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Abstract: Klebsiella pneumoniae (Kp) is one of the most common pathogens in nosocomial 

infections and is increasingly becoming multiple drug resistant. However, the molecular patho-

genesis of Kp in causing tissue injury and dysregulated host defense remains elusive, further 

dampening the development of novel therapeutic measures. We have previously screened a series 

of synthetic antimicrobial beta-sheet forming peptides and identified a peptide (IRIKIRIK; ie, 

IK8L) with a broad range of bactericidal activity and low cytotoxicity in vitro. Here, employ-

ing an animal model, we investigated the antibacterial effects of IK8L in acute infection and 

demonstrated that peritoneal injection of IK8L to mice down-regulated inflammatory cytok-

ines, alleviated lung injury, and importantly, decreased mortality compared to sham-injected 

controls. In addition, a math model was used to evaluate in vivo imaging data and predict 

infection progression in infected live animals. Mechanistically, IK8L can kill Kp by inhibiting 

biofilm formation and modulating production of inflammatory cytokines through the STAT3/

JAK signaling both in vitro and in vivo. Collectively, these findings reveal that IK8L may have 

potential for preventing or treating Kp infection.

Keywords: bacterial pathogenesis, inflammatory cytokines, infectious diseases, bactericidal 

activity, antimicrobial peptides, STAT3/JAK signaling transduction

Introduction
Frequent use of antibiotics in the agricultural and biomedical fields has caused a surge in 

antibiotic-resistant pathogen strains.1 Infection by multidrug resistant (MDR) bacteria, 

such as Klebsiella pneumoniae (Kp), is challenging to treat,2,3 thereby compounding 

existing conditions4 such as asthma, cystic fibrosis, and chronic obstructive pulmonary 

disease (COPD).5–7 In the United States, COPD alone causes more than 157,000 deaths 

every year.8 Kp is the third most isolated microorganism in blood cultures from patients 

with various complications.9 Therefore, understanding the mechanism of Kp antibiotic 

resistance is becoming an important topic in human health, which may provide insight 

into therapeutic strategies to control Kp infection.

To effectively eradicate antibiotic-resistant pathogens from afflicted hosts, many 

new antibacterial agents have been developed, including ertapenem,10 levaquin, and 

meropenem.11 Previously, antimicrobial peptides (AMPs) having cationic charge and 

amphipathic structures have been thought to be the best antibacterial agents thanks to 

their small size, heat stability, and broad-spectrum antibacterial activity.12 Besides, 

AMPs as endogenous antibiotics have extensive capabilities in regulating inflamma-

tion, wound repair, and the adaptive immune system in eukaryote host defense.13,14 

However, natural AMPs possess ostensible toxicity to humans and are difficult to 

prepare on a large scale.15 Although improved techniques of isolation enabled larger 
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quantity preparation, most of AMPs have been found to 

be unsuitable for clinical application due to their potential 

systemic toxicity.16 In treatment of Kp infection, the disad-

vantage of this natural peptide is its high systemic toxicity. 

Alternatively, artificially synthesized antibacterial peptides 

seem to be good candidates, as they have similar character-

istics and efficient antibacterial ability with natural AMPs.17 

However, significant toxicity to humans is still currently an 

unbridgeable gap to these artificially synthesized antibacterial 

peptides, from the laboratory to the clinic.

To overcome this limitation, the quest continues for 

artificially synthesized peptides to better control microor-

ganisms and infectious diseases. We focused on developing 

new artificially synthesized peptides with low toxicity and 

high efficacy in killing pathogenic microorganisms. Having 

previously examined bactericidal activity in vitro, we set out 

to systemically evaluate the bactericidal activity of IRIKIRIK 

(ie, IK8L) against a clinically significant pathogen Kp infec-

tion in animal models.

Materials and methods
Bacterial strains and culture conditions
K. pneumoniae (Kp; American Type Culture Collection 

[ATCC] 43816 serotype II) was obtained from Dr Virginia 

Miller (University of North Carolina, Chapel Hill, NC, USA) 

and was used for infection of mice and cells. Kp-GFP (green 

fluorescent protein) (ATCC 43816 serotype II) was kindly 

provided by Dr Steven Clegg (University of Iowa Carver Col-

lege of Medicine, Iowa City, IA, USA). Kp Xen-39 (ATCC 

93A 5370), an engineered bioluminescent pathogenic bacte-

rium strain expressing bioluminescence, was used for imag-

ing both in vitro and in vivo with Caliper’s Xenogen IVIS 

XRII optical imaging technology (Caliper; PerkinElmer, 

Waltham, MA, USA). Bacteria were grown in Luria–Bertani 

(LB) broth at 37°C for 16 hours, followed by centrifuging at 

5000 g for 5 minutes, and subsequently washed with sterile 

phosphate-buffered saline (PBS) for infection.18

Mouse infection
All animal procedures were approved by Institutional Animal 

Care and Use Committee at the University of North Dakota. 

