

ORIGINAL RESEARCH

FH535 inhibited metastasis and growth of pancreatic cancer cells

Meng-Yao Wul,* Rong-Rui Liang^{I,*} Kai Chen¹ Meng Shen¹ Ya-Li Tian 1,2 Dao-Ming Li¹ Wei-Ming Duan¹ Oi Gui¹ Fei-Ran Gong³ Lian Lian 1,2 Wei Li^{1,6} Min Tao 1,4-6

Department of Oncology, The First Affiliated Hospital of Soochow University, ²Department of Oncology, Suzhou Xiangcheng People's Hospital, ³Department of Hematology, The First Affiliated Hospital of Soochow University, 4Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 5Institute of Medical Biotechnology, Soochow University. Suzhou, 'PREMED Key Laboratory for Precision Medicine, Soochow University, Suzhou, People's Republic of China

*These authors contributed equally to this work

Correspondence: Wei Li; Min Tao Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou 215006, People's Republic of China Tel +86 6778 0315; +86 6778 0310 Fax +86 512 623 8798 Email liwei I 0@suda.edu.cn; mtao@medmail.com.cn

Abstract: FH535 is a small-molecule inhibitor of the Wnt/β-catenin signaling pathway, which a substantial body of evidence has proven is activated in various cancers, including pancreatic cancer. Activation of the Wnt/β-catenin pathway plays an important role in tumor progression and metastasis. We investigated the inhibitory effect of FH535 on the metastasis and growth of pancreatic cancer cells. Western blotting and luciferase reporter gene assay indicated that FH535 markedly inhibited Wnt/β-catenin pathway viability in pancreatic cancer cells. In vitro wound healing, invasion, and adhesion assays revealed that FH535 significantly inhibited pancreatic cancer cell metastasis. We also observed the inhibitory effect of FH535 on pancreatic cancer cell growth via the tetrazolium and plate clone formation assays. Microarray analyses suggested that changes in the expression of multiple genes could be involved in the anti-cancer effect of FH535 on pancreatic cancer cells. Our results indicate for the first time that FH535 inhibits pancreatic cancer cell metastasis and growth, providing new insight into therapy of pancreatic cancer.

Keywords: pancreatic cancer, FH535, β-catenin, metastasis, growth

Introduction

Pancreatic cancer is one of the most aggressive human malignancies worldwide. Despite improvements in surgical and chemotherapeutic approaches over the past decades, the prognosis of pancreatic cancer remains dismal; the average overall 5-year survival rate is <5%. The reasons for this are the challenges associated with diagnosis, which tends to be late and uncertain; more importantly, therapeutic options are limited. Even with early diagnosis and surgical resection with curative intention, nearly all patients develop local recurrence or distant metastases following surgery and eventually succumb to the debilitating effects of metastatic growth.^{2,3} Conventional chemotherapy is rarely curative for metastatic pancreatic cancer. In recent years, there have been important advances in the organization of care for patients with pancreatic cancer; these advances have also resulted in more focused studies on surgical, oncological, and immunological treatment.

The Wnt/β-catenin pathway is a genetically conserved signaling pathway associated with a variety of human conditions such as birth defects and tumors. Abnormal Wnt/ β-catenin pathway activation is closely related to the development of many cancers. ^{4,5} An increasing amount of evidence demonstrates that both the β-catenin-dependent (canonical) and β-catenin-independent (non-canonical) Wnt signaling pathways play a key role in regulating pathological processes by facilitating tumor growth, migration, and invasion. In canonical Wnt signaling, glycogen synthase kinase-3β (GSK-3β) phosphorylates β-catenin at certain key residues, leading to its ubiquitination and subsequent degradation.^{5,6} Non-phosphorylated β-catenin accumulates in the cytoplasm,

how to request permission may be found at: http://www.dovepress.com/permissions.php

and pathway activation leads to nuclear accumulation of β -catenin and interaction with T-cell factor (TCF) transcription factors, subsequently stimulating the downstream target genes, which include the genes participating in cell metastasis and proliferation. ^{7,8}

Abnormal Wnt/ β -catenin pathway activation plays an important role in human pancreatic cancer, where it causes extracellular matrix degradation and uncontrolled cell proliferation and differentiation. Recent studies have demonstrated that FH535 is a synthetic inhibitor of the canonical Wnt signaling pathway; it inhibits the growth of colon, lung, breast, and hepatocellular carcinoma lines, 10,11 suggesting that small-molecule targeting of the Wnt/ β -catenin pathway could be a promising therapeutic approach for cancers in which this pathway is activated.

In this study, we investigated the anti-cancer effect of FH535 on pancreatic cancer and explored the mechanisms underlying the effect, providing a rationale for further development of FH535 as a promising therapeutic agent for treating pancreatic cancer.

Materials and methods

Cell cultures and reagents

The human pancreatic cancer cell lines PANC-1 and BxPC-3 were purchased from American Type Culture Collection (ATCC) (Manassas, VA, USA). The cells were maintained in Dulbecco's Modified Eagle's Medium (DMEM; Thermo Fisher Scientific, Waltham, MA, USA) supplemented with 10% fetal calf serum (FCS), 100 U/mL penicillin, and 100 μg/mL streptomycin (Thermo Fisher Scientific) at 37°C in a 5% CO₂ incubator under a humidified atmosphere; the cells were passaged every 2–3 days for exponential growth. FH535 was purchased from EMD Millipore (Billerica, MA, USA).

Western blotting

Total protein was extracted using a lysis buffer (50 mM Tris-HCl [pH 7.4], 150 mM NaCl, 1% Triton X-100, 0.1% sodium dodecyl sulfate [SDS], 1 mM EDTA) supplemented with a protease inhibitor cocktail kit and a phosphatase inhibitor cocktail kit (Hoffman-La Roche Ltd., Basel, Switzerland). The protein extracts were loaded, size-fractionated by SDS-polyacrylamide gel electrophoresis, and transferred to poly-vinylidene difluoride membranes (Bio-Rad Laboratories Inc., Hercules, CA, USA). After blocking, the membranes were incubated with the primary antibodies mouse anti-β-catenin (Santa Cruz Biotechnology Inc., Dallas, TX, USA) and rabbit anti-β-actin (Proteintech Group Inc., Chicago, IL, USA) at 4°C overnight. Protein expression was determined using horseradish peroxidase-conjugated anti-mouse or anti-rabbit secondary antibodies, followed by detection using enhanced

chemiluminescence (EMD Millipore). Band intensity was visualized using a JS-1035 image analysis scanning system (Shanghai Peiqing Science & Technology, Co., Ltd., Shanghai, People's Republic of China).

Luciferase reporter assay

β-catenin is a dominant factor in the Wnt/β-catenin/TCF signaling pathway, which regulates gene transcription by binding β-catenin and TCF. The activity of this final step in the pathway can be precisely measured using a luciferase reporter construct. The reporter plasmid pTOPFLASH (TCF reporter plasmid; EMD Millipore) contains two sets (the second set is in the reverse orientation) of three copies of the TCF binding site (wild-type) upstream of the thymidine kinase minimal promoter and luciferase open reading frame. The internal control plasmid pRL-SV40 (Promega Corporation, Fitchburg, WI, USA) contains the Renilla luciferase gene. Cells were transiently cotransfected with pTOPFLASH plasmid (500 ng/well) and pRL-SV40 plasmid (100 ng/well) for 6 hours using Lipofectamine 2000 (Thermo Fisher Scientific) according to the manufacturer's protocol. Then, the medium was renewed and FH535 was added. After 24 hours of treatment, cell lysates were subjected to the dual luciferase reporter assay according to the manufacturer's recommendations; luciferase activity was measured using a luminometer (Turner Designs, Sunnyvale, CA, USA). The results are expressed as relative luciferase activity, ie, the ratio of firefly luciferase activity over Renilla luciferase activity.

Wound healing assay

Cells (1×10⁴/well) were seeded in 96-well plates and grown to confluence. The monolayer culture was artificially scrape wounded with a sterile micropipette tip to create a denuded zone of constant width. Each well was washed with phosphate-buffered saline twice to remove the detached cells before FH535 treatment. Cell migration to the wounded region was observed using an XDS-1B inverted microscope (MIC Optical and Electrical Instrument, Chongqing, People's Republic of China) and photographed (×40 magnification). Images were captured at 0, 8, and 12 hours to monitor the wound healing process. The wound areas were measured using ImageJ (NIH, Bethesda, MA, USA).

Transwell invasion assay

We used a 24-well Transwell plate with an 8 μ m pore size polycarbonate filter membrane (Corning Incorporated, Corning, NY, USA). Cells (1×10⁵) in 100 μ L serum-free DMEM were added to the Matrigel-coated top chamber (BD Biosciences, San Jose, CA, USA); the bottom chamber contained

DMEM with 10% FCS. The cells were incubated for 24 hours; cells that had invaded through the Matrigel-coated membrane were fixed and stained with crystal violet and counted under a light microscope in five random fields in a blinded fashion.

