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Abstract: Various criteria are necessary to assess the efficacy and safety of biological 

 medications in order to grant companies the right to register these medications with the 

appropriate bodies that regulate their sale. The imminent expiration of the patents on reference 

biological products which block the cytokine TNF-α (tumor necrosis factor-α) raises the pos-

sibility of bringing so-called biosimilars to the market (similar to the biologicals of reference 

products). This occurrence is inevitable, but criteria to adequately evaluate these medications 

are now needed. Even among controversy, there is a demand from publications correlating the 

pro-apoptotic mechanism of the original TNF-α antagonists (etanercept, infliximab, adalimumab, 

golimumab, and certolizumab pegol) in the treatment of rheumatoid arthritis and other diseases. 

In this article, the authors discuss the possibility of utilizing the pro-apoptotic effect correlated 

with the regulation of the anti-apoptotic proteins FLIP and NF-κB as new criteria for analyzing 

the pharmacodynamics of possible biosimilar TNF-α antagonists which should be submitted to 

regulatory agencies for evaluation.
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Introduction
In the mid-80s and the early 90s Tumor necrosis factor-alpha (TNF-α), a soluble or 

transmembranal cytokine, became a promising candidate for the treatment of rheu-

matoid arthritis (RA).1 A direct relation was determined between this cytokine and 

pro-inflammatory signaling, which results in the migration of immune system cells 

to the synovial region, producing chronic synovial inflammation, bone erosion, and 

cartilage damage.2

Preclinical and clinical studies show that blocking the cytokine TNF-α reduced not only 

the inflammation of RA, but also the progression of intestinal inflammation  characteristic 

of Crohn’s Disease (CD).3–5 As a result, the industry proposed development of medica-

tions which function as TNF-α antagonists. Now these biologicals, which belong to the 

class of disease-modifying anti-rheumatic drugs (DMARDs), are part of the therapeutic 

arsenal against RA and spondyloarthritis. Currently, the main TNF-α antagonists available 

are etanercept (ENBREL®; Amgen and Wyeth, Thousand Oask, CA, USA), infliximab 

(REMICADE®; Janssen Biotech, Mitsubishi Tanabe Pharma and Merck & Co, Inc., 

Whitehouse Station, NJ, USA), adalimumab (HUMIRA®; Abbott Laboratories, Abbott 

Park, IL, USA), certolizumab pegol (CIMZIA®; Union chimique belge, Brussels, Belgium) 

and golimumab (SIMPONI®; Centocor Ortho Biotech Inc., Horsham, PA, USA).6

Due to the expiration of the patents on TNF-α antagonist medications, an 

 opportunity has arisen for various manufacturers to produce so-called biosimilar 
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versions of these molecules. These are, in theory, similar 

to the standard biopharmaceuticals, but not identical. In 

order to protect consumers from possible damage caused by 

these copies, strong criteria are required for analyzing these 

molecules and conducting studies that demonstrate their 

effectiveness and safety.

Assessing the bioequivalence and biocomparability of 

a protein produced by two different manufacturers can be a 

challenge for regulating agencies. The criteria for analyzing 

each case are crucial to the perceived efficacy and safety of 

the medication.7

Currently, various clinical and non-clinical assessments 

are used to evaluate the efficacy of these TNF-α blockers. 

While the mechanism by which TNF-α antagonists act is 

not yet completely clear, there are studies correlating these 

 medications with the occurrence of cellular apoptosis. The 

action of these antagonists with receptors of cell death prohib-

its the expression of some anti-apoptotic proteins in RA.

Most notable among these inhibitory proteins is FLIP 

(FLICE-like inhibitory protein, where FLICE is a FADD-

like interleukin-1 beta-converting enzyme, FADD is a Fas-

associated death domain protein and Fas is a death receptor 

[also known as CD95 and APO-1]). FLIP is a protein which 

inhibits caspase-8, impeding the uptake of this caspase for 

the death-inducing signaling complex (DISC) and thereby 

inhibiting apoptosis. Another important inhibitory protein, 

NF-κB (nuclear factor kappa-light-chain- enhancer of activated 

B-cells), promotes the expression of anti-apoptotic genes, 

resulting in the production of the proteins TRAF1, TRAF2, 

cIAP-1, cIAP2 and FLIPL.8–10

A potential correlation between the apoptotic mechanisms 

of the TNF-α antagonists which are already on the market 

and their respective biosimilars would allow the criteria for 

evaluating the copies to be expanded. In the meantime, as 

will be discussed in this article, apoptosis may have distinct 

repercussions on each TNF-α antagonist under various 

experimental conditions.