C57BL/6J mice were purchased from Harlan Laboratory 

(Indianapolis, IN, USA). Mice were housed in a tempera-

ture- and humidity-controlled environment, and had free 

access to food and water. After anesthesia with 40 mg/kg 

ketamine, mice were instilled with 1×105 (four mice/group) 

colony-forming units (CFUs) of Kp by intranasal instillation, 

and sacrificed when they were moribund.19,20 Survival was 

determined using Kaplan–Meier curve. After bronchoalveo-

lar lavage (BAL), the lung was excised for homogenization 

or fixed in 10% formalin.

Cell estimation in BAL and isolation 
of alveolar macrophages (AMs)
BAL was performed five times for each 1.0 mL (except the first 

0.6 mL) of lavage fluid; a cell smear was made from the BAL 

fluid for cell differential counting. AMs were collected from 

the BAL pellet after centrifuging at 2,000× g for 5 minutes at 

4°C and cultivated in RPMI (Roswell Park Memorial Institute) 

1640 medium supplemented with 10% newborn calf serum 

and penicillin/ streptomycin in a 5% CO
2
 incubator.

Peptide
IK8L was identified and described.21 The peptide was syn-

thesized by GL Biochem (Shanghai, People’s Republic of 

China) and purified to greater than 95% through analytical 

reverse phase high-performance liquid chromatography.

In vivo imaging
Mice were infected with bioluminescence-emitting Kp 

(Xen-39, 1×105 CFU) following anesthesia by ketamine. 

At various time points postinfection, whole body imaging 

of the infected mouse was obtained under an IVIS XRII 

system. Additionally, the distribution of Kp in various 

organs was semiquantitatively analyzed through the cal-

culated intensity of bioluminescence and also confirmed 

by direct measurement of CFUs in tissues recovered after 

imaging.22

IK8L treatment
Mice were randomly divided into a control group (n=4) 

and an IK8L-treated group (n=4). The IK8L-treated group 

received IK8L suspension (20 mg/kg body weight) through 

tail vein injection. After 4 hours, mice were infected with 

Kp by intranasal instillation.

Biofilm assays
Biofilm formation assay in test tube
Biofilm formation in test tubes was measured according to 

the method that O’Toole described previously.23 Briefly, 

test tubes were inoculated from overnight LB-grown 

bacterial cultures containing IK8L. After that, the cells 

were grown for 24 hours at 37°C; then the test tubes were 

stained with crystal violet and quantified by dissolution 

using 30% acetic acid and measured at an absorbance at 

550 nm.

www.dovepress.com
www.dovepress.com
www.dovepress.com


International Journal of Nanomedicine 2015:10 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

1047

A β-sheet forming peptide-killing Kp in a mouse model

CFU of biofilms
Quantification of biofilm bacteria with or without IK8L treatment 

was performed as follows. The wells were washed six times with 

saline in order to remove any planktonic cells, 100 µL of saline 

was added to each well, and the samples were independently 

sonicated for 8 seconds by using a VC505 sonicator (Sonics and 

Materials, Inc, Newtown, CT, USA), followed by plating on agar 

dishes for 18 hours at 37°C to obtain the CFU counts.

Cell infection experiments
After cultivating in LB broth at 37°C with vigorous shaking 

overnight, Kp was centrifuged at 6,000× g for 5 minutes, then 

resuspended in 5 mL fresh LB broth to grow until the mid-

logarithmic phase. The concentration of bacteria was estimated 

by reading optical density (OD) at 600 nm (0.1 OD =1×108 

cells/mL). Before infection, cells were washed once with PBS, 

and replaced with both serum and antibiotic-free medium imme-

diately. Macrophage cells were infected by Kp at the multiplicity 

of infection (MOI) of 10:1 bacteria–cell ratio for 1 hour and then 

washed three times with PBS to remove the free bacteria. Bacteria 

on the surface of the cells were killed by adding 100 µg/mL of 

polymyxin B and incubated for another 1 hour. The amount of 

the intracellular bacteria was determined by CFU counts.22,24

Cell culture
AMs were isolated from the bronchoalveolar lavage fluid 

(BALF). By centrifuging at 2000 rpm, the pellet was resus-

pended and cultured in RPMI 1640 medium containing 10% 

newborn bovine serum (HyClone Laboratories, Logan, UT, 

USA) and 100 U/mL of penicillin/streptomycin (Life Tech-

nologies, Rockville, MD, USA) in a 37°C incubator with 

5% CO
2
. mouse alveolar macrophage cell line (MH-S) was 

obtained from American Type Culture Collection (ATCC, 

Manassas, VA, USA) and maintained following the manu-

facturer’s instructions.