Adhesion assay

Cells were resuspended in complete medium and seeded in 24-well plates at 1×10^4 cells/mL. After 5-hour incubation, the unattached cells were removed to another well. The attached and unattached cells were evaluated using the 3-[4,5-dimethylthiazol-2-yl] 2,5-diphenyltetrazolium bromide (MTT) assay. The adhesion rate was calculated as follows: (absorbance of attached cells/[absorbance of attached cells + absorbance of unattached cells]) ×100%.

MTT assay

Cell growth was evaluated using the MTT assay. Cells (5×10^4) well) were seeded in 24-well tissue culture plates. Blank control was treated with DMSO. After FH535 treatment, MTT (Sigma-Aldrich Co., St Louis, MO, USA) was added to each well (final concentration, 0.5 mg/mL), followed by 4-hour incubation at 37°C. The medium was removed, and $800~\mu\text{L}$ of dimethyl sulfoxide was added to each well. The absorbance of the mixture was measured at 490 nm using a microplate enzyme-linked immunosorbent assay reader (Bio-Rad Laboratories Inc.). The relative cell viability was calculated as follows: relative cell viability = (mean experimental absorbance/mean control absorbance) $\times 100\%$.

Plate clone formation assay

Cells (200/well) were seeded in 24-well plates and treated after 12 hours. After 15 days, the cells were stained with 1% methylrosanilinium chloride, and the number of visible colonies was counted. The relative clone formation ability was calculated as follows: (mean experimental clone number/mean control clone number) ×100%.

Cell cycle analysis

Before treatment, the cells were serum starved for 24 hours to synchronize the cell cycle. Then, FCS was added to the cells, followed by various concentrations of FH535. Following 24 hours of FH535 treatment, the cells were fixed in 80% cooled ethanol and incubated with 0.5% Triton X-100 solution containing 1 mg/mL RNase A at 37°C for 30 minutes. Next, propidium iodide (Sigma-Aldrich Co.) was added to the wells (final concentration, $50 \,\mu\text{g/mL}$), followed by 30-minute incubation in the dark. Cellular DNA content was analyzed using a fluorescence-activated cell sorter (Becton Dickinson, Franklin Lakes, NJ, USA). Data

were processed using ModFit LT software (Verity Software House, Topsham, ME, USA).

Microarray assay

Sample preparation and processing were performed as described in the GeneChip Expression Analysis Manual (Agilent Technologies, Santa Clara, CA, USA). Differentially expressed genes were screened using Agilent 44K human whole-genome oligonucleotide microarrays. The selection criterion was greater than twofold difference in expression (difference in upregulated expression was greater than twofold; difference in downregulated expression was less than 0.5-fold). Hierarchical clustering of samples was performed using an average linkage algorithm using TIGR MultiExperiment Viewer (The Institute for Genomic Research, Rockville, MD, USA).

Statistical analysis

Each experiment was performed in at least triplicate. Results are expressed as the mean \pm standard deviation. Statistical analysis was performed using an unpaired Student's *t*-test. P < 0.05 was considered significant.

Results

FH535 inhibited the β -catenin pathway in pancreatic cancer cells

Treatment with 20 μ M FH535¹² did not affect nuclear or total β -catenin expression in the BxPC-3 cells, but downregulated nuclear and total β -catenin in the PANC-1 cells (Figure 1A). The luciferase reporter assay confirmed that FH535 suppressed TCF-dependent transcription, which may have led to dysregulation of the genes downstream of the β -catenin pathway (Figure 1B). To verify this, we performed microarray analyses to determine the mRNA expression changes in 138 genes downstream of the β -catenin pathway using Agilent 44K human whole-genome oligonucleotide microarrays (http://www.stanford.edu/group/nusselab/cgi-bin/wnt/target_genes); 20 μ M FH535 upregulated or downregulated multiple genes (Figure 1C, Table 1).

FH535 inhibited pancreatic cancer cell migration

In all, 20 μ M FH535 inhibited pancreatic cancer cell migration in a time-dependent manner (Figure 2A). To investigate the mechanisms involved, we analyzed the microarray data to illustrate the expression of genes participating in focal adhesion (Figure 2B, Table 2), 13,14 adhesion junctions (Figure 2C, Table 3), $^{15-17}$ tight junctions (Figure 2D, Table 4), $^{18-23}$ and cell motility (Figure 2E, Table 5). $^{24-27}$

FH535 inhibited pancreatic cancer cell invasion

The Matrigel invasion assay revealed that FH535-treated cells had significantly decreased invasive capacity as compared with the control cells (Figure 3A), supporting the premise that FH535 inhibits pancreatic cancer cell invasion. Moreover, FH535 inhibited the adhesion ability of pancreatic cancer cells dose-dependently (Figure 3C). We also analyzed the microarray data to explore the changes in the expression of genes involved in the in vitro invasion process, including extracellular matrix degradation (Figure 3B, Table 6), cell adhesion (Figure 3D, Table 7),^{28,29} and epithelial–mesenchymal transition (EMT) (Figure 3E, Table 8).^{30–33}

FH535 inhibited pancreatic cancer cell growth

Using MTT assay, we evaluated the inhibitory effect of FH535 on pancreatic cancer cell line growth. The proliferation of PANC-1 and BxPC-3 cells cultured for up to 48 hours with FH535 was significantly inhibited time-dependently and dose-dependently as compared to the control cells (Figure 4A). The clone formation assays confirmed the dose-dependent

inhibitory effect of FH535 on pancreatic cancer cell growth (Figure 4B). We performed cell cycle analysis to confirm the antimitogenic effect of FH535. FH535 induced G2/M accumulation and decreased the cell population in the G0/G1 and S phases dose-dependently (Figure 4C). The expression profile of the cell cycle—related genes obtained from microarray analyses was analyzed (Figure 4D, Table 9).³⁴

Discussion

It is widely acknowledged that the prognosis of pancreatic cancer is very poor. The canonical Wnt/ β -catenin signaling pathway plays a key role in tumor development and dissemination. Classical Wnt signaling pathway causes accumulation of β -catenin in cytoplasm in complex with the transcription factor TCF/LEF that regulates target gene expression. Pysegulation of Wnt/ β -catenin signaling and altered transcription of β -catenin/TCF-regulated genes are found in many cancers, including pancreatic cancer. In this regard, we focused on characterizing the mechanisms of the anti-tumor effect of FH535 on pancreatic cancer cells.

Western blotting revealed that FH535 did not affect β-catenin expression in BxPC-3 cells. Interestingly, FH535

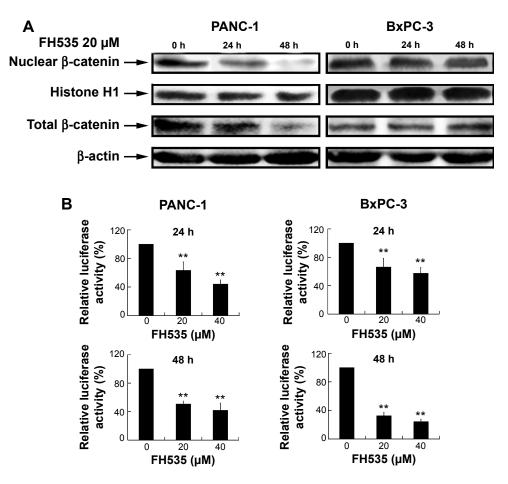
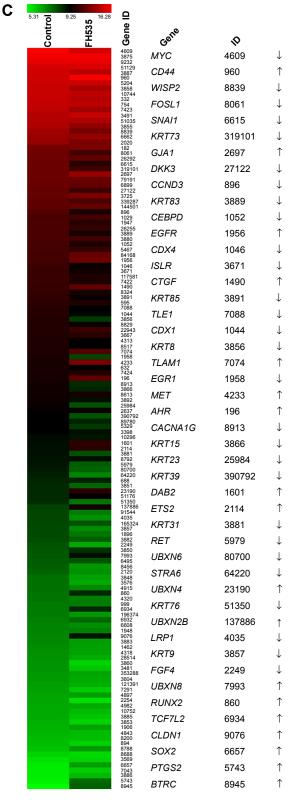



Figure I (Continued)

Figure I FH535 suppressed the Wnt/β-catenin pathway in pancreatic cancer cells. **Notes:** (**A**) Time-dependent decrease by FH535 of nuclear and total β-catenin protein levels in PANC-I cells; FH535 did not affect nuclear or total β-catenin expression in BxPC-3 cells. (**B**) Dose-dependent decrease by FH535 of TCF-dependent transcription. **P<0.01, significant differences vs the respective control groups. (**C**) Microarray analysis of expression regulation of genes downstream of the Wnt/β-catenin pathway upon 20 μM FH535 treatment. Up and down arrows indicate gene expression significantly upregulated or downregulated, respectively, by twofold. **Abbreviations:** TCF, T-cell factor; h, hours.