The objective of this article is to discuss the importance 

of the apoptosis mechanism and of the proteins FLIP and 

NF-κB as criteria for analyzing the pharmacodynamics of 

possible biosimilar TNF-α antagonists.

Biosimilars: perspectives  
and methods of registration
It is well-known that biological medications are tested more 

often (eg, preclinical studies and clinical trials) than chemi-

cal medications (produced by chemical synthesis). These 

molecules are more complex because they are produced 

by biotechnological processes based on living organisms. 

The majority are proteins with high molecular weights, 

unstable, and are more likely to cause adverse immunologi-

cal reactions.11 The complexity is such that the same protein 

produced by one particular company may have structural 

variations from one batch to the next.

After a patent expires, specific information such as 

the production line, and principally, the master cell line 

are the exclusive property of the company that holds the 

 patent.  Consequently, it is impossible to consider biological 

 medications as “generics”, but instead “biosimilars” which 

are similar in structure, functionality, efficacy, and safety to 

the patented medications.

The need for and importance of these two classes of 

 medication are indisputable. The original or reference biolog-

icals are the trailblazers of innovation in the  pharmaceutical 

industry which should be constant. Yet, at the same time, 

biosimilars are a path to high-quality treatment at a low cost 

in order to increase the access to biologics, especially in 

developing countries.12

A reference biological, as a rule, undergoes strict 

assessment. Its eff icacy and safety are demonstrated 

in a full dossier that contains preclinical tests such as 

 molecular quality,  pharmacokinetics (absorption, distribu-

tion, biotransformation and excretion), pharmacodynam-

ics  (mechanism of drug action), and acute and chronic 

toxicity studies in animals in the first stage. In the next 

step, phase I, II, III, and IV clinical trials are conducted; 

immunogenicity and clinical safety are assessed, and a phar-

macovigilance plan is developed.13,14

In terms of biocomparability, evaluation criteria should 

establish the correlation, within an acceptable margin, between 

quality, safety, and efficacy in order to demonstrate the similar-

ity between a reference molecule and a biosimilar.

The US Food and Drug Administration (FDA) and the 

 European Medicines Agency (EMA) have determined the fol-

lowing basic regulatory principles for approval of  biosimilar 

molecules: a dossier describing the manufacture and quality 

of the molecule, preclinical studies, clinical studies, and 

immunogenicity and pharmacovigilance studies.15,16

The planning of clinical studies to detect differences 

between the reference molecule and the biosimilar is a 

 crucial factor in measuring comparability, especially studies 

of equivalency and non-inferiority.17

Among the variables explored by comparability  studies, 

the pharmacodynamics of the reference molecule are 

 important in evaluating similarity; as a result, it is necessary 

to understand the mechanism of action.
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In the context of TNF-α antagonists, the basic 

 pharmacodynamics are characterized by the neutralization 

of soluble or transmembranal TNF, which results in the 

anti-inflammatory action that demonstrates the benefits of 

this treatment. The interaction between these biologicals 

and the complement system is also assessed, by  recognition 

of the Fc portion (fragment crystallizable, in the cases of 

the monoclonal antibodies infliximab, adalimumab and 

golimumab).

The increase in apoptosis in RA and CD correlated 

with inhibition of FLIP and NF-κB proteins in RA can be 

 considered as criteria for defining comparability studies 

between the reference molecule and its biosimilar. This 

proposal is based on references in the literature which 

affirm that apoptotic action can be a specific effect of some 

TNF-α antagonists, and its possible means of action could 

be through neutralization of FLIP and NF-κB proteins by a 

reverse signal.3,15–21

TNF-α antagonists and apoptosis
To better understand the process which results in apoptosis, 

Micheau and Tschopp22 described the two main pathways for 

the occurrence of cellular death or survival (Figure 1).