3-(4,5-dimethyl-2-thiazolyl)-2,5- 
diphenyltetrazolium bromide assay
This assay measures color change of 3-(4,5-dimethyl-2-

thiazolyl)-2,5-diphenyltetrazolium bromide (MTT) upon 

reduction by enzymes to assess the viability of AM. AM 

cells were obtained from infected mice and processed as 

above. Then, 1 µg/mL MTT dye (final concentration) was 

added to each well. The cells were incubated at 37°C until 

the color change occurred. The dye was reduced to form a 

purple formazan product inside living cells. Stop solution 

(10% dimethyl sulfoxide [DMSO]; 10% sodium dode-

cyl sulfate (SDS) in 50 mM HEPES (2-[4-(2-Hydroxyethyl)-

1-piperazinyl]ethanesulfonic acid) buffer) was added to 

dissolve the formazan product, and the absorbance was 

quantified by measuring a wavelength of 560 nm using a 

spectrometer plate reader.25

Nitroblue tetrazolium assay
This assay was used to determine the production of super-

oxide anion in AM cells. AM cells from BAL were grown 

in a 96-well plate in serum-containing medium at 37°C for 

4 hours. We added 1 µg/mL nitroblue tetrazolium (NBT) 

dye (Sigma, St Louis, MO, USA) to each well. The cells 

were incubated at 37°C for 1 hour or until color developed. 

The dye is yellow and gives a blue color formazan product 

upon reduction by superoxide. The reaction was terminated 

by adding 100 µL of stop solution (10% DMSO; 10% SDS 

in 50 mM HEPES buffer). The plate was left at room tem-

perature overnight for complete dissolution of formazan, and 

absorbance at 560 nm was recorded using a multiscan plate 

reader to quantify the concentration of superoxide anion. 

Triplicates were done for each sample and control.26

Tissue myeloperoxidase assay
Samples were homogenized in 50 mM hexadecyltrimeth-

ylammonium bromide, 50 mM KH
2
PO4, pH 6.0, 0.5 mM 

EDTA (ethylenediaminetetraacetic acid) at 1 mL/100 mg 

of tissue and centrifuged for 15 minutes at 12,000 rpm at 

4°C. Supernatants were decanted, and 100 μL of reaction 

buffer (0.167 mg/mL O-dianisidine, 50 mM KH
2
PO4, pH 

6.0, 0.0005% mM H
2
O

2
) was added to 100 µL of sample. 

Absorbance was read at 460 nm at 2-minute intervals. Dupli-

cates were done for each sample and control.27

Dihydrodichlorofluorescein diacetate assay
Dihydrodichlorofluorescein diacetate (H

2
DCF-DA) dye 

(Molecular Probes, Carlsbad, CA, USA) does not normally 

fluoresce but emits green fluorescence upon reaction with cel-

lular superoxide. AM cells were obtained from Kp-infected 

mice and an equal amount of dye (1 µg/mL) was added. 

After 1 hour incubation, fluorescence was measured by a 

fluorescence plate reader (BioTek, Winooski, VT, USA) 

using 485 nm excitation and a 528 nm emission filter.28

Histological analysis
The lung was fixed in 10% formalin using a routine histologic 

procedure. Ten microlitres of BAL and blood were applied 

evenly on microscope slides. The formalin-fixed tissues were 

used for hematoxylin and eosin (H&E) staining to examine tis-

sue damage postinfection. After Hema staining (Thermo Fisher, 
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Waltham, MA, USA), the number of polymorphonuclear 
neutrophils (PMN) were counted using a light microscope.

Cytokine profiling
We measured cytokine concentrations in the first 0.6 mL of 

BAL fluid (which could reflect the original levels in the lung) 

collected at the indicated times after infection by standard 

enzyme-linked immunosorbent assay (ELISA) kits follow-

ing the manufacturer’s instructions (eBioscience Inc., San 

Diego, CA, USA).18–20,29,30

Western blotting
Lung tissues were lysed and homogenized in a radioimmu-

noprecipitation assay containing a protease inhibitor cocktail 

(Sigma, St Louis, MO, USA). The supernatants were col-

lected and the protein concentration was quantitated. The 

lysates were boiled for 10 minutes, and an equal amount of 

each sample was applied to 12% SDS-polyacrylamide mini 

gels and electrophoresed. β-actin was used as a loading 

control, whereas different primary antibodies were used to 

determine the protein levels in each sample.31,32

Confocal laser scanning microscopy
Cells were cultured in glass-bottomed dishes (MatTek, 

Ashland, MA, USA) for immunostaining following the 

manufacturer’s instructions. For lipid raft staining, the cells 

were added with cholera toxin B chain (CTB) (red) contain-

ing fluorescein to track sphingolipid-rich lipid rafts.33 The 

images were obtained by LSM 510 Meta confocal microscope 

(Carl Zeiss Microimaging, Thornwood, NY, USA).

