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Background: The purpose of this study was to examine retinal recovery processes  

topographically by the application of three flash sequences with specific interstimulus 

intervals.

Methods: Twelve healthy subjects underwent multifocal electroretinography with a light-

emitting diode stimulator. Every flash sequence consisted of three flashes with  25  msec 

between the first and the second flash and 35 msec between the second and the third flash. The 

interval between the third and the first flash of the next step was 85 msec. The interstimulus 

interval-dependent amplitude reductions of the multifocal electroretinographic response for 

these three intervals yielded three data points that were used to determine the complete curve 

of the recovery kinetics.

Results: Amplitude reductions were higher with shorter interstimulus intervals. The mean 

half-life periods of the recovery kinetics for the different concentric rings and all subjects were: 

ring 1, 29.3±5.9 msec; ring 2, 24.2±6.4 msec; ring 3, 23±4.1 msec; ring 4, 23.1±4.6 msec; and 

ring 5, 22.3±4.4 msec. The differences between the first and all other rings were statistically 

significant (P0.05).

Conclusion: The kinetics of the amplitude recovery after short interstimulus intervals showed 

a spatial distribution, with faster recovery toward the macular periphery.

Keywords: multifocal, electroretinography, recovery, LED stimulator, interstimulus interval

Introduction
Responses on electroretinography (ERG) show diminished amplitudes when preceded 

by a sufficiently short time lag after a first response. The amplitude reduction increases 

with shortening of the interstimulus interval (ISI).1,2 Full recovery of the true scotopic 

rod-dependent response requires an ISI of at least several seconds depending on the 

stimulus conditions.2,3 The recovery of the cone-dependent system can be studied in 

detail under photopic conditions using a very short ISI; for example, Skrandies and Raile 

described a recovery of photopic ERG amplitudes earlier than 100 msec.4 Applying 

this knowledge to the clinical diagnosis of retinal pathology, a topographical analysis 

of retinal recovery processes would be helpful, firstly to determine if there are local 

differences in amplitude recovery across the retina, and secondly to test if specific 

retinal pathologies lead to locally detectable disturbances in amplitude recovery. The 

multifocal ERG technique, which enables topographical analysis of central retinal 

function, uses cathode ray tube or liquid crystal display monitors with fixed frame 

frequencies for stimulation. The rigid default frame length does not allow stimula-

tion settings that would make it possible to estimate amplitude recovery kinetics in a 

detailed manner. Light-emitting diode (LED) stimulators have been used previously 

to record multifocal ERGs, and can be driven with variable frame rates and generate 

dark and bright steps of the desired duration.5 The aim of this study was to examine the 
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topography of retinal refractory processes using multifocal 

ERG with LED stimulation.

Materials and methods
The photopic response amplitudes of the second flash after 

a short ISI have recovery kinetics that can be described by 

an exponential function with saturation after an ISI of suf-

ficient length.4 To determine and describe the characteristics 

of such kinetics without needing to test a multitude of dif-

ferent ISI, we used a model proposed by Bartz-Schmidt et 

al for scotopic Ganzfeld ERGs.6 The retina is stimulated 

with a triple-flash procedure, whereby the first flash is fol-

lowed by a second flash after a short ISI of 25 msec, fol-

lowed by a third flash after a medium ISI of 35 msec, and 

the first flash comes after a sufficient duration to stimulate a 

maximal amplitude of 85 msec. Based on the data for these  

three ISI and corresponding amplitudes, and using the above-

mentioned mathematical model to determine the function of 

the amplitude recovery kinetics, the half-life of the function  

was calculated using Origin  6.0  software (OriginLab  

Corporation, Northampton, MA, USA) for the average 

response of each concentric ring:

1/2

max
max ( )/( )

1 −= −
+ t t dt

b
b t b

e

where b(t) represents the amplitude for each time point of the 

recovery curve, b
max 

is the maximal amplitude after an infinite 

dark interval, dt represents a time constant, and t
1/2

 represents 

the half-life of the recovery curve, ie, the time necessary 

for 50% recovery compared with maximal amplitude. The 

t
1/2 

results for concentric rings were compared using the  

paired Wilcoxon signed-rank test.

The retina was stimulated using an LED stimulator 

(Stasche and Finger GmbH, Brandenburg, Germany) driven 

by a frame frequency of 100 Hz, resulting in a frame length 

of 10 msec. The luminance of the dark step was 0.2 cd/m2 and 

that of the light step was 264 cd/m2 (tested with a Minolta 

luminance meter; Konica Minolta, Inc., Tokyo, Japan). 

The LED emitted a bright yellow light with a wavelength 

of 570–590 nm. Eye safety was not tested.