During the inflammatory response, the cytokine TNF-α 

can act by means of binding to transmembranal TNFR1 and 

2 receptors in some cells in the immune system, transmit-

ting survival signals (apoptosis inhibitors), the route of 

inflammation, and routes promoting mitosis. As a result, it 

is well-known that in RA, low levels of cellular apoptosis 

occur in the joints and synovial fluid.23 Studies reveal that 

the interaction of soluble TNF-α is more accentuated with 

TNFR2 which, more than TNFR1, possesses an ambiguous 

characteristic24 (Figure 1), activating the apoptosis pathway 

or activating the cellular survival pathway depending on 

the external signal, on the adaptation proteins present in 

the cytosol, and on other factors which have not yet been 

determined.25

During the past decade, various studies related to 

TNF-α antagonists demonstrated that the use of etaner-

cept, infliximab, adalimumab and certolizumab pegol not 

only reduces serum levels of TNF-α, the immune response 

promoter, but also promotes the death of some inflamma-

tory cells. This death occurs by reactivation of the apoptotic 

pathway, providing greater efficacy in treatment. However, 

each TNF-α antagonist responds differently with relation 

to apoptosis. Table 1 shows the specifics of each TNF-α 
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inhibitor, highlighting the potential of each to promote  

cellular apoptosis.

Lügering et al21 in turn have identified a possible relation 

between the action of infliximab on cellular apoptosis in 

patients suffering from CD. They observed that 4 hours after 

administration of infliximab, monocyte apoptosis occurred, 

as determined by assessing the activation of caspases 8, 9, 

and 3, which act independently of signaling from CD95/95L 

(CD95 and ligand) receptors.

Di Sabatino et al43 conducted experiments in which they 

administered infliximab to patients with CD. The patients 

received the medication over 10 weeks at a concentration 

of 5 mg/kg. After treatment, it was verified that infliximab 

promoted apoptosis by increasing the susceptibility of lamina 

propria cells to peripheral blood T-cells. In in vivo and in 

vitro studies, the results also indicated that the mechanism 

of apoptosis is initiated by dependent caspase and not by the 

interaction receptor Fas-Fas in CD.

Ohshima et al44 assessed the action of TNF-α antagonists 

based on studies of treatment of synovial hyperplasia (an 

event characteristic of RA). The authors demonstrated that 

treatment can promote the reactivation of CD95 receptors 

(death receptors), which are crucial in the apoptotic process 

as they facilitate cellular apoptosis.

The authors demonstrated that the chimeric monoclo-

nal antibody (infliximab) activated another death pathway 

through other receptors such as TNFR1. Meusch et al45 

studied the blocking of TNF-α expression and of cellular 

apoptosis by means of TNF-α antagonists in in vitro studies 

using samples of peripheral blood monocytes taken from 

patients with RA. They demonstrated a significant increase 

in cellular apoptosis, reduction of TNF-α, and a possible 

drug intervention by means of interaction with the TNFR 

receptors.

Clinical tests of infliximab and etanercept in patients 

with CD demonstrated that these molecules can attach 

to the transmembranal TNF (tmTNF) of some inflam-

matory cells, mainly in monocytes found in tissue and 

synovial fluid. After attaching, they transmit an intracel-

lular signal; apoptosis is one of the possible results of this 

interaction.46,47

Pattacini et al48 also demonstrated the correlation between 

the effectiveness of TNF-α antagonists and apoptosis and 

concluded that etanercept has a stronger pro-apoptotic 

effect. In vitro experiments were conducted, in which TNF-α 

antagonists were administered into cells cultured from 

fibroblasts (synovioctyes) and peripheral blood monocytes 

collected from patients with RA. The results demonstrated 

activation of cellular apoptosis in these cell types, which are 

crucial in the progression of RA.