Flow cytometry assay
AM cells were treated with IK8L or various controls in a 

glass-bottomed plate for 4 hours. Apoptotic cells were stained 

by Annexin V-fluorescein isothiocyanate-stained cells and 

analyzed by flow cytometry (BD Biosciences, San Jose, CA, 

USA).34

Statistical analysis
Each experiment was conducted in triplicate. The differences 

in outcomes of the IK8L-treated mice were presented as 

percent or amount of change compared to the control after 

Kp infection. Data were analyzed by one-way analysis of 

variance (ANOVA) (Tukey’s post hoc) or Mann–Whitney 

U-test using GraphPad software.35,36 The survival rate was 

calculated using a Kaplan–Meier curve, with P,0.05 being 

significant from a log-rank test.37

Results
Peptide (IK8L) decreased mortality rates 
and infection severity of Kp-infected mice
We have recently reported the design of a short β-sheet 

forming peptide IK8L that is made of eight natural L-amino 

acids and demonstrates extensive and highly selective anti-

bacterial activity against clinically isolated MDR bacteria, 

and its median lethal dose in mice through tail vein injec-

tion was 35.2 mg/kg.38 To assess the physiological function 

of IK8L in vivo bacterial infection, IK8L was injected into 

C57BL/6J mice. The mice were then intranasally instilled with 

Kp Xen-39 at 1×105 CFU in 50 μL of PBS per mouse (four 

mice per group).19 Although the distribution of the bacteria 

in the enterocelia was somewhat variable, the infected mice 

exhibited much wider dissemination of bioluminescence in 

the area of thoracic cavity 4 hours postinfection with in vivo 

dynamic analysis using an IVIS XRII 200 biophotonic imager. 

However, the dissemination areas in infected mice were more 

constrained and only localized in one lung in IK8L-treated 

mice than those of sham-treated mice (Figure 1A). In order to 

predict the infection level, a math model of the relative lumi-

nescence unit counts (LUC) units vs time in the Kp Xen-39 

infected mice was applied to our experiment. The LUC units 

in the first 12 hours after the infection were collected from the 

IVIS XRII 200 biophotonic imager. The regression equations 

for sham-treated and IK8L-treated groups were

	 y=92967+47002x� (1)

and

	 y=52770+6546x, � (2)

respectively (Figure S2A), where the x axis represents 

infection time and the y axis represents the level of infec-

tion. These equations suggest that bacterial dissemination 

is dependent on the diffusing force in a constant manner. It 

is possible that these two equations can predict the relative 

LUC units over a long period of time. According to the 

equations, the LUC units at 24 hours, 36 hours, 48 hours, 

and 50 hours were predicted (Figure S2B). The results of 

the infected mice by Kp Xen-39 of 1×105 CFU showed that 

the actual values were highly comparable to the predicted 

values at each of the corresponding time points (Figure S2B). 

Overall, the math model used here may enable the predic-

tion of infection levels in a long time period. Apparently, 

much broader infection areas were observed in control 

mice; approximately 50% of infected mice died within 
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Figure 1 Peptide (IK8L) decreased mortality rates and disease severity in Kp-infected mice. 
Notes: (A) Whole animal imaging of bioluminescence was obtained using IVIS XRII system at different time points. Sham- and IK8L-treated mice were infected with 1×105 
CFU of Kp Xen-39 by nasal cavity (Caliper) (arrows indicating Kp spread regions). (B) Kaplan–Meier survival curves were obtained (P=0.0455; 95% confidence interval: 1.041 
to 52.46, log-rank test). (C) Bacterial burdens (CFU) of Kp-infected mice treated with IK8L or control at different times. In (A), data are shown as mean ± SD/SEM of n=4 
mice per group; (A–C) are representative of four mice per group. ***P,0.001; Mann–Whitney U-test.
Abbreviations: CFU, colony-forming units; h, hours; Kp Xen-39, ; Max, maximum; Min, minimum; RLU, relative LUC units; LUC, luminescence unit counts; SD, standard 
deviation; SEM, standard error of the mean.

24 hours postinfection (Figure 1B), and all infected mice 

died at 50 hours. In contrast, all mice receiving IK8L treat-

ment remained alive during the entire period of observation 

(Figure 1B). These results suggest that IK8L treatment is 

effective and improves the survival chances of infected mice. 

Furthermore, the lung homogenates were investigated for 

bacterial burdens. IK8L-treated mice exhibited significantly 

decreased CFUs of Kp compared to the control mice without 

IK8L treatment at both 8 hours and 24 hours postinfection 

(Figure 1C).