The recordings were performed according to International 

Society for Clinical Electrophysiology of Vision guidelines.7 

Each subject’s pupils were dilated using phenylephrine 5% 

and tropicamide  1% eye drops. Contact lens electrodes 

(ERG-Jet™; Universo S.A., Lausanne, Switzerland) were 

used. Fixation was not monitored, but amplitude-dependent 

automatic artifact rejection was used. Recordings were done 

monocularly, refraction was corrected, if necessary. The 

stimulus covered the central 60 degrees of the visual field. 

The size of the stimulation hexagons decreased toward the 

center to compensate the higher central photoreceptor den-

sity and to obtain a consistent signal to noise ratio across 

the tested field. The distortion factor was  4. Therefore, 

amplitude densities (response amplitudes divided by the 

area of the corresponding stimulation hexagon [nV/deg2]) 

were used for the quantitative analysis as recommended by 

the International Society for Clinical Electrophysiology of 

Vision standard. Within the light frame itself, the portion of 

the light phase could be chosen and was set to 5 msec. Thus, 

with a frame sequence of 1001000100000000 for each step of 

the M-sequence, the result was an ISI of 25 msec, 35 msec, 

and  85  msec. The M-sequence had a length of  212  steps 

resulting in a test duration of 8×86 seconds.

A pilot study was performed in six subjects using a 

frame frequency of 60 Hz with double flashes and an ISI 

of 16.7 (ISI 17), 33.3, 50, and 67 msec. Filter settings were 

at 5–100 Hz. After obtaining informed consent and following 

the tenets of the Declaration of Helsinki, 12 healthy subjects 

of mean age 25±3 years were examined using the three-flash 

procedure with a field resolution of 61 hexagons. The t
1/2

 of 

the recovery kinetics was determined for the potentials of five 

concentric rings of the stimulus. The peaks for the recorded 

waveforms were identified by one investigator as local 

minima (arising from the descending leg of the preceding 

response) and maxima.

To determine the optimal ISI for the triple-flash 

paradigm, the minimal ISI required to obtain a maximal 

amplitude (equal to a response after an infinite dark interval) 

had to be determined. For this purpose, six subjects were 

examined using twin flash sequences with ISI of 17, 33, 50, 

and  67  msec. The  12  subjects in the main study and the  

six subjects in the pilot study overlapped. The Kolmogorov-

Smirnov test (IBM® SPSS® Statistics for Windows software; 

IBM Corp., Armonk, NY, USA) revealed that our data 

Table 1 Mean amplitude densities and standard deviations for 
concentric ring responses at the three stimulated peaks of P85, 
P25, and P35 (nV/deg2)

P85 P25 P35

Ring 1 79.3±13.6 25.8±17.2 63.9±23.4
Ring 2 35.5±4.4 19.6±7.5 29.9±5.5
Ring 3 21.8±3.9 13.7±4.3 17.8±4.4
Ring 4 15.0±3.0 9.6±2.3 12.2±3.5
Ring 5 12.2±2.3 7.8±2.6 10.1±3.0

Abbreviation: P, positive peak.
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Figure 1 Summed responses for multifocal electroretinographic recordings with twin-flash application showing amplitude recovery of the second flash with increasing ISIs 
of 17, 33, 50, and 67 msec.
Abbreviation: ISI, interstimulus interval.

were normally distributed. The standard deviation was  

calculated as:

2
1
( )

1
=

−
=

−
∑ n

ii
x x

s
n

where x  is the mean.

Results
Figure 1 shows the mean sum responses for both eyes in all 

subjects of the pilot study. Whereas no clear second peak in 

the sum responses is visible at an ISI of 17 msec, the response 

at  33  msec appears to be reduced, while the responses 

at 50 msec and 67 msec show no marked difference in ampli-

tude compared with the first flash. Respective comparison  

of the amplitudes for the 33 msec and 50 msec responses 

with the amplitude of the first response and ring averages 

using a paired Student’s t-test was significant for the 33 msec 

responses in all subjects but not significant for the 50 msec 

responses. Figure 2 shows that the 33 msec responses are 

significantly smaller than the first responses, but that the 

amplitudes have already recovered after an ISI of 50 msec. 

We concluded that an interval of 85 msec after the third flash 

(and before each first flash) was sufficient to obtain a maximal 

amplitude and that the intervals of 25 msec and 35 msec would 

lie in the ascending part of the amplitude recovery curve.
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Figure 2 Mean response amplitudes of the second flashes with twin flash application 
after ISI of 33 msec (red), 50 msec (blue), and 67 msec (green) in relation to the 
first flash responses (white). The ISI 33 responses are significantly smaller than the 
first responses, with no significant difference seen between the first and ISI 50 and 
ISI 67 responses.
Abbreviation: ISI, interstimulus interval.
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Figure  3  shows the multifocal ERG result for  

one subject using the triple-flash stimulus. Because of the 

long duration of each single step (160 msec) and a lower 

resulting total number of M-sequence steps (n=212),  

the responses appear somewhat noisier than the responses 

from regular multifocal ERG recordings with 61 hexagons. 