Table I Microarray analysis of expression regulation of genes downstream of the Wnt/ β -catenin pathway upon 20 μ M FH535 treatment

Gene	ID	Normalized intensity		
		Control	FH535	
MYC	4609	16.268158	15.204586	
KRT18	3875	15.975001	16.022995	
PTTGI	9232	15.680945	15.73604	
ANGPTL4	51129	15.190848	15.278334	
KRT81	3887	15.0413	14.423697	
CD44	960	15.006962	16.199093	
PFDN5	5204	14.879261	14.964103	
KRT10	3858	14.799751	13.889791	
PTTG2	10744	14.772796	14.547727	
BIRC5	332	14.757564	14.219355	
PTTG1IP	754	14.684395	14.533192	
VEGFB	7423	14.498004	13.671163	
CYR61	3491	14.279853	14.790296	
UBXNI	51035	14.231482	14.049252	
KRT7	3855	14.184294	13.285099	
WISP2	8839	13.732449	12.493675	
SOX9	6662	13.574989	13.415171	
EN2	2020	13.393019	12.721889	
JAG I	182	12.427784	12.687155	
FOSLI	8061	12.344017	11.102832	
MYCBP	26292	12.284651	11.974781	
SNAII	6615	12.28132	10.385736	
KRT73	319101	12.23975	11.053284	
GJA I	2697	12.226766	13.521647	
IRX3	79191	12.224495	12.16053	
TBXI	6899	12.181493	12.043698	
DKK3	27122	12.076692	10.961267	
JUN	3725	12.038464	12.673436	
MSLI	339287	11.920114	11.438548	
KRT80	144501	11.87818	12.039767	
CCND3	896	11.576098	10.075832	
CDKN2A EFNB1	1029	11.343829	11.097562	
	1947	11.337793	10.368351 10.750982	
PTTG3P KRT83	26255 3889	11.33311 11.319811	9.89329	
KRT19	3880	11.289505	11.101922	
CEBPD	1052	11.196305	10.068165	
PPARD	5467	11.19087	10.731722	
ANTXRI	84168	11.149265	12.122571	
EGFR	1956	11.122326	12.333595	
CDX4	1046	10.933424	9.588729	
ISLR	3671	10.854443	9.725897	
TWIST2	117581	10.853075	10.129753	
VEGFA	7422	10.833399	10.087871	
CTGF	1490	10.809845	11.98555	
FZD7	8324	10.711324	9.901575	
KRT85	3891	10.621079	9.606193	
CCNDI	595	10.543621	10.14267	
TLEI	7088	10.343489	9.271956	
CDXI	1044	10.329419	9.136879	
KRT8	3856	10.267347	8.319682	
NRPI	8829	10.246916	9.627893	
DKKI	22943	10.211538	10.979951	
IRS I	3667	10.175792	10.3609915	
MMP2	4313	10.153262	9.412593	
IKBKG	8517	10.132635	9.295626	
TIAM I	7074	10.117085	11.627998	
			(Continued)	

Dovepress

Table I (Continued)

Gono	ID	Normalized intensity	
Gene	ID		
		Control	FH535
EGRI	1958	10.007974	8.180263
MET	4233	9.986441	12.74971
BGLAP	632	9.971276	9.414629
VEGFC	7424	9.923567	10.21814
AHR	196	9.886938	11.936481
CACNAIG	8913	9.812038	8.560494
KRT15	3866	9.7214575	8.709181
PPAP2B	8613	9.718731	9.956581
KRT86	3892	9.707824	9.012362
KRT23	25984	9.573925	7.977122
GBX2	2637	9.409858	9.626151
KRT39	390792	9.284486	7.929165
WNT3A	89780	9.275467	8.68014
PLAUR	5329	9.265003	8.37788
ID2	3398	9.226584	8.999163
MAEA	10296	9.087043	8.91366
DAB2	1601	9.034534	10.517419
ETS2	2114	8.999426	10.445461
KRT3 I	3881	8.998071	7.96933
TNFRSFIIA	8792	8.943393	9.029845
RET	5979	8.9224615	7.809108
UBXN6	80700	8.850218	7.6966906
STRA6	64220	8.746183	7.1663184
KLF5	688	8.6543455	8.714795
KRT4	3851	8.640165	7.6698284
UBXN4	23190	8.607909	10.505396
LEFI	51176	8.601926	9.380911
KRT76	51350	8.571253	7.397269
UBXN2B	137886	8.2286415	9.982969
UBXN11	91544	8.179481	7.272692
LRP I	4035	8.175423	6.988433
UBXN2A	165324	8.133479	7.9562063
KRT9	3857	8.110517	7.0731263
EDA	1896	8.09645	7.4072337
KRT32	3882	8.087603	7.7537346
FGF4	2249	7.9492774	6.5977035
KRT3	3850	7.8908534	8.469248
UBXN8	7993	7.86574	9.013798
SIXI	6495	7.818405	7.9264607
FOXNI	8456	7.7998743	6.8640747
ETV6	2120	7.7085342	7.0067773
KRTI	3848	7.5221066	6.7497764
IL8	3576	7.501872	6.6113296
NTRK2	4915	7.497469	7.1365094
RUNX2	860	7.4688272	8.628798
MMPII	4320	7.460847	7.2920337
CDHI	999	7.3595057	7.319695
TCF7L2	6934	7.3556123	8.6040535
KRT78	196374	7.349466	6.8676143
TCF7	6932	7.270456	7.664296
SMO	6608	7.222788	7.0400887
EFNB2	1948	7.1960526	7.26771
CLDNI	9076	7.1643777	8.943991
KRT33A	3883	7.121948	6.808277
VCAN	1462	7.121946 7.045421	6.763195
MMP9	4318	7.043421	6.7540355
DLLI		6.969655	6.7340333
KRT13	28514	6.949356	5.971072
IGF2	3860 3481	6.933426	6.170534
101 2	JTUI	0.733720	(Continued)

Table I (Continued)

Gene	ID	Normalized intensity	
		Control	FH535
KRT26	353288	6.869997	6.697632
TNFRSF9	3604	6.862919	6.6031585
KRT74	121391	6.778076	6.538765
TWISTI	7291	6.765423	6.105777
NRCAM	4897	6.677019	6.781867
FGF9	2254	6.6647215	5.7855196
TNFRSFIIB	4982	6.6092443	6.618697
CHLI	10752	6.6082654	6.3569694
KRT34	3885	6.601664	6.199431
KRT6A	3853	6.536037	5.965691
EDNI	1906	6.476451	6.7537594
NOS2	4843	6.425461	6.333558
GDF5	8200	6.3569694	6.329126
CCND2	894	6.3239446	5.996339
DLKI	8788	6.2332454	6.884508
KRT37	8688	5.971611	5.881136
IL6	3569	5.7313643	5.9466343
SOX2	6657	5.6166873	6.797596
TGFB3	7043	5.5891886	6.055253
KRT35	3886	5.5883365	6.358085
PTGS2	5743	5.5262737	7.601541
BTRC	8945	5.3152456	7.747327

downregulated the protein level of total β-catenin in the PANC-1 cells, which differed from the results of most previous studies. 10 This cell type-dependent downregulation of β -catenin could have been due to the stabilization of axin, which suppresses β-catenin.¹¹ Axin is characterized as a tumor-suppressor gene, and it plays a key role in inhibiting the canonical Wnt pathway by forming molecular complexes with other proteins such as GSK-3β and adenomatous polyposis coli (APC).³⁸ Whether or not β-catenin expression was inhibited, the luciferase reporter assay proved that transcriptional activity of β-catenin pathway was decreased, which was consistent with previous study findings.¹⁰

Metastasis, the leading cause of cancer-related death, is a complex process comprising several steps, all of which we found were affected by FH535. First, FH535 inhibited pancreatic cancer cell migration. Microarray analyses revealed that FH535 altered the expression of several migrationrelated genes, which participate in focal adhesion, adhesion junctions, tight junctions, and/or motility regulation. Among these genes, the focal adhesion-related gene PTEN, considered "the most highly mutated tumor-suppressor gene in the post-p53 era", ³⁹ plays a role in controlling cell migration. ⁴⁰ The loss of PTEN protein expression or function has been reported in many human cancers, including ovarian, endometrial, and prostate carcinoma; breast cancer; and primary gastrointestinal stromal tumor. 41,42 We also found that FH535 downregulated the adhesion junction-related gene TLN1,

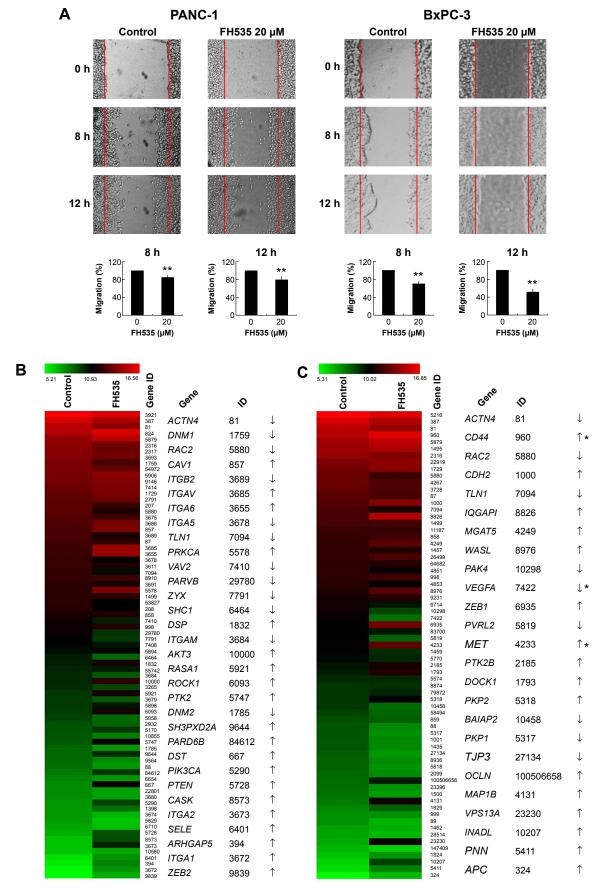


Figure 2 (Continued)