IK8L reduced AM killing after Kp  
infection in mice
Since Kp Xen-39 was an engineered bioluminescent bacterium 

for imaging analysis, we next chose the widely used Kp and 

Kp-GFP strain to explore the pathogenesis mechanisms of IK8L 

against Kp infection. AM cells are key immune cells against 

Gram-negative bacterial infection. AM cells were isolated from 

the infected mice using BAL and evaluated for their viability. 

The viability of AM was increased by approximately three-

fold in IK8L-treated mice compared to untreated mice both at 

24 hours and 48 hours postinfection (Figure 2A), indicating 

that IK8L treatment increased AM survival during Kp infec-

tion. PMN in the lung and blood was analyzed at 8 hours and 

24 hours postinfection.18 Cell apoptosis was determined by flow 

cytometry using Annexin V/propidium iodide double staining, 

which showed a significant decrease in the apoptotic population 

in IK8L-treated group (3.23%) compared to the sham control 

group (51.53%) (Figure 2B). PMN penetration was also lower 

in both the BAL fluid and blood of IK8L-treated mice than that 

of sham-treated mice (Figure 2C and D). In addition, PMN in 

the BAL fluid of the control mice increased with time, while 

that in the peptide-treated mice was effectively suppressed from 

24 to 48 hours postinfection (Figure 2C). As phagocyte-derived 

reactive oxygen species (ROS) is of crucial importance against 

bacterial infections,39 ROS levels in AM cells of Kp-infected 

mice were assessed at 8 hours and 24 hours postinfection by an 

NBT assay. ROS was decreased in AM cells from IK8L-treated 

mice compared to control mice, which might lead to reduced 

production of superoxide dismutase (Figure 2E). To further 

ascertain this finding, a sensitive assay, H
2
DCF-DA, was also 

used to quantify superoxide in AMs. Indeed, the production 

of superoxide in IK8L-treated mice was reduced compared to 

sham-treated mice (Figure 2F).
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IK8L decreased infection-induced 
tissue injury
To further assess the tissue damage, the morphological 

alterations in the lung of infected mice were next investigated 

by H&E staining. As shown in Figure 3A, the infected mice 

without sham-treated bacteria exhibited apparent signs of 

inflammatory response, tissue damage, and severe pneumo-

nia. In contrast, the lungs of IK8L-treated mice had lower 

inflammatory features, including PMN penetration and tissue 

damage, than the sham-treated controls. Another mortiferous 

factor for bacterial infection is bacterial dissemination from 

lungs to other organs. Bacterial dissemination can promote 

disease progression, such as bacteremia and ultimately 

sepsis.39 Therefore, bacterial burdens in the liver, spleen, 

and kidney were further examined. As compared to the lungs 

(Figure 1C), bacterial load magnitudes in these organs were 

decreased (Figure S1A–C). Particularly, bacterial CFUs were 

significantly decreased in the liver, spleen, and kidney of 

IK8L-treated mice compared to those of sham-treated mice 

(Figure S1A–C). Myeloperoxidase (MPO) is released from 

PMN in the lung tissue in response to exposure to various 

pulmonary insults,40 which may serve as an indicator for 

infection extent. The MPO activity of the lung and other 

organs was analyzed, and it was found that MPO activity 

of the lung, liver, spleen, and kidney in IK8L-treated mice 

was significantly lower than that of sham-treated mice 

(Figure 3B–E). These findings suggest that IK8L treatment 

reduced organ damage induced by Kp infection.
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Figure 5 IK8L modulated Kp-induced inflammatory reaction via the IL-6/JAK/STAT3 signaling pathway. 
Notes: (A–C) ELISA was used to measure IL-6, TNF-α and IL-1β in BAL fluids of mice 8 hours and 24 hours post infection, respectively. (D) Cell signaling proteins relating 
to the JAK2/STAT3 signaling pathway were evaluated in lung tissue by Western blotting analysis. (E) Expression and phosphorylation of signaling proteins relating to NF-κB 
transcription factor were evaluated in lung tissue by Western blotting. (F) Cell signaling proteins relating to the AKT signaling pathway were evaluated by Western blot. 
β-actin was used as a loading control. Data are shown as mean ± SEM of n=3 mice per group and are representative of three independent experiments. *P,0.05; **P,0.01; 
***P,0.001; one-way ANOVA (Tukey’s post hoc). 
Abbreviations: ANOVA, analysis of variance; BAL, bronchoalveolar lavage; ELISA, enzyme-linked immunosorbent assay; IL, interleukin; Kp, Klebsiella pneumoniae; SEM, 
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IK8L killed Kp by blocking biofilm 
formation and modulated Kp-induced 
inflammatory responses via the IL-6 
signaling pathway
To explore the molecular mechanism in killing Kp, we 

detected biofilms of Kp and observed its inability to form 

biofilms when treated with IK8L (Figure 4A–C, compared 

to sham controls). Microscopy observation indicated that 

the biofilm of Kp was thinner in IK8L-treated groups than 

sham controls. Thus, these data suggest that IK8L may inter-

fere with the biological behavior of Kp, hampering biofilm 

formation. We speculate that IK8L-mediated bactericidal 

activity is at least partially related to biofilm formation.

