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Purpose: To determine the biomechanical response of an impacting airbag on eyes with different 

axial lengths with transsclerally fixated posterior chamber intraocular lens (PC IOL).

Materials and methods: Simulations in a model human eye were performed with a computer 

using a finite element analysis program created by Nihon, ESI Group. The airbag was set to be 

deployed at five different velocities and to impact on eyes with three different axial lengths. 

These eyes were set to have transsclerally fixated PC IOL by a 10-0 polypropylene possessing 

a tensile force limit of 0.16 N according to the United States Pharmacopeia XXII.

Results: The corneoscleral opening was observed at a speed of 40 m/second or more in all 

model eyes. Eyes with the longest axial length of 25.85 mm had the greatest extent of deformity 

at any given impact velocity. The impact force exceeded the tensile force of 10-0 polypropylene 

at an impact velocity of 60 m/second in all eyes, causing breakage of the suture. 

Conclusion: Eyes with transsclerally fixated PC IOL could rupture from airbag impact at high 

velocities. Eyes with long axial lengths experienced a greater deformity upon airbag impact 

due to a thinner eye wall. Further basic research on the biomechanical response for assessing 

eye injuries could help in developing a better airbag and in the further understanding of ocular 

traumas.

Keywords: airbag, ocular trauma, computer simulation, transsclerally fixated posterior  

chamber intraocular lens, finite element analysis

Introduction
Airbags have saved thousands of lives since their introduction in the early 1980s. 

Airbags protect the passengers against a crash by providing a padding device, which 

allows the impacting and impacted surface to deform, thereby extending the duration 

of the impact and reducing its severity.1 Although airbags have substantially reduced 

the rate of mortality and morbidity, those who have survived may suffer from various 

fatal and nonfatal injuries to the head, eyes, neck, chest, or arms.2,3 Ocular traumas are 

among the most severe airbag-induced injuries due to a high risk for detrimental vision 

impairment after an impact.4 Airbag-induced ocular trauma includes corneal abrasion, 

corneoscleral laceration, subluxated lens, endothelial cell loss, cyclodialysis, choroidal 

rupture, globe rupture, retinal detachment, and periorbital fracture.5–11

Given the initiatives in cataract or corneal surgeries for better vision, an increase in 

the population achieving the visual acuity test criteria for operating a vehicle would be 

assumed.4 Any driver could be at risk of airbag-induced ocular trauma. In a 1991–1998 
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review of 97 patients with airbag-associated eye trauma, 50% 

of traumas were limited to the anterior segment, 6% to the 

posterior segment, and 44% to both.12 Postcataract surgery 

patients with implantation of an intraocular lens (IOL) may 

be at a higher risk with impact for wound rupture, subluxation 

of a posterior chamber (PC) IOL, anterior capsule rupture, 

and dislocation of the lens.11,13,14

Unlike with human bones and ribcages, the injury bio-

mechanics of soft organs, such as human eyes, are difficult 

to simulate due to limited available mechanical information. 

Cadavers and dummies have been used for research purposes; 

however, the physiological and biological properties of these 

eyes do not resemble living eyes, making the trauma research 

more difficult and results only marginally reliable. Therefore, 

creating a humanlike eye with raw data from the human eye 

for biomechanical simulations using finite element analysis 

(FEA) would help to investigate and better explain the physi-

cal and physiological responses to impact injuries.1

We have previously developed a simulation model resem-

bling a human eye based on the information obtained from 

cadaver eyes and applied three-dimensional FEA to determine 

the physical and mechanical conditions of impacting foreign 

bodies that cause an intraocular foreign body.15 This model 

human eye was also used in our studies on airbag impact in a 

postradial keratotomy eye and on a post-transsclerally fixated 

PC IOL eye.4,16 In general, the capsular bag is considered the 

best position for IOL implantation. When the capsular sup-

port is insufficient or absent, ciliary sulcus fixation or, more 

recently, scleral fixation, is recommended.4 In this study, we 

extended the simulation model after renovation to further 

determine the physical and mechanical response of an impact-

ing airbag deploying at additional velocities on transsclerally 

fixated PC IOL eyes with different axial lengths, especially 

surveying the mechanical threshold in a highly myopic eye.