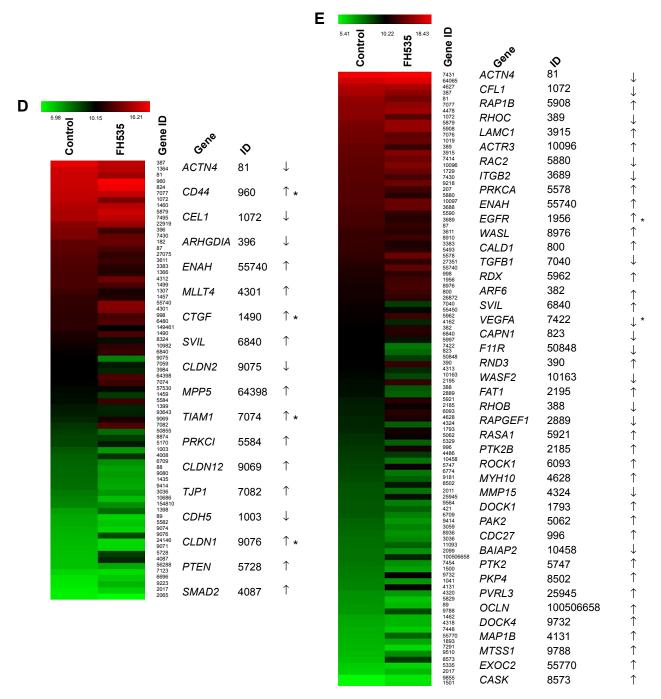


Figure 2 FH535 inhibited pancreatic cancer cell migration.

Notes: (A) Time-dependent inhibition by FH535 of PANC-I and BxPC-3 cell migration. **P<0.01, significant differences vs the respective control groups. Microarray analysis of (B) focal adhesion–related, (C) adhesion junction–related, (D) tight junction–related, and (E) cell motility–related gene expression regulation upon FH535 treatment. Up and down arrows indicate gene expression significantly upregulated or downregulated, respectively, by twofold. Asterisks indicate genes downstream of the Wnt/ β -catenin pathway.

Abbreviation: h, hours.

which encodes a cytoskeletal protein that is concentrated in areas of cell–substratum and cell–cell contact. The encoded protein plays a significant role in actin filament assembly and in the spread and migration of various cell types.^{43,44} TLN1 is codistributed with integrins in the cell surface membrane, aiding the attachment of adherent cells to extracellular

matrices and lymphocytes to other cells. In our study, tight junction protein 1 (TJP1), which plays a critical role in cell-cell interaction, proliferation, and differentiation, was upregulated. TJP1 is an important marker of tight junction integrity, which is disrupted in many highly invasive cancers; upregulated TJP1 correlates with favorable survival

Table 2 Microarray analysis of focal adhesion-related gene

expression regulation upon FH535 treatment

Table 2 (Continued)

Gene	ID	Normalized intensity	
		Control	FH535
ITGA I I	22801	7.7725782	7.250522
ITGA9	3680	7.725706	7.2797456
PIK3CA	5290	7.546133	9.475706
CRK	1398	7.5114365	8.404298
ITGA2B	3674	7.474538	6.8249826
PXN	5829	7.426979	6.493304
SPTB	6710	7.143782	6.598218
PTEN	5728	7.0376005	9.120998
CASK	8573	6.554297	9.147331
ITGA2	3673	6.538141	10.171594
SORBS I	10580	6.5160394	7.080136
SELE	6401	5.8820415	7.629673
ARHGAP5	394	5.628543	7.9602804
ITGA I	3672	5.3547735	7.6031985
ZEB2	9839	5.2203803	6.942315

Gene	ID	Normalized intensity		
		Control	FH535	
RPSA	3921	16.551584	16.069508	
RHOA	387	15.761177	14.786651	
ACTN4	81	15.032014	14.01403	
CAPN2	824	14.947017	15.841314	
RACI	5879	14.251518	15.113209	
FLNA	2316	14.083586	13.488903	
FLNB	2317	13.958575	13.296808	
ITGB5	3693	13.888797	13.484464	
DNMI	1759	13.640091	12.518821	
TMEM132A	54972	13.622586	13.150153	
RAPIA	5906	13.5597315	14.039375	
HGS	9146	13.533683	13.846248	
VCL	7414	13.376745	13.681126	
DIAPHI	1729	13.16062	13.659487	
GNG11	2791	13.022779	13.403848	
AKTI	207	12.957863	12.259176	
RAC2	5880	12.955015	11.604415	
ITGA3	3675	12.797894	12.391577	
ITGBI	3688	12.738785	13.636554	
CAVI	857	12.61244	13.617725	
ITGB2	3689	12.546266	11.473748	
ACTNI	87	12.409878	11.967234	

Table 3 Microarray analysis of adhesion junction-related gene

HGAS					, ,	•	II-I ciated gene
ITGBI	3688	12.738785	13.636554	expression r	egulation upon F	H535 treatment	
CAVI	857	12.61244	13.617725	Gene	ID	Normalized in	ntensity
ITGB2	3689	12.546266	11.473748			Control	FH535
ACTNI	87	12.409878	11.967234		F214		
ITGAV	3685	12.278682	14.3424	PFNI	5216	16.843973	16.144138
ITGA6	3655	12.273888	14.392418	RHOA	387	15.761177	14.786651
ITGA5	3678	12.169847	10.866323	ACTN4	81	15.032014	14.01403
ILK	3611	12.11682	11.583433	CD44	960	15.006962	16.199093
TLNI	7094	12.096641	10.645829	RACI	5879	14.251518	15.113209
SGCE	8910	12.047686	12.282321	CTNNAI	1495	14.209974	14.654735
ITGB4	3691	11.982763	11.56935	FLNA	2316	14.083586	13.488903
PRKCA	5578	11.918201	13.803304	MAPRE I	22919	13.413141	13.8757925
CTNNBI	1499	11.900537	11.841962	DIAPH I	1729	13.16062	13.659487
FXYD5	53827	11.859393	10.980669	RAC2	5880	12.955015	11.604415
AKT2	208	11.791592	10.995004	CD99	4267	12.8705635	12.11682
CAV2	858	11.534644	11.731664	JUP	3728	12.776809	12.098349
VAV2	7410	11.322939	10.17948	ACTNI	87	12.409878	11.967234
CDC42	998	11.250544	11.791042	CDH2	1000	12.27524	13.657263
PARVB	29780	11.224628	9.830263	TLNI	7094	12.096641	10.645829
ZYX	7791	10.997072	9.663998	IQGAPI	8826	11.903805	15.008826
VASP	7408	10.877319	10.418066	CTNNBI	1499	11.900537	11.841962
RAFI	5894	10.594473	10.865986	PKP3	11187	11.572304	11.483009
SHCI	6464	10.287678	8.595637	CAV2	858	11.534644	11.731664
DSP	1832	10.226259	11.500326	MGAT5	4249	11.399225	12.44798
PARVA	55742	10.0804615	10.301352	CSNK2A1	1457	11.389523	10.994029
ITGAM	3684	10.003317	8.889115	PLEK2	26499	11.380254	12.049034
AKT3	10000	9.999831	12.071189	ANAPCI	64682	11.330902	11.025982
HRAS	3265	9.972342	9.272375	NOTCHI	4851	11.311136	10.345143
PDPKI	5170	9.005413	9.698432	CDC42	998	11.250544	11.791042
HPSE	10855	8.978405	8.067395	NOTCH2	4853	11.125797	10.202223
PTK2	5747	8.939062	10.820772	WASL	8976	10.930079	12.483249
DNM2	1785	8.613899	7.43392	DLG5	9231	10.567565	11.019769
SH3PXD2A	9644	8.566784	9.949804	SRC	6714	10.48147	9.648777
BCAR I	9564	8.529809	7.7692404	PAK4	10298	10.446864	8.676079
ACTN2	88	8.437073	7.474538	VEGFA	7422	10.250756	7.901348
PARD6B	84612	8.172608	9.636746	ZEBI	6935	10.177025	13.283847
SOSI	6654	7.9648976	7.5355105	JAM3	83700	10.084784	9.556893
DST	667	7.7908773	11.245214	PVRL2	5819	10.018614	8.147698

Dovepress

Table 3 (Continued)