Catrina et al20 evaluated patients with RA with regards 

to the relation between the TNF-α antagonists etanercept 

and infliximab and apoptosis. The authors concluded that 

these medications promote an increase in apoptosis in CD14 

cells such as macrophages, dendritic cells and synovial fluid 

mononuclear cells (SFMCs). Furthermore, they stated that 

the possible cause of apoptosis could be due to the regula-

tion of the proteins FLIP and NF-κB.8 However, it was 

stressed that etanercept does not induce apoptosis in lym-

phocytes, only in macrophages. In other studies, high doses 

of infliximab promoted apoptosis in both lymphocytes and 

macrophages, but doses of 3 mg/kg resulted in the decrease 

of macrophages only.49

Shen et al37 in turn concluded that adalimumab and 

infliximab affect the production of monocyte cytokines 

and induce apoptosis in activated monocytes. It was also 

demonstrated that adalimumab can activate the caspase 3 

pathway, resulting in a higher level of cellular apoptosis in 

treated chimeric rats. The results finally show that cellular 

apoptosis can be blocked by the pan-caspase inhibitor, assur-

ing that adalimumab’s apoptosis mechanism is independent 

of caspase.

Herman et al50 verified the pro-apoptotic action of TNF-α 

antagonists in a clinical study. Fifteen patients with RA 

were administered TNF-α antagonists together with metho-

trexate, 20 patients received only methotrexate, and eleven 

patients did not receive any treatment. A significant increase 

in cellular apoptosis in T-helper 1 and T-helper 2 (Th1/Th2) 

lymphocytes was noted; this amplif ied inflammation, 

resulting in significant reduction of joint inflammation and 

restoration of the balance of Th1/Th2 lymphocytes.

Experiments conducted by Aravena et al51 demonstrated 

that treatment with the TNF-α antagonist adalimumab over a 

period of 16 weeks in patients with RA promoted a population 

balance of the CD4 Th 1, and Th 17 lymphocytes population. 

There was also a reduction in secretion of interferon gamma 

(IFN-γ) by CD8, indicating that it is not apoptosis itself that 

promotes reduction of the inflammatory process, but instead 

the apoptosis of specific cells which play an important role 

in the process of chronic inflammation.

The important connection between the Fc fragment of 

the monoclonal antibodies infliximab, adalimumab and 

golimumab and the cellular depletion pathways has also 

been determined. It has been proposed that there is a certain 

dependence on this fragment in the pro-apoptotic process of 

these molecules. The exception is golimumab, which despite 
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possessing the Fc fragment has not yet shown a relationship 

with the apoptotic process.52 These data have been confirmed 

by Bourne et al,41 who have proposed the hypothesis that 

apoptosis is not a clinically effective action in CD, consider-

ing that etanercept promotes apoptosis but is not effective in 

treating CD. While certolizumab pegol does not have Fc, it 

does not promote apoptosis, but is effective in the treatment 

of CD. Yet etanercept, even with Fc, does not promote the 

activation of the complement system,53 and certolizumab 

pegol promoted apoptosis in a study by Atreya et al.19 As a 

result, dependency on the Fc fragment in this mechanism is 

questionable.

Van den Brande et al,40 in turn, stressed that etaner-

cept did not induce apoptosis in in vitro experiments with 

T lymphocytes in patients with CD. In another study, Fries 

et al54 administered etanercept and infliximab to rats with 

colitis and determined that both of these TNF-α antagonists 

reduced the population of enterocytes by apoptosis, probably 

as a result of the reduction of circulating TNF-α.

In a recent study, Eder et al55 demonstrated in an in vitro 

study with mononuclears and enterocytes of patients with 

CD, that infliximab and adalimumab exert a pro-apoptotic 

influence, producing an increase in the pro-apoptotic proteins 

Bax/Bcl-2 which assist in the process of apoptosis. The 

authors also stress that the efficiency of the TNF-α antagonist 

depends, at least in part, on this process. This study corrobo-

rates data from Van den Brande et al.40 There are drawbacks 

to the use of apoptosis such as clinical effectiveness of TNF-α 

antagonists in CD and in RA, but certainly the pharmacody-

namics of TNF-α antagonists carry out apoptosis.