Materials and methods
The model human eye was created and used in simulations 

with a computer using an FEA program, PAM-CRASH 

(Nihon ESI, Tokyo, Japan), described elsewhere.15 The mate-

rial properties and geometry of the model were obtained from 

past experiments with three pairs of human cadaver eyes.15 

Poisson ratios of the cornea at 0.420 kg/mm3 and the sclera 

at 0.470 kg/mm3 were used to determine the standard stress 

strain curves for the cornea and sclera.17–19 The reference 

point for globe rupture was then calculated to be at a strain of 

18.0% and stress of 9.45 MPa for the cornea, and at a strain of 

6.8% and stress of 9.49 MPa for the sclera.15 The cornea was 

assumed to be spherical, with a central thickness of 0.5 mm 

and a central radius of curvature of 7.8 mm. The anterior 

chamber was set at a depth of 5.1 mm. A transsclerally 

fixated polymethyl methacrylate PC IOL element was inte-

grated at the original physiological position of the crystal 

lens. The vitreous length was assumed to be 18.6 mm, and 

the posterior curvature of the retina was assumed to be 

12.0  mm. The mass densities of ocular tissues from past 

reports were applied as follows:15,20 cornea, 1.149 kg/mm3; 

sclera, 1.243 kg/mm3; and vitreous and aqueous humor,  

1.002 kg/mm3 and 1.000 kg/mm3, respectively. A new 

approach in this study was the addition of model human eyes 

with different axial lengths, representing a normal eye with 

a normal axial length of 23.85 mm, a hyperopic eye with a 

shorter axial length of 21.85 mm, and a myopic eye with a 

longer axial length of 25.85 mm. Eyes with different axial 

lengths were created by setting the mass density of the cor-

nea and sclera as constants, and the element types including 

the three layers of the model eye (outer, middle, and inner) 

as variables for meshing principles.15 A threshold for the 

thickness reduction ratio was 0.5 (50%). The elastic proper-

ties and meshing principles of the model human eye were 

similar to those in previous reports.15,16 The vitreous model 

as a solid mass was also assigned with a hydrostatic pressure 

of 20 mmHg (2.7 KPa). The changes in the deformity of the 

eye and the strain induced were calculated by the Virtual 

Performance Solver (VPS) (Nihon ESI KK) and evaluated 

by color mapping. In this study, mapping properties were 

renovated for more finite displaying due to the development 

of computer technology following the previous study.4

The simulation of PC IOL implantation was based on a cor-

neoscleral incision size of 6.0 mm and wound closure with 10-0 

polypropylene sutures in five places. A detailed description of 

a single-piece polymethyl methacrylate IOL and its elasticity 

and mass density of 2.85 GPa and 1.185 kg/mm3, respectively, 

are described elsewhere.4 The suturing method was done the 

same way as reported, with a 10-0 polypropylene looped suture 

(by an Alcon Surgical PC 91/4 circular needle; Alcon, Inc., 

Hünenberg, Switzerland) and the loop of each suture was tied 

with the girth–hitch method.4 Two tying needles were placed 

at the 4 and 10 o’clock positions, and the sutures exited the 

sclera 1.0 mm posterior to the limbus and were tied directly 

to the superficial sclera. The limit of tensile force (N) of a 

10-0 polypropylene suture was specified to be 0.16 N by the 

United States Pharmacopeia XXII.21,22 Breakage of the fixating 

suture is assumed to occur in the middle of the suture when the 

strain becomes intolerable due to deformity of the eye caused 

by airbag impact. Element deletion was incorporated in the 

VPS, with rupture of the eye and the breakage of the suture 

defined as the strain exceeding the corneoscleral and fixation 

suture threshold, respectively.
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A biomechanical head of a dummy was created, assum-

ing that everything excluding the eye was a solid element, 

to reduce the computing time. The Hybrid III model was 

modified4 by replacing the head of the dummy with a biome-

chanical model of the head in which the IOL-fixated model 

eye was inserted.4,23 For simplification of calculation, the 

angular momentum of the impact missile was ignored in this 

study. The impact missile for the airbag simulation was set up 

as described.15 The impact missile was a decahedron that was 

composed of a cuspidal hexahedron and a rectangular parallel-

epiped, so as to be blunt in shape.15 In addition to our previous 

study, the airbag was deployed at five different velocities (20 

m/second, 30 m/second, 40 m/second,50 m/second, and 60 m/

second) and it impacted eyes of three different axial lengths. 