ID Gene Normalized intensity Control FH535 MET 4233 9.986441 12.74971 CSNK2A2 1459 9.960693 9.169151 PTPN I 5770 9.82763 9.271097 PTK2B 2185 9.636893 10.68203 **DOCKI** 1793 9.48097 11.021774 MAPKI 5594 9.240688 9.218932 ARHGEF7 8874 9.037083 9.147919 79872 9.0251875 9.311203 **CBLLI** PKP2 5318 9.022291 10.025781 BAIAP2 10458 9.018734 8.004229 JAM2 58494 8.789471 8.162707 CAV3 859 8.535716 8.229119 ACTN2 88 7.474538 8.437073 PKP I 5317 7.3570046 8.423988 CDH3 1001 8.389479 7.50349 **CSFI** 1435 8.360545 7.4550886 TJP3 27134 8.295799 7.207067 WASFI 8936 8.178464 7.4462004 PVRLI 5818 8.152037 7.283169 ESR I 2099 8.048168 7.405365 OCLN 100506658 8.036663 9.494983 PIP5K1C 23396 7.9606485 7.254657 1500 7.8659673 7.09317 **CTNNDI** MAPIB 4131 7.7052383 10.589897 DSG2 1829 7.513804 8.2605915 CDHI 999 7.3595057 7.319695 ACTN3 89 7.355976 6.6988516 VCAN 1462 7.045421 6.763195 28514 6.5782347 DLLI 6.969655 VPS13A 23230 6.859817 10.562696 DSG4 147409 6.608555 6.1116643 7.24841 DSC2 1824 6.3962626 INADL 10207 8.808925 6.08029 PNN 5411 7.5790677 5.9342465 APC 324 5.3153567 6.5241365 ITGA2 3673 6.538141 10.171594 **SORBS I** 10580 6.5160394 7.080136 SELE 6401 5.8820415 7.629673 ARHGAP5 394 5.628543 7.9602804 ITGA I 3672 5.3547735 7.6031985 ZEB2 9839 5.2203803 6.942315

Table 4 Microarray analysis of tight junction-related gene expression regulation upon FH535 treatment

Gene	ID	Normalized intensity	
		Control	FH535
RHOA	387	15.761177	14.786651
CLDN4	1364	15.11957	14.539507
ACTN4	81	15.032014	14.01403
CD44	960	15.006962	16.199093
CAPN2	824	14.947017	15.841314
TIMP2	7077	14.796619	14.858342
CFLI	1072	14.710272	13.114106
CSNK2B	1460	14.4039135	14.575101
RACI	5879	14.251518	15.113209
CTNNA I	1495	14.209974	14.654735
MAPRE I	22919	13.413141	13.8757925
ARHGDIA	396	13.207352	11.634186

Table 4 (Continued)

Gene	ID	Normalized intensity	
		Control	FH535
EZR	7430	13.144885	12.56693
IAGI	182	12.427784	12.68715
ACTNI	87	12.409878	11.96723
TSPAN I 3	27075	12.246902	11.37938
LK	3611	12.11682	11.58343
CAMI	3383	12.0056095	11.11848
CLDN7	1366	11.972866	11.03268
MMPI	4312	11.905035	12.88748
CTNNBI	1499	11.900537	11.84196
COLI 6A I	1307	11.647751	10.77778
CSNK2A1	1457	11.389523	10.99402
ENAH	55740	11.354481	13.39812
MLLT4	4301	11.299263	13.27578
CDC42	998	11.250544	11.79104
IGF I R	3480	11.2369585	12.14044
CLDN 19	149461		
		11.222952	10.27800
CTGF	1490	10.809845	11.98555
FZD7	8324	10.711324	9.901575
MAPRE2	10982	10.535324	11.37572
SVIL	6840	10.304885	11.46314
CLDN2	9075	10.221999	7.959734
THBS3	7059	10.1687765	9.736564
LIMK I	3984	10.151468	9.52237
MPP5	64398	10.149654	12.06444
TIAM I	7074	10.117085	11.62799
CGN	57530	10.004088	9.987757
CSNK2A2	1459	9.960693	9.169151
PRKCI	5584	9.934886	11.63363
CRKL	1399	9.737389	9.574368
TJAPI	93643	9.66933	9.609078
CLDN12	9069	9.506469	10.83943
TJP I	7082	9.28694	12.13483
PARD6A	50855	9.12321	8.362814
ARHGEF7	8874	9.037083	9.147919
PDPKI	5170	9.005413	9.698432
CDH5	1003	8.708324	7.585665
LMO7	4008	8.558113	9.277104
SPTANI	6709	8.494044	7.786405
ACTN2	88	8.437073	7.474538
CLDN9	9080	8.4181795	7.594021
CSFI	1435	8.360545	7.455088
TJP2	9414	8.343918	7.349125
HASI	3036	8.124433	7.657329
CLDN16	10686	7.9999046	7.022292
AMOTLI	154810	7.8963585	7.810079
CRK	1398	7.5114365	8.404298
ACTN3	89	7.355976	6.698851
PRKCG	5582	7.321149	6.911283
CLDN6	9074	7.220466	6.657835
CLDNI	9076	7.1643777	8.943991
CLDN 15	24146	7.0927997	6.579523
CLDN I 0	9071	7.0557775	6.613464
PTEN	5728	7.0376005	9.120998
SMAD2	4087	6.9688606	9.496367
PARD3	56288	6.94016	7.33421
CLEC3B	7123	6.6491346	6.558779
SPP I	6696	6.37645	6.842924
MAGII	9223	6.3656254	7.168139
CTTN	2017	6.2022476	6.695902
ERBB3		6.178696	
こべりひろ	2065	0.1/0070	5.992662

Table 5 Microarray analysis of cell motility—related gene expression regulation upon FH535 treatment

ression regulation upon FH535 treatment Normalized intensity ID Gene Control FH535 VIM 743 I 18.111416 18.417988 PERP 64065 17.034954 17.530819 MYH9 4627 16.01196 15.906586 387 RHOA 15.761177 14.786651 ACTN4 81 15.032014 14.01403 TIMP2 7077 14.796619 14.858342 MSN 4478 14.751841 15.357616 **CFLI** 1072 14.710272 13.114106 RACI 5879 14.251518 15.113209 5908 14.023661 15.037672 RAPIB 7076 TIMPI 13.919523 13.2338505 1019 CDK4 13.87332 13.635977 RHOC 389 13.521647 12.094296 LAMCI 3915 13.492421 14.51922 VCL 7414 13.376745 13.681126 ACTR3 10096 13.228158 14.45616 1729 DIAPHI 13.16062 13.659487 7430 **EZR** 13.144885 12.566931 9218 VAPA 13.089962 13.857084 207 AKTI 12.957863 12.259176 RAC2 5880 12.955015 11.604415 ACTR2 10097 12.94824 13.651513 **ITGBI** 3688 12.738785 13.636554 **PRKCZ** 5590 12.597843 11.836956 3689 11.473748 ITGB2 12.546266 87 **ACTNI** 12.409878 11.967234 ILK 3611 12.11682 11.583433 **SGCE** 8910 12.047686 12.282321 3383 12.0056095 11.118488 ICAM I PPL 5493 11.998627 11.51075 PRKCA 5578 11.918201 13.803304 PPPDE2 27351 11.624274 11.774211 55740 11.354481 13.398125 ENAH 998 11.250544 11.791042 CDC42 1956 11.122326 12.333595 **EGFR** WASL 8976 10.930079 12.483249 CALDI 800 10.921519 12.294691 STEAPI 26872 10.895491 11.820029 TGFB1 7040 10.7152 9.03388 CAMK2N1 55450 10.587699 10.065469 5962 12.191257 RDX 10.522251 MCAM4162 10.452353 9.462444 ARF6 382 10.415711 11.52632 SVIL 6840 10.304885 11.463148 RGS2 5997 10.257294 9.80196 7422 10.250756 7.901348 **VEGFA** CAPNI 823 10.239203 8.216266 FIIR 50848 9.044022 10.234683 390 RND3 10.199277 12.088578 4313 9.412593 MMP2 10.153262 10163 WASF2 10.085579 8.826545 FATI 2195 9.970972 12.042841 **RHOB** 388 9.965946 8.545685 **RAPGEFI** 2889 9.903289 8.354535 RASA I 5921 9.702747 11.502001 PTK2B 2185 9.636893 10.68203

Table 5 (Continued)