It should also be taken into account that the in vitro 

studies with RA and CD obtained more favorable results in 

comparing the action of TNF-α antagonists to the apoptotic 

mechanism. Nevertheless, Makrygiannakis and Catrina18 

do not consider apoptosis as a criteria for the clinical 

 effectiveness of TNF-α antagonists in RA, as all antagonists 

have similar efficacy but different apoptotic effects. This 

shows that in theory, apoptosis is not fundamental to the 

treatment of RA, but is a criteria for extrapolation of treat-

ment and certainly for the pharmacodynamics of TNF 

antagonists. There are still many doubts and questions to be 

discussed in order to define apoptosis as a clinically effective 

treatment process; for this reason, more studies should be 

conducted in this area.

The pro-apoptotic effect, in the context of treating chronic 

inflammation, is not restricted to only TNF-α antagonists. 

Some non-biological medications classified as DMARDS 

promote apoptosis in specific cells by modulating actions 

on the expression of anti-apoptotic proteins such as FLIP, 

families of X-linked inhibitor of apoptosis protein (XIAP), 

inhibitors, execution caspases, and  survivins. According to 

Smith et al,56 elevated levels of FLIP, XIAP, and survivins 

were detected in samples taken from patients with RA. 

However, 6 weeks after beginning treatment with DMARDS, 

analysis showed that the levels of these inhibitors fell steeply, 

causing a substantial increase in apoptosis in synovial cells. 

Other studies showed the pro-apoptotic action of DMARDS 

(non-biologicals) such as sulfasalazine,57 and hydroxichlo-

roquine.58 Methotrexate, which in many cases is used in 

conjunction with TNF-α antagonists, and cyclophosphamide 

also promote cellular apoptosis in activated T CD4 and CD8 

cells, but not in resting cells, through CD95 sensitivity.59,60

Research on the pro-apoptotic effect of TNF-α  antagonists 

heavily focuses on RA and CD, but there are also studies with 

psoriatic arthritis (PsA) and psoriasis (Ps).61,62

FLIP and NF-kB proteins
Among the various possible routes, one probable pathway for 

the pro-apoptotic action of TNF-α antagonists in RA could 

be related to the inhibited expression of FLIP and NF-κB 

proteins, which are abundant in RA and fundamental to the 

process of inflammation.

Perlman et al63 have investigated the relation between 

FLIP in monocytes treated with lipopolysaccharide (LPS) 

and TNF-α. The authors showed that there was a significant 

increase in the expression of FLIP and a reduction in the 

expression of Fas-FasL (Fas and ligand), protecting the 

monocytes from apoptosis.

Further, they stated that after blocking FLIP through 

specific oligonucleotides, there was subsequently a return of 

sensitivity to apoptosis in the monocytes. The authors  propose 

that the action of LPS and TNF-α in reducing  apoptosis is 

associated with the FLIP protein.

Palao et al64 demonstrated that low regulation of the 

FLIP protein strongly affects the population of synovial 

 fibroblasts through apoptosis, mediated by Fas receptors. 

They  suggest the existence of a reverse pro-apoptotic signal 

after the inhibition of FLIP. Schedel et al65 also propose that 

the expression of FLIP in the synovial tissue in RA is related 

to the accumulation of inflammatory cells, indicating that 

FLIP may potentially be responsible for the extension of 

the life of synovial cells, and accordingly may contribute 

to the progression of articular damage. To arrive at this 

 conclusion, the expression of mRNA for synthesizing the 

FLIP protein was analyzed in five samples of synovial 

tissue from patients with RA, two samples from patients 
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with osteoarthritis (OA), and two samples from healthy 

volunteers. At the end of the study, the expression of mRNA 

was observed only in the tissue samples from patients with 

RA and OA, and was not detected in the samples from 

healthy volunteers; this  demonstrated a relevant connection 

between the apoptotic action of the FLIP protein with the 

progression of RA.