The simulation program was similar to that of a previ-

ous report by Digital Equipment Corporation AlphaStation4 

using the FEA program, Pam-Crash version 1998 (Nihon 

ESI KK).4 Similarly, suture strain was recorded sequentially 

in all velocities and the deformity of the eye was displayed 

sequentially in milliseconds in slow motion. Breakage of the 

suture was defined as the point when the strain exceeded the 

tensile tolerance. 

Results
The postoperative PC IOL model human eye with an axial 

length of 23.85 mm created by the VPS is shown in Figure 1. 

The skull surrounding the eye was assumed to be a solid 

element to minimize the computing time for impact simula-

tion (Figure 2). The thickness of the eye wall depicted by 

the color maps showed correlation with the axial lengths 

of the eyes (Figure 3). The eye with a longer axial length 

is shown in orange, representing a thinner eye wall com-

pared to eyes with normal and shorter axial lengths in red.  

The deformity of the three eyes with transsclerally sutured 

IOL at five impact velocities (20 m/second, 30 m/second, 

40 m/second, 50 m/second, and 60 m/second) is captured in 

slow motion (shown in Figures 4A, 5A, and 6A). Corneo-

scleral deformity was observed after 0.1~0.2 ms of impact 

in all velocities. The deformity of the eye was small at 20 

m/second and 30 m/second. Deformity reached the threshold of 

corneoscleral strain (0.068) at 40 m/second, 50 m/second, and  

60 m/second, causing the model eye to rupture. The tensile 

force on the 10-0 polypropylene suture of the three eyes is 

shown in Figures 4B, 5B, and 6B. At 0.3 ms after the impact, 

the eye with the longest axial length had the greatest extent of 

deformity at any given impact velocity (Figure 7).

The tensile force on the suture exceeded the critical value 

at only the velocity of 60 m/second in all eyes. This breakage 

of the suture occurred in all eyes after 0.3 ms impact, with 

the longest axial length exceeding the breaking force initially 

between 0.2 ms and 0.3 ms. There was no breakage of the 

scleral fixation suture at 40 m/second and 50 m/second, even 

when the force on the corneoscleral incision suture was con-

tinuously greater with increasing velocity. At 60 m/second 

impact, the suture tensile force was exceeded at the sites of 

the scleral fixation suture, leading to both ocular rupture and 

breakage of the suture (Figures 4B, 5B, and 6B). 

Discussion
In a frontal crash automobile accident, drivers move forward 

rapidly and may be struck forcefully by a rearward-expanding 

bag at high velocities, causing the impacted eye to deform.1,12 

Despite its overall protective effects, this forceful inflation 

of the airbag itself could be the major contributor of ocular 

injuries, even in minor accidents such as bumper-to-bumper 

contact or even a flat tire.14 According to the US Federal Motor 

Figure 1 Frontal view of the model eye with transsclerally fixated PC IOL.
Notes: (A) Four and 10 o’clock positions; Cornealscleral incision site for IOL insertion at the 12 o’clock position (B) sagittal view of the model eye.
Abbreviations: IOL, intraocular lens; PC, posterior chamber. 
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Figure 2 A biomechanical model of the head. 
Notes: Parts other than the eye were assumed to be solid elements, and the impact 
object was placed adjacent to the eyeball to reduce the computing time of the airbag 
impact simulation.

