity of DCA and SA within 

the temperature range used for analysis, or polymorphism 

leading to an endothermic shift to the right.32,33

As for the G-SA microcapsule (Figure 6E) analysis, 

there was a very similar graph with two prominent peaks – 

one representing G (160°C), and the other the SA powder 

(193°C), and could represent plasticization of the polymer.34 

SA powder (Figure 6C) showed a significant peak at 200°C, 

indicative of the endothermic thermal behavior of the 

polymer and in line with the SA peak observed at 200°C  

in G-DCA-SA microcapsules (Figure 6F).35 G was not 

chemically modified or did not participate in any significant 

reaction, as evidenced by endothermic peaks characteristic 

of the drug following analysis of the microcapsules.36,37 This 

was confirmed by the combined powders of G, DCA, and SA 

(Figure 6D), which showed two peaks representing the G and 

SA peaks, which was a slight shift from the original G peak, 

thus suggesting that there were no significant chemical inter-

actions occurring between DCA, G, and SA in the powder 

form. However, there remains the possibility of G and DCA 
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Figure 6 Differential scanning calorimetry thermograms of G powder (A), DCA powder (B), SA powder (C), G-DCA-SA powder (D), G-SA microcapsules (E), and G-DCA-
SA microcapsules (F).
Abbreviations: DCA, deoxycholic acid; G-DCA-SA, gliclazide-deoxycholic acid-sodium alginate; G-SA, gliclazide-sodium alginate; SA, sodium alginate; G, gliclazide.

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Drug Design, Development and Therapy 2014:8submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

1010

Mooranian et al

peaks overlapping. Overall, this indicates good stability of G 

and DCA in the formulated microcapsules. Interestingly, the 

DCA peak (Figure 6B) noted in the DCA individual powder 

did not appear in the G-DCA-SA powder mixture of the 

combined powders (Figure 6D). This may be due to a shift 

in the thermal capacity within the 35°C–240°C range, or to 

interactions or potential crystallinity.30,37 The DCA peak was 

also absent in the G-DCA-SA microcapsules, possibly due to 

DCA formulated in the combined G-DCA-SA microcapsules 

existing in an amorphous or disordered crystalline phase as 

well as a solid state solution (Figure 6F).37

The shift in the thermal profile of G in the microencap-

sulation form (Figure 6E) suggests that the drug solubilizes 

in the polymer matrix via ionic interactions, while no 

significant chemical reaction takes place between G or any 

of the formulation excipients, as shown by FTIR studies 

(Figure 7) and previous in vivo and ex vivo work in our 

laboratory.14,34,38–40 Comparing all peaks, G does not appar-

ently participate in significant crosslinking reactions, and 

retains its chemical integrity during the microencapsulation 

process, as evidenced by FTIR studies.

FTIR spectral studies
The FTIR spectra were used to confirm the chemical com-

patibility of G with the SA polymer and DCA in the micro-

encapsulation formulation. FTIR spectra were analyzed 

for G powder (Figure 7A), DCA powder (Figure 7B), SA 

powder (Figure 7C), G-DCA-SA powder (Figure 7D), G-SA 
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Figure 7 Fourier transform infrared spectra of G powder (A), DCA powder (B), SA powder (C), G-DCA-SA powder (D), G-SA microcapsules (E), and G-DCA-SA 
microcapsules (F).
Abbreviations: DCA, deoxycholic acid; G-DCA-SA, gliclazide-deoxycholic acid-sodium alginate; G-SA, gliclazide-sodium alginate; SA, sodium alginate; G, gliclazide; T, transmittance.
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microcapsules (Figure 7E), and G-DCA-SA microcapsules 

(Figure 7F).

The spectrum of G-SA for the C=O band in carbonyl 

group shows a sharp peak at 1,707 cm−1 (Figure 7A), which 

was consistent across both microencapsulated formula-

tions (Figure 7E and F) and powder mixture (Figure 7D). 

Again, for the S=O band in sulfonamide, the G-SA spectra 

show peaks at 1,161 cm−1, and for the amino group, peaks 

of 3,260 cm−1 in the microcapsules and powder mixture. 

For DCA powder (Figure 7B), the spectrum is in line with 

previously published work.41 In G-DCA-SA microcapsules 

(Figure 7F) and G-DCA-SA powder (Figure 7D), there 

was a small shift of the G peak to the right (1,603 cm−1). 

This may be due to the dilution of DCA concentration 

in the mixture, or may occur during the microencapsula-

tion process. The more likely reason is the dilution of the 

powder in the G-DCA-SA mixture, which is in line with 

the thermal analysis above (Figure 6D). In addition, the 

FTIR spectrum of SA powder (Figure 7C) is consistent 

with the literature;42 however, the spectra of G-DCA-SA 

microcapsules and G-DCA-SA powder mixture seem to be 

weaker and seem to display less bond-peak activity.43 This 

may be due to the dilution of the sample, which is consis-

tent with the thermal analysis of the G-DCA-SA powder 

mixture (Figure 7D). Overall, FTIR spectra of G suggest 

that microencapsulation of G with SA and DCA does not 

significantly compromise the chemical composition and 

structural integrity of the G molecules, as no significant 

chemical reaction occurred between the drug and any of 

the formulation excipients.

Conclusion
Microencapsulation of G and DCA is a novel and viable 

technique that is useful for targeted drug delivery. The new 

formulation designed in this study displays appropriate 

excipient compatibility and structural morphology with 

thixotropic-pseudoplastic behavior. This microencapsulated 

formulation is expected to ensure adequate encapsulation of 

labile compounds, such as primary BAs, which seem benefi-

cial in conjunction with G, in diabetes treatment. Along with 

the use of microencapsulation, DCA will play a crucial role 

in optimizing G absorption in the ileum, which will help to 

further increase its antidiabetic effect. However, more work 

is needed to better evaluate the drug release profile from the 

microcapsules. The authors’ future study aims at investigat-

ing the release kinetics of the formulation in various pH and 

temperature values and establishing its targeted delivery 

characteristics, which is anticipated to have significant impact 

on future in vivo studies.
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