To analyze whether IK8L may regulate inflammation dur-

ing Kp infection, we assessed various cytokines in BALF
 
by 

ELISA.41 The levels of tumor necrosis factor alpha (TNF-α), 

interleukin-6 (IL-6), and IL-1β decreased significantly in the 

BALF of IK8L-treated mice compared to those of sham-

treated mice at 24 hours postinfection (Figure 5A–C). To 

further explore the molecular bactericidal mechanism of IK8L 

in Kp-infected mice, inflammation-relevant signaling proteins 

in lung homogenates were next analyzed. First, the expression 

of STAT3, JAK2, and ERK1/2 involved in the IL-6 signaling 

pathway was examined. Kp infection increased the expres-

sion of STAT3, JAK2, and ERK1/2 in the mice compared to 

sham-treated mice. However, IK8L treatment significantly 

reduced the levels of STAT3, JAK2, and ERK1/2 compared 

to sham-treated mice, and STAT3 was even lower than in 

untreated mice (Figure 5D). The expression and phosphory-

lation of JNK, NF-κB, and IκB was also measured, which 
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showed that while the levels of JNK and IκB in IK8L-treated 

mice were similar to those of sham-treated mice following 

Kp infection, both protein expression and phosphorylation of 

NF-κB were increased by Kp infection and the increase was 

somewhat blocked by IK8L treatment (Figure 5E). These 

findings suggest that IK8L inhibited inflammatory responses 

by decreasing the expression of STAT3, JAK2, and ERK1/2, 

but did not inhibit NF-κB transcription. To validate these 

observations, the expression of other signaling proteins (AKT 

and PI3K) was also measured, and also showed similar pat-

terns as STAT3, JAK2, and ERK1/2 after IK8L treatment 

(Figure 5F). Taken together, IK8L modulated inflammatory 

responses during Kp infection through the JAK/STAT3 and 

AKT/PI3K signaling pathway.

STAT3 signaling plays crucial roles 
in antibacterial activity of IK8L
To further confirm the crucial role of JAK/STAT3 signaling, 

the STAT3 inhibitor was used to study the signal pathway 

in murine MH-S, a widely used model for studying murine 

macrophages function.42 After 3 hours incubation with this 

inhibitor, cells were infected with Kp for 1 hour at 10:1 MOI. 

As shown in Figure 6A, IK8L-treated cells exhibited mark-

edly decreased production of ROS compared to sham-treated 

cells. However, blocking STAT3 increased production of 

ROS in IK8L-treated MH-S cells compared to control cells 

or IK8L-treated MH-S cells without blocking, as determined 

by an NBT assay (Figure 6A). Moreover, H
2
DCF-DA assay 

was also used to measure superoxide for validating the NBT 
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Figure 6 STAT3 signaling pathway played a crucial role in IK8L antibacterial function. 
Notes: (A) Superoxide production in MH-S cells significantly increased by blocking STAT3 with an inhibitor, compared to controls before peptide treatment using an NBT 
assay (1 mg/mL). The data were recorded at 560 nm absorbance. (B) Oxidative stress was increased by blocking STAT3 compared to controls before peptide treatment 
as determined by the H2DCF assay (5 μM). The fluorescence was quantified at 488 nm. (C) MTT assay indicated decreased cell viability of blocking STAT3 in MH-S cells 
compared to controls before peptide treatment. (D) Confocal fluorescence microscopy image showing Kp distributions and lipid raft staining using CTB chain (arrows 
indicating internalized Kp, scale bar =20 μm). (E) Quantification of colocalization between Kp and lipid raft from D, and expressed relative to sham-treated cell. (F) Bacterial 
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data, and IK8L treatment indeed reduced the production of 