Figure 3 The thickness of the eye wall (mm) is depicted from cold to warm 
colors. 
Notes: A warmer color of red represents a thicker eye wall; a myopic eye with a 
longer axis shows a thinner eye wall.

situations exceeded the impact velocities in the previous 

report,4 we added 50 m/second and 60 m/second velocities to 

this study. From our results, ocular rupture and breakage of the 

sutures occurred at 60 m/second. Therefore, no further veloci-

ties were performed for the simulation. Since eyeballs are 

viscoelastic, their response to impact injury is rate sensitive.1 

Therefore, we simulated the impacts of various velocities 

within the range of speed of deployment in this study to see 

the biomechanical response for different axial lengths. Our 

present study demonstrated that eyes remained intact up to a 

30 m/second impact speed. Corneoscleral opening occurred 

at 40 m/second, 50 m/second, and 60 m/second, and eventu-

ally the ocular and fixation suture ruptured at 60 m/second. 

The results suggested that ocular rupture and fixating suture 

breakage could happen even at mid-speed of airbag deploy-

ment. Furthermore, at the fastest velocity of 60 m/second, 

corneoscleral rupture was observed as early as 0.1~0.2 ms after 

the airbag impact, suggesting that all eyes regardless of axial 

length would be vulnerable to a higher speed of impact.

In the era of refractive surgeries, the effect on the ocular 

integrity of cataract surgical techniques may depend on the 

physical properties of the eye. To our knowledge, no published 

data on the mechanical properties, especially on the tensile 

strength, of the zonule of Zinn, which is essential for the 

simulation of airbag impact on a phakic or a pseudophakic eye, 

are available. Transsclerally fixating the PC IOL with a 10-0 

polypropylene suture is still the most widely performed method 

for complicated eyes without capsular support. In contrast, 

since the tensile strain of the polypropylene suture is available 

from the manufacturer, the simulation of airbag impact on the 

transsclerally-IOL-sutured eye can be established by modifi-

cation of our previous simulation model.4 We have already 

demonstrated and assessed the mechanical properties of an eye 

with a transsclerally fixated PC IOL in a past report showing 

IOL subluxation with an impact velocity of 40 m/second.4 

However, individual variations regarding axial lengths, age, 

or ethnicity were not considered in previous studies.4 Then, 

we carried out the current simulated study using the PC IOL 

transsclerally fixing model with several modifications. 

It is known that there has been a global increase in the preva-

lence of myopia over the past half-century, particularly in afflu-

ent, industrialized areas of East Asia.24 Higher myopia, which 

means a longer axial length, is associated with comorbidities 

that increase the risks of severe and irreversible loss of vision, 

such as retinal detachment, subretinal neovascularization, dense 

cataract, and glaucoma.24 Therefore, longer eyes with thinner 

walls would be much more vulnerable to any kind of impact 

trauma. This study demonstrated that these eyes with a longer 

Vehicle Safety Standards, airbags take only 20 m/second to 

fully inflate, which is about four times faster than blinking.25 

Airbag deployment occurs 15 ms after an impact with com-

plete expansion at 50 ms and deflation by 100 ms.8 Automo-

bile airbags are reported to deploy at a speed ranging from 

81-322 kph (22–89 m/seconds).8,25–27 Considering that some 
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Figure 4 Sequential deformity of a normal axial length model eye upon airbag impact at five different velocities, shown in ms intervals. 
Notes: (A) The deformity became irreversible, suggesting a corneoscleral rupture at 0.3 ms after impact velocities over 40 m/second, shown in hot pink. (B) The tensile 
force of the 10-0 polypropylene suture was exceeded only at an impact velocity of 60 m/second after 0.3 ms, suggesting fixation suture breakage (lower: 4 o’clock fixation 
suture; upper: 10 o’clock fixation suture).

Figure 5 Sequential deformity of a long axial length (myopic) model eye upon airbag impact at five different velocities, shown in ms intervals. 
Notes: (A) Deformity became irreversible at 0.3 ms after impact velocities over 40 m/second, shown in hot pink. (B) The tensile force of the 10-0 polypropylene suture was 
exceeded only at an impact velocity of 60 m/second after 0.3 ms, suggesting fixation suture breakage (lower: 4 o’clock fixation suture; upper: 10 o’clock fixation suture).

axial length are prone to a more extensive ocular deformity, 

causing irreversible strain on the eye, leading to ocular and fixa-

tion suture rupture if present. Longer eyes showed breakage of 

the fixation suture as early as 0.1 ms after the airbag impact.