Wu et al,66 in analyzing eleven samples from patients with 

juvenile idiopathic arthritis (JIA) and three samples from 

healthy volunteers using the RC-PCR technique (reverse 

transcriptase polymerase chain reaction), verified that in all 

patient samples the expression of mRNA FLIP was pres-

ent, while in the normal samples there was no considerable 

expression. This demonstrated that an elevated incidence of 

this protein could promote a longer life for synovial cells, 

boosting inflammation.

Elevated levels of FLIP are directly related to the 

expression of NF-κB9 characterized by a protein com-

plex which acts as a transcription factor in B-cells as 

RA progresses.67 A common characteristic of RA is 

the activation of NF-κB68 which functions to transcribe 

 pro-inflammatory genes in immune responses, cellular 

growth and development processes, protecting monocytes 

and macrophages from apoptosis. In this way the reduc-

tion of NF-κB can consequently promote apoptosis in 

macrophages and in  monocytes after treatment with TNF-α 

antagonists.69 Blocking NF-κB in RA synovial fluid cells 

lowered regulation of the FLIP-L genes,70  suggesting 

that reverse signaling could also promote apoptosis with 

dependent caspase.

There is evidence that pro-inflammatory cytokines such as 

TNF-α and IL-1 work by activating NF-κB  dependent path-

ways which play an important role in synovial  proliferation, 

leukocyte infiltration, and the synthesis of other pro-

 inflammatory mediators.71,72

The moment at which FLIP and NF-κB, as key factors 

in the pathology of RA, approach and encounter the pro-

apoptotic mechanism of TNF-α antagonists is described by 

Makrygiannakis and Catrina.18 They stress that the modula-

tion of NF-κB promotes the reduction in expression of FLIP, 
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Figure 2 Reverse signaling in the pharmacodynamics of TNF-α antagonists promotes apoptosis.
Notes: The TNF-α antagonists may interact with the transmembranal receptor TNFR2, promoting a reverse signal which blocks the NF-κB pathway, resulting in the 
blockage of FLiP. in this way caspase 8 is activated to unlock the caspase 3 cascade which initiates apoptosis. Furthermore, there is the pro-apoptotic signal from the 
mitochondrial pathway, where the reverse signal activates the p53 protein; this protein recruits proapoptotic proteins such as bcl-2 which interact with cytochrome C, which 
in turn form the apoptosome, resulting in the activation of caspase 3. The Smac-DiABLO protein blocks the anti-apoptotic protein iAP, allowing the activation of caspase 3, 
causing apoptosis. Reprinted with permission from The Journal of Rheumatology. MAKRYGiANNAKiS, D. et al J Rheumatol. 2012;39(4).18
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after utilization of the TNF-α antagonists, resulting in a 

reverse signal, which culminates in apoptosis (Figure 2). They 

also describe the possible relationship between the reverse 

signal and the modulation in expression of p53 (tumor sup-

pressing protein) and pro-apoptotic proteins, such as Bcl-2 

and cytochrome C, for the formation of the  apoptosome and 

activation of apoptosis.

Conclusion
In the context of studies comparing a reference molecule 

and a biosimilar, certainly the individual data regarding 

the  promotion of apoptosis by etanercept, infliximab, 

 adalimumab and certolizumab pegol (to a lesser extent), 

should be taken into consideration. However, there is a need 

to standardize experiments, keeping in mind that in the 

literature, the pro-apoptotic action of the antagonists varies 

in accordance with various factors such as the quantity of 

the biological administered, the length of treatment, and the 

type of disease. In this way, a more accurate analysis with 

regards to the apoptotic mechanism can be considered, as one 

of the main apoptosis pathways used by TNF-α antagonists is 

dependent on caspase 3, which in turn is strongly influenced 

by FLIP (expressed by NF-κB), the suppressor of caspase 8 

(activator of caspase 3). The reverse signal promoted by the 

TNF-α antagonists could be an action mechanism that should 

be explored in comparability studies in the context of RA.

As the costs of biosimilar medications drop, there 

is an overall expectation, especially from governmental 

organizations in many countries, that there will be an increase 

in prescriptions of these medications compared to the refer-

ence biologicals. Nevertheless, it should be stressed that proof 

of the efficacy and safety of biosimilars is the sine qua non 

condition for their use and sale.
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