superoxide, while blocking STAT3 led to increased super-

oxide production (Figure 6B). Furthermore, the viability 

of Kp-infected cells was increased after IK8L treatment, 

while blocking STAT3 reduced cell viability compared to 

IK8L-treated cells as assessed by an MTT assay (Figure 

6C). In vivo dynamic analysis also indicates the potential 

role of IK8L in eradicating Kp in MH-S cells. MH-S cells 

were treated with IK8L (62.5 µg/mL) for 4 hours; after 3 

hours of blocking, cells were infected with Kp-GFP in a 

10:1 MOI for 2  hours. Then the cells were stained with 

lipid raft marker rhodamine-labeled CTB. Lipid rafts are 

shown to be associated with membrane signaling, including 

phagocytosis.43,44 The distribution of Kp within these cells 

was evaluated using confocal laser-scanning microscopy, 

and the bacterial amount in IK8L-treated cells was less than 

that in cells without IK8L treatment. There are more lipid 

rafts aggregates (CTB stained) in IK8L-treated cells than 

sham-treated cells, indicating that more active lipid rafts 

may contribute to enhanced antibacterial potency (Figure 

6D). Thus, we quantified the colocalization between invad-

ing Kp and lipid rafts, which showed significant overlaps 

Kp

Kp

JAK2 IK8L

STAT3

PI3K/AKT

ERK1/2

Transcription
factors Cytokines (IL-6)

IK8L
Lipid rafts

Figure 7 Schematic diagram showing how IK8L regulates the JAK/STAT3 pathway and counteracts the Klebsiella infection, especially through modulation of inflammatory 
responses.
Abbreviations: IL, interleukin; Kp, Klebsiella pneumoniae.

in IK8L-treated cells than sham-treated cells (Figure 6E). 

These data suggest that increased raft aggregates may 

facilitate bacterial killing by IK8L. Importantly, block-

ing STAT3 resulted in bacterial amounts similar to that in 

sham-treated groups (Figure 5D). To more quantitatively 

analyze the data, cell lysates were used to enumerate bacte-

rial burdens, which were in good agreement with the results 

of microscopy analysis (Figure 6F). These results indicated 

that IK8L markedly inhibited Kp survival rates in mouse  

macrophage cells. However, blocking STAT3 also increased 

Kp survival rates compared to controls without using 

STAT3 inhibitor, implying that IK8L inhibited Kp survival 

rates in a JAK/STAT3-dependent manner. Taken together, 

JAK/STAT3 signaling probably plays an essential role in 

the antimicrobial function against Kp, which is delineated 

in a schematic diagram (Figure 7).

Discussion
Recently we have designed a series of short synthetic β-sheet 

folding peptides with (X
1
Y

1
X

2
Y

2
) n sequence (X: hydropho-

bic amino acids, Y: cationic amino acid, n: the number of 

repeat units). By disrupting the bacterial membrane, IK8L 
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effectively killed clinically isolated multidrug-resistant bac-

teria, such as methicillin-resistant Staphylococcus aureus, 

Acinetobacter baumannii, Pseudomonas aeruginosa, and 

Mycobacterium tuberculosis,45 and prevented drug resistance 

development. Significantly reduced intracellular bacteria 

counts were observed after IK8L treatment in murine mac-

rophage cell line RAW264.7 with Staphylococcus aureus 

infection. IK8L was found to be optimal with abilities 

of endotoxin neutralization and biofilm eradication.21 To 

investigate whether this peptide has potential for use as an 

antibacterial agent against the difficult-to-kill Kp infection in 

clinics, the efficacy of IK8L against Kp-induced acute pneu-

monia and its role in the host defense were studied using our 

well-established mouse model.46 Our data demonstrated that 

IK8L significantly alleviated severe infection after lethal dose 

challenge in mice, leading to significantly reduced bacterial 

burdens in major organs, decreased mortality, and lowered 

inflammatory cytokine response. Furthermore, these stud-

ies suggest that IK8L may be able to eradicate the invading 

bacteria, thereby attenuating inflammatory responses and 

avoiding tissue injury.

Infection of MDR bacteria has become a global health 

issue in both communities and hospitals.47 The evolution of 

clinical strains of antibiotic-resistant bacteria has signifi-

cantly increased the risk of hospital-acquired infection.48 The 

ineffectiveness of commonly used antibacterial drugs and 

the emergence of antibiotic-resistant bacteria require new 

potent therapy for drug-resistant infections. One innovative 

approach is to use AMPs with a membrane-lytic functional 

mechanism as antibiotic agents.

In this study, the bactericidal activity of IK8L was evalu-

ated in mouse models. This peptide targeted bacterial outer 

membrane structure and showed surprisingly high efficacy 

in killing MDR Gram-positive and Gram-negative bacteria.38 

Compared to other antibacterial peptides, IK8L shows high 

sterilization activity with a broad spectrum. One typical 

antibacterial mechanism of IK8L is the membrane disruption. 

The membrane of Kp, a successful Gram-negative human 

pathogen, contains abundantly charged lipids, and these 

negative charges can significantly enhance the membrane 

binding of peptide.49 Sepsis is a grave clinical syndrome 

due to high mortality rates, resulting from an impaired host 

response to infection.50 An obvious increase in the survival 

rate of Kp-infected mice has, to our knowledge, been 

observed for the first time, indicating high efficacy of IK8L 

against Kp infection in a time- and dose-dependent manner. 