Other possible factors affecting the integrity of the driver’s 

eye upon airbag impact would be age, sex, weight, usage of 

spectacles, and ethnicity.2 Some data indicated that women of 

small stature and shallower eye sockets, common in Asians, 

are more likely to be injured by airbag impacts because they 

are likely to sit too close to the wheel, which could cause 

fatal or nonfatal injuries when the airbag is deployed.2,3 

Elderly women with smaller statures would be physiologi-

cally characterized with normal or smaller eye axial lengths.3 

This physiological factor would make this population at high 
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Figure 7 Sagittal view of the model eye at 0.3 ms after the airbag impact. 
Notes: The myopic eye, the eye with the longest axial length of 25.85 mm, showed the most corneoscleral deformity, with multiple color spots on the anterior portion of 
the model eye.

Figure 6 Sequential deformity of a short axial length (hyperopic) model eye upon airbag impact at five different velocities, shown in ms intervals.
Notes: (A) Deformity became irreversible at 0.3 ms after impact velocities over 40 m/second, shown in hot pink. (B) The tensile force of the 10-0 polypropylene suture was 
exceeded only at an impact velocity of 60 m/second after 0.3 ms, suggesting fixation suture breakage (lower: 4 o’clock fixation suture; upper: 10 o’clock fixation suture).

risk for blunt ocular injuries. Our data showed that even at 

the medium velocity of 30 m/second, corneoscleral incisions 

and IOL would be at risk in normal to shorter axial length 

eyes. Sitting closer to the steering wheel would decrease the 

distance to the driver’s face and, therefore, increase the impact 

velocity and its force on these individuals. 

Studies of the wound upon blunt airbag impact are of inter-

est to ophthalmologists. The study of trauma could provide 

insights on how the eye responds to impact injury, and would 

thus help to establish preventative surgical measures such as 

revising the surgical wound, performing IOL fixation methods, 

improving suture material, or inserting IOL implants. At the 

same time, blunt airbag impact studies could also help auto-

mobile industries make more adaptable airbags customized for 

different ethnic backgrounds and physical characteristics.

Despite our careful calculation of the simulation model 

based on cadaver eyes, there are still limitations to our 

study.15 First, since studies are based on only three pairs of 

cadaver eyes, the results do not completely resemble a living 

humanlike eye response, or represent the normal population. 

Second, in order to reduce the time for computer calculation, 

the impact object was placed almost adjacent to the surface 
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of the eyeball for the impact simulation. Therefore, further 

study on the distance of the deploying airbag to the driver 

in regard to the change in velocity would be necessary to 

determine the extent of impact that is likely to happen in real 

situations. Finally, the vitreous model was a solid mass with 

a physiological intraocular pressure of 20 mmHg.15 The age 

factor for vitreous viscosity or other physical characteristics 

were not taken into account as variables in our simulation. 

However, we believe that our goal to assess the mechanical 

properties of eyes with different axial lengths with a fixated 

IOL suture was achieved by demonstrating that the corneo-

scleral incision would open at a medium velocity followed by 

IOL subluxation, with the eye with the longest axial length 

being more susceptible to impact injuries. Furthermore, 

at a maximum velocity of 60 m/second, the impact force 

exceeded the fixated suture force, causing suture breakage.

Conclusion
In conclusion, even with improvements in automobile 

industry technology, there is still need for the conscientious 

reporting of vision-threatening airbag impact injuries. The 

lack of basic research data on the biomechanical response 

has retarded the development of more sophisticated models 

or dummies. Therefore, this current method of injury bio-

mechanics research for assessing eye injuries would help 

advance our knowledge on the mechanism of ocular traumas 

and reduce the need for animal experiments and cadavers, 

which are difficult to obtain and could pose ethical issues. 

Finally, an ability to predict anatomical or structural injury 

upon airbag impact would be critical to safety. Continuous 

injury biomechanics research would be helpful not only 

in developing an adequate evaluation system for airbag 

safety, but also in further understanding ocular preventative 

measures. These may include the use of protective goggles, 

the revision of PC IOL fixations sutures, minimal surgical 

incisions, or placing the PC IOL without sutures.
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