Gene	ID	Normalized in	ntensity
		Control	FH535
MYH10	4628	9.5496025	11.096066
MMP15	4324	9.533566	8.395943
DOCKI	1793	9.48097	11.021774
PAK2	5062	9.287464	10.61245
PLAUR	5329	9.265003	8.37788
CDC27	996	9.129515	11.077047
MSTIR	4486	9.085802	9.12538
BAIAP2	10458	9.018734	8.004229
PTK2	5747	8.939062	10.820772
STAT3	6774	8.847785	7.9192953
ARHGEF2	9181	8.798216	8.383045
PKP4	8502	8.663319	9.734335
MARK2	2011	8.612933	8.00314
PVRL3	25945	8.582907	9.851074
BCAR I	9564	8.529809	7.7692404
ARVCF	421	8.524339	8.364944
SPTANI	6709	8.494044	7.7864056
TJP2	9414	8.343918	7.3491254
HCLSI	3059	8.263556	7.7210197
WASFI	8936	8.178464	7.4462004
HASI	3036	8.124433	7.6573296
ADAMTS13	11093	8.074093	8.375932
ESR I	2099	8.048168	7.405365
OCLN	100506658	8.036663	9.494983
WAS	7454	7.9598556	7.412658
CTNND I	1500	7.8659673	7.09317
DOCK4	9732	7.829811	10.702755
CDSN	1041	7.738298	7.3062844
MAPIB	4131	7.7052383	10.589897
MMP11	4320	7.460847	7.2920337
PXN	5829	7.426979	6.493304
ACTN3	89	7.355976	6.6988516
MTSSI	9788	7.3144355	8.826939
VCAN	1462	7.045421	6.763195
MMP9	4318	7.0101504	6.7540355
VTN	7448	6.8925853	6.3992944
EXOC2	55770	6.8692775	8.335709
ECM I	1893	6.8224096	7.0186477
TWISTI	7291	6.765423	6.105777
ADAMTS I	9510	6.670437	7.5566187
CASK	8573	6.554297	9.147331
PLCGI	5335	6.326862	6.175169
CTTN	2017	6.2022476	6.6959023
FARP2	9855	5.4352922	5.775334
CTNND2	1501	5.4170265	5.9111185

in breast cancer and gastrointestinal stromal tumor. 45,46 The motility-related gene *VEGFA* significantly increases the motility of pancreatic cancer cells. The vascular endothelial growth factor/vascular endothelial growth factor receptor (VEGF/VEGFR) inhibitors bevacizumab and sunitinib significantly decrease pancreatic cancer cell motility. 47 In our study, FH535 not only suppressed *VEGFA* expression

11.484902 (Continued)

ROCK I

6093

9.603488

Wu et al Dovepress

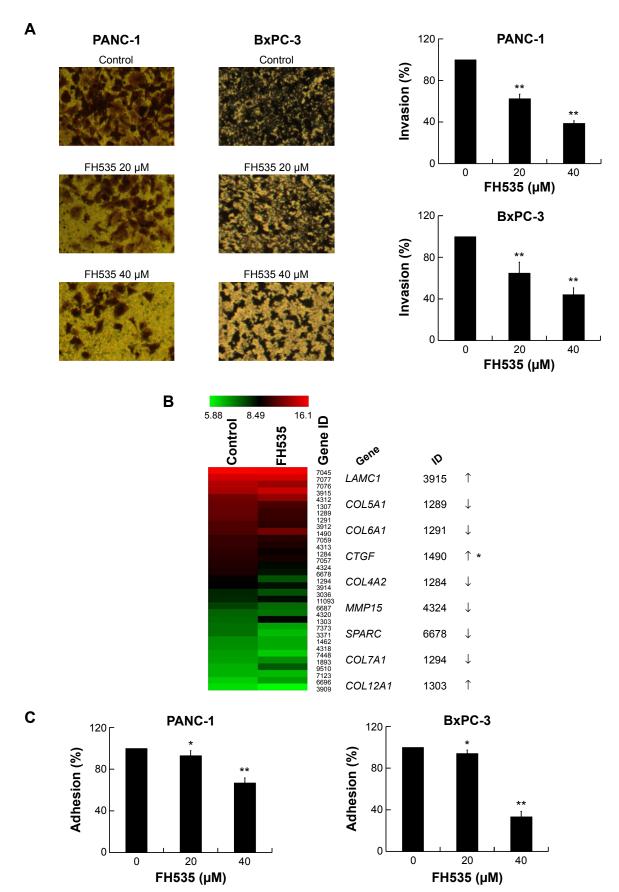


Figure 3 (Continued)

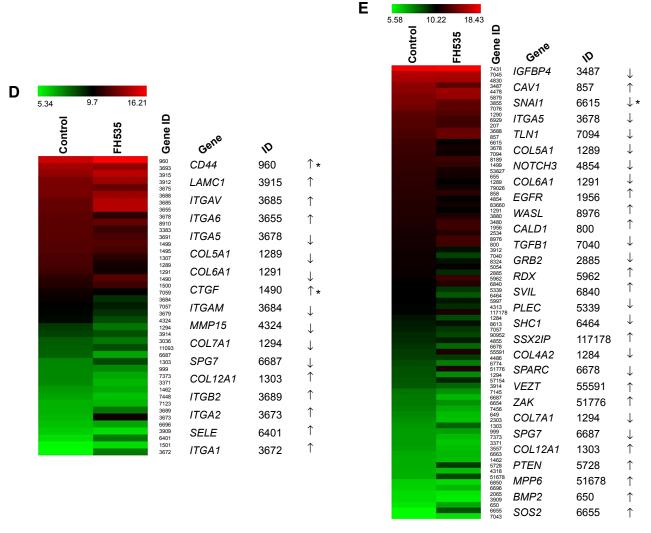


Figure 3 FH535 inhibited pancreatic cancer cell invasion.

Notes: (A) Dose-dependent inhibition by FH535 of PANC-1 and BxPC-3 cell invasion. (B) Microarray analysis of extracellular matrix degradation—related gene expression regulation upon FH535 treatment. (C) Dose-dependent inhibition by FH535 of PANC-1 and BxPC-3 cell adhesion. *P<0.05, **P<0.01, significant differences vs the respective control groups. (D) Microarray analysis of adhesion molecule—related gene expression regulation upon FH535 treatment. (E) Microarray analysis of EMT-related gene expression regulation upon FH535 treatment. Up and down arrows indicate gene expression significantly upregulated or downregulated, respectively, by twofold. Asterisks indicate genes downstream of the Wnt/ β -catenin pathway.

Abbreviation: EMT, epithelial-mesenchymal transition.

but also inhibited cell motility, suggesting the involvement of a similar mechanism.

To establish metastasis, tumor cells must traverse the basement membrane to reach the connective tissues. Accordingly, we investigated the anti-invasive effect of FH535. The Transwell assay proved that FH535 inhibited invasion. In vitro invasion can be divided into several steps, including matrix adhesion, matrix degradation, and EMT. We analyzed the expression of the genes involved in these steps using microarray and found that FH535 significantly downregulated the cell adhesion molecule ITGA5; *ITGA5* knockdown results in decreased adhesion in pancreatic cancer cells.⁴⁸ The ability of matrix metalloproteinases (MMPs) to degrade

extracellular matrix proteins has been well characterized; therefore, they have been studied extensively to elucidate their involvement in both tumor development and progression. Different MMPs play different roles in tumorigenesis. MMP15 appears to be upregulated during colorectal tumorigenesis, and past research has shown stromal localization of MMP15 in the early phases of neoplastic transformation in colorectal cancer. In our study, FH535 downregulated MMP15. Epithelial cells are characterized by well-developed junctions and apical—basolateral polarization; on the contrary, mesenchymal cells lack polarization due to the loss of an organized junctional layer. Cell metastasis is correlated with EMT. In the present study, FH535

Dovepress

Table 6 Microarray analysis of extracellular matrix degradation—related gene expression regulation upon FH535 treatment

Gene	ID	Normalized in	tensity
		Control	FH535
TGFBI	7045	16.09069	15.894443
TIMP2	7077	14.796619	14.858342
TIMPI	7076	13.919523	13.2338505
LAMCI	3915	13.492421	14.51922
MMP I	4312	11.905035	12.887484
COL16A1	1307	11.647751	10.777789
COL5A1	1289	11.607744	10.272581
COL6A1	1291	11.396863	10.174638
LAMBI	3912	10.813978	9.924841
CTGF	1490	10.809845	11.98555
THBS3	7059	10.1687765	9.736564
MMP2	4313	10.153262	9.412593
COL4A2	1284	9.866227	8.850218
THBSI	7057	9.663341	9.193558
MMP15	4324	9.533566	8.395943
SPARC	6678	9.32407	8.289816
COL7A1	1294	8.711706	7.6560946
LAMB3	3914	8.550647	8.319239
HASI	3036	8.124433	7.6573296
ADAMTS13	11093	8.074093	8.375932
SPG7	6687	7.799603	7.3888316
MMP I I	4320	7.460847	7.2920337
COL12A1	1303	7.404812	8.422412
COLI4AI	7373	7.3424816	6.805993
TNC	3371	7.329479	6.564947
VCAN	1462	7.045421	6.763195
MMP9	4318	7.0101504	6.7540355
VTN	7448	6.8925853	6.3992944
ECM I	1893	6.8224096	7.0186477
ADAMTS I	9510	6.670437	7.5566187
CLEC3B	7123	6.6491346	6.5587797
SPP I	6696	6.37645	6.842924
LAMA3	3909	6.1783895	5.889333

downregulated Snail, which is upregulated during EMT.⁵⁰ In human colorectal cancer cells, overexpression of Snail induces not only EMT but also a cancer stem cell–like phenotype, which enhances cell migration and invasion in vitro and increases metastasis formation in vivo.⁵¹ Snail also plays an essential role in human pancreatic cancer progression and metastasis.^{52,53} In the clinical setting, overexpression of Snail was previously associated with poorer prognosis and a more invasive phenotype in many malignancies.^{54–56} We also detected the downregulation of TGFB1, a classic EMT stimulator.⁵⁷ TGFB1 overexpression is associated with early recurrence following resection and decreased survival;⁵⁸ consistent with our study, the suppression of TGFB1 activity in immune-deficient orthotopic mouse models of pancreatic cancer attenuated tumor growth and metastasis.^{59,60}