On the other hand, the single step of the triple-flash 

procedure should have a better signal to noise ratio than a 

regular multifocal ERG step because it contains responses 

to three flashes, which means a higher amount of signal. 

We did not quantify the actual signal to noise ratios, but 

practice showed that the curve properties were clear enough 

to identify the peaks and determine the amplitudes. An 

amplitude-dependent artifact rejection algorithm was used 

to reduce noise.

The responses show three peaks, the first of which 

(P85), with a preceding interval of at least 85 msec, is the 

largest. The second peak (P25) after an ISI of 25 msec is the 

smallest and the last peak (P35) after an ISI of 35 msec is 

of medium amplitude. Figure 4 shows the ring averages for 

the same subject. From the average responses on the left,  

it can be seen that there is a tendency for consecutive peaks, 

especially P25, to show increasing amplitude with increas-

ing eccentricity, and thus a tendency to recover earlier from 

the preceding flash.

The recovery kinetics for the subject described above 

are shown in Figure 5. The three dots at 25 msec, 35 msec, 

and 85 msec represent the amplitude densities measured for 

the P25, P35, and P85 peaks, respectively, in ring 3. Under 

the logical assumption that an infinitely small ISI would 

lead to an amplitude of  0  and not a negative amplitude,  

a corresponding point was set at 0 msec. Further points with 

an amplitude of 0 were added in the negative part of the 

ordinate. These were necessary for a correct sigmoidal fit 

of the recovery curve. Otherwise, our mathematical model 

would have yielded negative amplitudes with a small ISI in 

a major part of the calculations.

Mean amplitude densities for the concentric ring responses 

at the three stimulated peaks are displayed in Table 1. The mean 

half-lives for the different concentric rings and all subjects were: 

ring 1, 29.3±5.9 msec; ring 2, 24.2±6.4 msec; ring 3, 23±4.1 msec; 

ring 4, 23.1±4.6 msec; and ring 5, 22.3±4.4 msec. The differ-

ences between the first and other rings were statistically signifi-

cant (P0.05, Figure 6). There were no significant differences 

between rings 2, 3, 4, and 5.

Figure 3 Multifocal electroretinographic result for a normal subject with triple-flash 
stimulation with three peaks in each response. The largest first peak is the response 
after an interval of 85 msec, the second peak after 25 msec, and the third after 
35 msec.

500 nV/division 50 msec/division

Figure 4 Ring analysis for the same subject. Green, ring 1; red, ring 2; brown, ring 
3; orange, ring 4; and blue, ring 5.
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Figure 5 Amplitude recovery kinetics based on the measured interstimulus interval 
of ring 3 for the same subject.
Abbreviation: ISI, interstimulus interval.
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Discussion
Different theories exist about the reason for the reduction in 

amplitude seen with repeated scotopic ERGs. Early publica-

tions suggested active postexcitatory inhibition of the rod sys-

tem because, even when recorded under scotopic circumstances 

(dark adaptation, low flash intensities), the second response 

seemed to have photopic contributions in short ISI: Burian and 

Spivey reported more rapid amplitude recovery at higher flash 

intensities,1 Elenius described a refractory period of several 

hundred milliseconds in patients with achromatopsia,2  and 

Gliem et al found smaller second peaks with longer dark adap-

tation using an ISI of 120 msec.8 Therefore, the recording of 

double-flash ERG under scotopic conditions has been shown 

to be sensitive in several macular disorders.8,9

Another obvious explanation is a light-adapting photo-

chemical process being involved in the first flash (bleaching  

of rhodopsin).10 Arden et al concluded that, when using 

repetitive light flashes, suppression of ERG amplitude was 

independent of the light period and that this suppression was a 

neural rather than a photochemical process.11 This conclusion 

has been supported by others who have located this process 

to the middle retinal layers with special focus on amacrine 

cells,12 which seem to modify and stabilize retinal output.13 

Studies of retinal adaptation processes seem to support the idea 

that a combination of photochemical and neuronal mechanisms 

is involved in refractory processes in the retina.14,15

Previous studies have suggested that the decrease in 

amplitude after a short ISI is due to local metabolic processes 

in the retina and that, during recovery, the ERG response at 

any given moment reflects the balance between supply and 

demand of energy.7

The results of this study show that recovery in amplitude 

of the multifocal ERG response is slowest in the center of 

the macula and becomes more rapid toward the periphery. 