In a mouse septic model, groups treated with IK8L signifi-

cantly reduced infection levels. In the present study, a dose 

of 20 mg/kg was highly effective in vivo when administered 

intravenously. Meanwhile, we also used a math model to 

gauge infection levels over long time periods, which might 

be a potential tool to predict disease progression of Kp infec-

tion in clinics.

We also found that IK8L could slow down the forma-

tion of biofilms. As biofilm is very important for bacterial 

resistance to antibiotics and a harsh host environment, the 

peptide may be useful for controlling chronic infection 

in immunodeficient individuals. Another key finding of 

our study is that IK8L could markedly decrease cytokine 

response IL-6 in mice infected by Kp, which was observed 

both in the lungs and BAL fluids. In this model, IL-6 was 

down-regulated through a STAT3 pathway in IK8L-treated 

mice. Other reports have shown that IL-1β and TNF-α were 

important for host responses to Kp infection.51 However, 

we have found the changes of these two cytokines were 

less substantive. The detailed mechanism is unknown but 

might be due to a select impact on the production of proin-

flammatory cytokines in Kp-infected mice. Kp infection 

can significantly promote a spontaneous activation of the 

JAK/STAT pathway. However, the IK8L can downregulate 

STAT3 and ERK1/2 expression in Kp infected cells and 

organs, and subsequently inhibit the downstream signaling 

pathway factors and inflammatory reaction. These find-

ings suggest that IK8L did not inhibit NF-κB transcription 

and AKT/PI3K expression following infection. Thus, we 

speculate that there may be an interaction between STAT3 

and ERK1/2 to impact proinflammatory cytokine produc-

tion. However, how these signaling pathways regulate 

inflammatory responses is still unclear and needs additional 

validations, which may be interesting future directions for 

further research.

Due to the complexity of cell signals that may constitute 

a variety of cellular components and organ systems,52,53 

much needs to be pursued in the future to further understand 

the detailed mechanisms after in vivo peptide application. 

We used the peritoneal route to administer the peptide, 

but airway delivery may also be considered for prevent-

ing or treating lung infection, a frequent invasion route 

of Kp. It will also be interesting to test the applicability 

of the peptide in treatment of P. aeruginosa in animals, 

another successful bacterium crying for lack of effective 

vaccines.54,55 Although current studies indicate a potential 

for the peptide to be applied in prevention and treatment of 

Kp infection, we predict that there may be a long process 

before the realization of that promise, like other preventive 

and therapeutic research.53,56–59
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Conclusion
The current study has demonstrated that IK8L is highly 

effective against Kp infection in an infected-Kp mouse 

model. Since the ever-increasing multidrug resistance limits 

available therapeutic options, this novel AMP may provide 

a strategy for treating Kp or other MDR infections. Future 

studies should attempt to fully characterize the usefulness 

of antimicrobial IK8L as a clinically useful therapeutic for 

multidrug-resistant infectious diseases.
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Figure S1 IK8L decreased the dissemination of infection.
Notes: (A–C) The liver, spleen, and kidneys showed significantly decreased bacterial burdens after infection with Kp in IK8L-treated mice compared with sham-treated mice. 
IK8L-treated mice and sham-treated mice were infected with 1×105 CFU/mouse Kp at 8 and 24 hours. Fresh tissues were homogenized in PBS. The same amounts of tissue 
were evaluated for testing bacterial colonies and the unit is CFU/g. The data are representative of four mice per group. ***P,0.001; Mann–Whitney U-test.
Abbreviations: CFU, colony-forming unit; Ctrl, control; h, hours; Kp, Klebsiella pneumoniae; PBS, phosphate-buffered saline.
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Figure S2 Prediction of infection with time using the mathematical model.
Notes: (A) Data obtained from in vivo imaging were quantified using relative LUC units of the two groups in sham-treated and IK8L-treated mice at 1 hour, 2 hours, 4 hours, 
8 hours, and 12 hours. Sham- and IK8L-treated mice were infected with 1×105 CFU/mouse of Kp Xen-39 by nasal cavity. Semiquantitatively, bioluminescence intensity was 
obtained using IVIS XRII software. Regression equation was calculated using SPSS software calculations. (B) The data showing predicted relative LUC units of two groups 
according to two regression equations in (A) at 24 hours, 36 hours, 48 hours, and 50 hours according to our regression equation. (C) The data showing actual LUC units 
of the two groups in sham-treated and IK8L-treated mice at 24 hours, 36 hours, 48 hours, and 50 hours. Sham- and IK8L-treated mice were infected with 1×105 CFU of  
Kp Xen-39 by nasal cavity.
Abbreviations: CFU, colony-forming units; LUC, luminescence unit counts.
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