Besides metastasis, FH535 also induced G2/M arrest and inhibited pancreatic cancer cell proliferation. FH535

Table 7 Microarray analysis of adhesion molecule–related gene expression regulation upon FH535 treatment

Gene	ID	Normalized intensity	
		Control	FH535
CD44	960	15.006962	16.199093
ITGB5	3693	13.888797	13.484464
LAMCI	3915	13.492421	14.51922
LAMBI	3912	12.817556	13.73472
ITGA3	3675	12.797894	12.391577
ITGB I	3688	12.738785	13.636554
ITGAV	3685	12.278682	14.3424
ITGA6	3655	12.273888	14.392418
ITGA5	3678	12.169847	10.866323
SGCE	8910	12.047686	12.282321
ICAM I	3383	12.0056095	11.118488
ITGB4	3691	11.982763	11.56935
CTNNBI	1499	11.900537	11.841962
CTNNAI	1495	11.841962	11.517105
COLI 6A I	1307	11.647751	10.777789
COL5A1	1289	11.607744	10.272581
COL6A1	1291	11.396863	10.174638
CTGF	1490	10.809845	11.98555
CTNND I	1500	10.622252	11.350482
THBS3	7059	10.1687765	9.736564
ITGAM	3684	10.003317	8.889115
THBSI	7057	9.663341	9.193558
ITGA7	3679	9.627002	8.878363
MMP15	4324	9.533566	8.395943
COL7A1	1294	8.711706	7.6560946
LAMB3	3914	8.550647	8.319239
HASI	3036	8.124433	7.6573296
ADAMTS13	11093	8.074093	8.375932
SPG7	6687	7.990712	6.850328
COLI 2A I	1303	7.404812	8.422412
CDHI	999	7.3595057	7.319695
COLI4AI	7373	7.3424816	6.805993
TNC	3371	7.329479	6.564947
VCAN	1462	7.045421	6.763195
VTN	7448	6.8925853	6.3992944
CLEC3B	7123	6.6491346	6.5587797
ITGB2	3689	6.6435785	7.713477
ITGB2 ITGA2	3673	6.538141	10.171594
SPP I	6696		
		6.37645	6.842924
LAMA3 SELE	3909	6.1783895	5.889333 7.629673
	6401	5.8820415	
CTNND2	1501	5.4170265	5.9111185
ITGA I	3672	5.3547735	7.6031985

significantly upregulated the G2/M regulator gene *BCCIP* while downregulating the cell cycle regulatory genes *CCNG1* and *SERTAD1*. Human BCCIP, a protein that interacts with BRCA2 and CDKN1A (Cip1, p21), has been implicated in many cellular processes, including cell cycle regulation, DNA recombination and damage repair, telomere maintenance, embryonic development, and genomic stability. ^{61–63}

Table 8 Microarray analysis of EMT-related gene expression regulation upon FH535 treatment

Gene	ID	Normalized intensity		
		Control	FH535	
VIM	7431	18.111416	18.417988	
TGFBI	7045	16.09069	15.894443	
NMEI	4830	15.692858	15.573043	
IGFBP4	3487	14.852157	13.246835	
MSN	4478	14.751841	15.357616	
RACI	5879	14.251518	15.113209	
KRT7	3855	14.184294	13.285099	
TIMPI	7076	13.919523	13.233850	
COL5A2	1290	13.175857	12.833253	
TCF3	6929	13.00084	12.29279	
AKTI	207	12.957863	12.259176	
ITGBI	3688	12.738785	13.636554	
CAVI	857	12.61244	13.617725	
SNAII	6615	12.28132	10.385736	
ITGA5	3678	12.169847	10.866323	
TLNI	7094	12.096641	10.645829	
SYMPK	8189	11.942529	12.312602	
CTNNBI	1499	11.900537	11.841962	
FXYD5	53827	11.859393	10.980669	
BMP7	655	11.688513	10.938241	
COL5A I	1289	11.607744	10.272581	
AHNAK	79026			
		11.605762	10.785921	
CAV2	858	11.534644	11.731664	
NOTCH3	4854	11.523583	10.370972	
TLN2	83660	11.404076	10.886059	
COL6A1	1291	11.396863	10.174638	
KRT19	3880	11.289505	11.101922	
IGF I R	3480	11.2369585	12.140446	
EGFR	1956	11.122326	12.333595	
FYN	2534	10.966112	11.325876	
WASL	8976	10.930079	12.483249	
CALDI	800	10.921519	12.294691	
LAMB I	3912	10.813978	9.924841	
TGFB I	7040	10.7152	9.03388	
FZD7	8324	10.711324	9.901575	
SERPINE I	5054	10.639182	10.452353	
GRB2	2885	10.605613	9.416897	
RDX	5962	10.522251	12.191257	
SVIL	6840	10.304885	11.463148	
PLEC	5339	10.301559	9.204668	
SHCI	6464	10.287678	8.595637	
RGS2	5997	10.257294	9.80196	
MMP2	4313	10.153262	9.412593	
SSX2IP	117178	10.144432	11.167568	
COL4A2	1284	9.866227	8.850218	
PPAP2B	8613	9.718731	9.956581	
THBS I	7057	9.663341	9.193558	
ESAM	90952	9.472261	8.959825	
NOTCH4	4855	9.433491	9.707824	
SPARC	6678	9.32407	8.289816	
VEZT	55591	9.128493	11.195451	
MSTIR	4486	9.085802	9.12538	
STAT3	6774	8.847785	7.9192953	
ZAK	51776	8.719432	11.337164	
COL7A1	1294	8.711706	7.6560946	
SMURFI	57154	8.629299	9.522539	
LAMB3	3914	8.550647	8.319239	
TNS I	7145	8.064375	7.5303655	
11131	/ 173	0.0073/3	(Continued	

Table 8 (Continued)

Gene	ID	Normalized intensity	
		Control	FH535
SPG7	6687	7.990712	6.850328
SOSI	6654	7.9648976	7.5355105
WIPFI	7456	7.8996034	7.0742846
BMP I	649	7.73736	6.776738
FOXC2	2303	7.5557323	6.690961
COLI 2A I	1303	7.404812	8.422412
CDHI	999	7.3595057	7.319695
COLI 4A I	7373	7.3424816	6.805993
TNC	3371	7.329479	6.564947
ILIRN	3557	7.2758436	6.734858
SOX10	6663	7.0939784	6.8492174
VCAN	1462	7.045421	6.763195
PTEN	5728	7.0376005	9.120998
MMP9	4318	7.0101504	6.7540355
MPP6	51678	6.9906545	8.912582
SYK	6850	6.4246235	6.223468
SPP I	6696	6.37645	6.842924
ERBB3	2065	6.178696	5.9926624
LAMA3	3909	6.1783895	5.889333
BMP2	650	6.0141077	7.1390386
SOS2	6655	5.6132765	8.797646
TGFB3	7043	5.5891886	6.0552535

Abbreviation: EMT, epithelial-mesenchymal transition.

BCCIP knockdown and concomitant p53 deletion causes rapid development of medulloblastomas, which have a wide spectrum of alterations involving the Sonic hedgehog pathway, consistent with the caretaker responsibility of BCCIP in genomic integrity. 64 BCCIP expression is downregulated in human ovarian cancer, renal cell carcinoma, and colorectal cancer tissues, suggesting that the gene plays a role in the pathogenesis of these cancers. 63 The positive expression rate and intensity of CCNG1 in gastric carcinoma is significantly correlated with tumor differentiation. Elevated amounts of CCNG1 are frequently detected in malignant tissue tumors, including astrocytoma; melanoma; carcinoma of the esophagus, lung, and breast; and cancer of the cervix, uterus, and ovary. 65 It plays a pivotal role in hepatocellular carcinoma metastasis and may be a novel prognostic biomarker and therapeutic target. 66 SERTAD1 is involved in positive regulation of the cell cycle and proliferation; 67,68 accordingly, its expression is upregulated in several tumor types. 69,70 Studies indicate that SERTAD1 promotes proliferation by binding to the transcription factor E2F1 and by enhancing its transcriptional activity.71 Experimental overexpression of SERTAD1 provoked hyperproliferation, 72 genomic instability,68 and inhibition of apoptosis.73

We demonstrated that FH535 significantly inhibits pancreatic cancer cell metastasis by suppressing migration, invasion, and adhesion and induces the accumulation of cells in the G2/M phase to suppress proliferation. These results

suggest that FH535 is a potential candidate for pancreatic cancer treatment. Some of the identified genes that responded to FH535 are well-established direct targets of the Wnt/ β -catenin pathway. However, it has not been proven that the other identified genes are located downstream of the pathway. FH535 might affect the expression of these genes through the Wnt/ β -catenin pathway indirectly or in

a β -catenin independent manner. In fact, FH535 not only antagonizes β -catenin/TCF-mediated transcription but also inhibits recruitment of the coactivators glucocorticoid receptor-interacting protein 1 (GRIP1) and β -catenin to peroxisome proliferator-activated receptor (PPAR) δ and PPAR γ , ¹⁰ suggesting that these mechanisms could also be involved in the anti-cancer effect of FH535.