A possible explanation for this phenomenon could be the 

structural tendency toward underperfusion and hypoxia in 

the central fovea.16 The foveal photoreceptor density is the 

highest across the whole retina,17 photoreceptors consume 

more oxygen than any other cell type,18  and the fact that 

each foveal cone gives input to several proximal neurons 

in a nonconvergent manner even increases the density of 

energy-demanding cells. The central foveal oxygen demand 

is so high that in macaques, photoreceptors consume the 

complete choroidal supply and are dependent on supplement 

from the retinal vessels in special conditions.19 Despite this 

fact, there is an avascular foveal zone, which seems to be not 

simply an adaptation of the vasculature to foveal depression  

but a concession to optimize the optics, rather, the cellular 

architecture in the foveal depression adapts to the insuf-

ficient blood supply. Provis concludes that, in the adult 

macula, oxygen supply and consumption are “on a knife-

edge”, a phenomenon that must be held liable for the fact 

that the complications of age-related macular degeneration 

mostly occur in the center of the macula.16  The relative  

metabolic stress is highest centrally and decreases in a 

concentric manner toward the periphery. We conclude from 

the similar pattern of retinal refractory times in our study 

that, in photopic ERGs, after depletion of retinal metabolic 

resources following a first flash, the unfavorable energy sup-

ply in the central fovea could explain the slightly prolonged 

amplitude recovery times compared with the neighboring 

periphery. A possible way to test this theory in future studies 

could be to correlate amplitude recovery distributions using 

new methods of topographical perfusion analysis that have 

been described recently.20

A centripetal delay of multifocal ERG peak times, 

similar to our observed distribution of recovery half-lives, 

is known.21 Whereas nasotemporal latency differences have 

been attributed to inner retinal activity, to our knowledge, 

the concentric latency delays have not been explained.22  

One possible way to test if our supposed physiological expla-

nation of the amplitude recovery topography also explains the 

concentric latency delays would be to compare intersubject 

variations of the topography of both phenomena.

An interesting issue is the relationship between the  

results of the analysis of higher order kernels in multifocal 

ERG with our results in particular or with Ganzfeld double-

flash ERG experiments in general. Higher order kernels 

represent the interactions between responses generated by 

different stimulation steps (base periods) of the M-sequence 

(consecutive base periods in the case of the first slice of the 

second order kernel [SOK], which has received the most 

50
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t 1/
2 
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Figure 6 Half-lives of the amplitude recovery kinetics showing more rapid recovery 
peripherally.
Notes: Empty squares indicate mean. Vertical lines indicate median. Filled squares 
indicate extremes. t1/2 represents the half-life of the recovery curve.
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attention, or base periods that are further apart).23 The SOK 

“response” is generated by the mathematical difference of a 

(reduced) response that was preceded by a light step and a 

full response with no preceding light step, and thus should be 

affected by the same factors that affect the recovery kinetics 

of cone ERGs, as have been investigated in the present study 

and in photopic Ganzfeld experiments.

SOK responses have been attributed to retinal non-

linearities at the level of the optic nerve head,24 the inner 

retina,25,26 the inner plexiform layer,27 or the outer plexiform 

layer,28 and in this respect are explained similarly to the 

neuronal theory for refractory processes in scotopic ERGs. 

A characteristic topography of SOK responses, such as 

the typical amplitude density distribution in the first order 

kernel response, has not been described to our knowledge 

(a SOK response peak can be located in the nasal retina in 

some cases).29 In particular, the centrifugal faster amplitude 

recovery that we have found cannot be confirmed by  

SOK results. A possible explanation could be that the 

kernel analysis can describe the retinal recovery kinetics 

only in a limited way because it is restricted to ISI that are 

a multiple of the base period, which in turn is determined 

by the monitor frame frequency. Another point may be 

the fact that the SOK response not only represents simple 

amplitude reduction but also the mathematical difference of 

the complete waveforms, and could therefore be influenced 

by factors other than the half-life periods obtained here.

The significance of this study is that the theory regarding 

a relative oxygen deficit in the central macula on anatomi-

cal observation is confirmed by a functional finding for the 

first time. Assuming that amplitude recovery reflects the 

balance of oxygen supply and demand, the multifocal triple-

flash ERG could add diagnostic information in a number of 

macular vascular diseases, such as diabetic retinopathy and 

vessel occlusion, as well as in rare disorders such as foveal 

telangiectasia.

In conclusion, topographical analysis of retinal recovery 

processes using LED stimulation with a triple-flash para-

digm revealed delayed central recovery compared with 

the peripheral macula. The presumed reason for this phe-

nomenon is the unfavorable relationship between energy 

demand and supply in the central macula. More research is 

needed to determine if this test procedure can yield addi-

tional information regarding the diagnosis and treatment of 

macular disorders.

Disclosure
The authors report no conflicts of interest in this work.
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