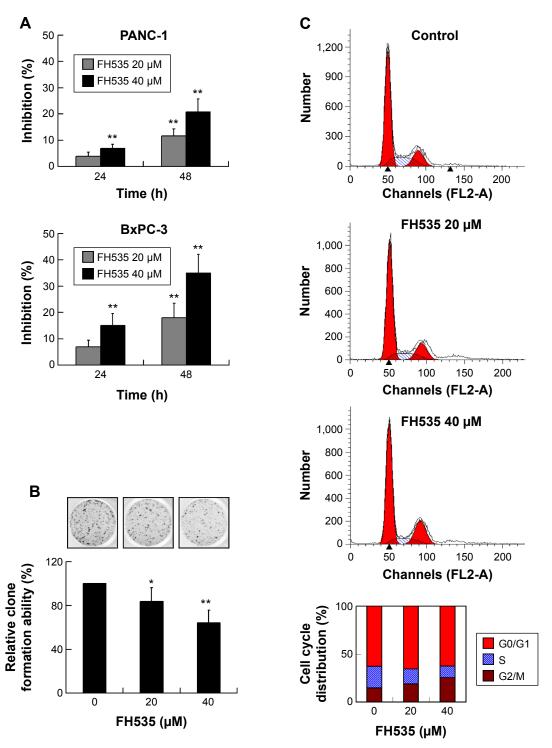


Figure 4 (Continued)

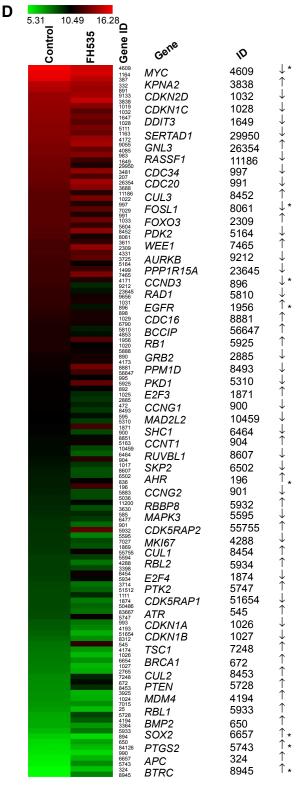


Figure 4 Inhibitory effect of FH535 on pancreatic cancer cell growth. Notes: (A) Dose- and time-dependent inhibition by FH535 of PANC-I and BxPC-3 cell growth. (B) Dose-dependent inhibition by FH535 of the clone formation ability of BxPC-3 cells. *P<0.05, **P<0.01, significant differences vs the respective control groups. (C) Significant dose-dependent G2/M arrest following FH535 treatment in BxPC-3 cells. (D) Microarray analysis of cell cycle-related gene expression regulation upon 20 μM FH535 treatment. Up and down arrows indicate gene expression significantly upregulated or downregulated, respectively, by twofold. Asterisks indicate genes downstream of the Wnt/β-catenin pathway. Abbreviation: h, hours.

Table 9 Microarray analysis of cell cycle-related gene expression regulation upon 20 µM FH535 treatment

Gene	ID	Normalized intensity	
		Control	FH535
MVC	4400		
MYC CKS2	4609 1164	16.268158	15.204586
		15.878164	15.394571
RHOA	387	15.761177	14.786651
BIRC5	332	14.757564	14.219355
CCNBI	891	14.478785	14.022737
CCNB2 KPNA2	9133	14.019871	14.271269
CDK4	3838 1019	13.950185 13.87332	14.971469 13.635977
CDKN2D	1032	13.839806	12.513427 13.130958
GADD45A	1647	13.765451	
CDKN I C PCNA	1028	13.694702 13.611973	12.537176 13.2414665
CKSIB	5111		13.2414665
	1163	13.609195	
MCM3 PRC1	4172	13.580797 13.4114275	13.911951 14.32471
MAD2LI	9055 4085	13.297964	12.867024
CDKI	983	13.286596	13.600226
DDIT3			11.871853
SERTAD I	1649 29950	13.135856 13.060848	11.6/1653
IGF2	3481	13.0203	13.799717
AKTI	207	12.957863	12.259176
GNL3	26354	12.891848	14.223899
ITGBI	3688	12.738785	13.636554
RASSFI	11186	12.559567	11.458946
CDK7	1022	12.553116	13.288865
CDC34	997	12.53036	11.302476
TFDP2	7029	12.527303	12.6644745
CDC20	991	12.526335	11.232994
CDC20	1033	12.486179	12.966997
MAP2K1	5604	12.483637	11.714967
CUL3	8452	12.389215	13.715795
FOSLI	8061	12.344017	11.102832
ILK	3611	12.11682	11.583433
FOXO3	2309	12.095011	13.865094
MNATI	4331	12.074865	12.456777
JUN	3725	12.038464	12.673436
PDK2	5164	11.944916	10.781894
CTNNBI	1499	11.900537	11.841962
WEEI	7465	11.894105	13.381722
MCM2	4171	11.862871	11.269842
AURKB	9212	11.800928	9.697033
PPPIRI5A	23645	11.676006	10.124018
MDCI	9656	11.649198	10.940614
CDKN2C	1031	11.6150875	11.096327
CCND3	896	11.576098	10.075832
CCNEI	898	11.407219	11.045229
CDKN2A	1029	11.343829	11.097562
AURKA	6790	11.181647	10.961699
RADI	5810	11.162613	9.890079
NOTCH2	4853	11.125797	10.202223
EGFR	1956	11.122326	12.333595
CDK5	1020	11.117936	10.542482
RAD51	5888	11.1082325	10.784544
CCNA2	890	10.911861	10.9871645
MCM4	4173	10.849212	11.05679
CDC16	8881	10.808938	13.084003
			(Continued)
			(Continued)

Wu et al **Dovepress**

Table 9 (Continued)

Gene Gene	ID	Normalized intensity	
		Control	FH535
BCCIP	56647	10.778181	12.021907
CDC25C	995	10.672214	10.564099
RB I	5925	10.640414	12.741512
CCNC	892	10.610059	10.50804
CDK9	1025	10.606858	9.6394415
GRB2	2885	10.605613	9.416897
ATM	472	10.5960865	9.790577
PPMID	8493	10.580978	9.338833
CCNDI	595	10.543621	10.14267
PKDI	5310	10.471296	9.29677
E2F3	1871	10.412796	12.061844
CCNGI	900	10.409301	9.063653
CDK5RI	8851	10.322197	10.292204
PDKI	5163	10.321034	10.933424
MAD2L2	10459	10.306548	9.040705
SHCI	6464	10.287678	8.595637
CCNTI	904	10.17827	11.456285
CDK2	1017	10.10528	9.357359
RUVBLI	8607	10.000026	8.814938
SKP2	6502	9.937107	8.872935
CASP3	836	9.893856	10.658698
AHR	196	9.886938	11.936481
RAD9A	5883	9.855825	8.961951
PA2G4	5036	9.737894	8.966842
CHEK2	11200	9.726725	10.255492
INS	3630	9.673779	8.813154
BBS4	585	9.597437	9.65494
SIAH I	6477	9.530121	9.295226
CCNG2	901	9.4692955	8.337656
RBBP8	5932	9.454372	12.631638
MAPK3	5595	9.447224	7.818405
TFDPI	7027	9.4434185	9.030092
E2F1	1869	9.397123	8.754342
CDK5RAP2	55755	9.390803	10.79269
MAPKI	5594	9.240688	9.218932
MKI67	4288	9.233824	8.092867
ID2	3398	9.226584	8.999163
CULI	8454	9.221058	10.794849
RBL2	5934	9.160267	10.348637
JAG2	3714	9.075178	8.140677
GTSE I	51512	9.04477	8.488665
CHEKI	1111	9.04231	9.651725
E2F4	1874	9.035055	8.016477
GOS2	50486	9.032754	8.410861
SESN2	83667	8.951754	8.138044
PTK2	5747	8.939062	10.820772
CDC25A	993	8.677163	8.042739
MDM2	4193	8.622698	7.73673
CDK5RAP1	51654	8.508385	6.9220624
AXIN I	8312	8.351635	7.6164603
ATR	545	8.152882	11.634625
MCM5	4174	8.055058	7.4200873
CDKNIA	1026	8.007444	6.7135
SOSI	6654	7.9648976	7.5355105
CDKNIB	1027	7.8906517	6.7354736
GML	2765	7.8596773	6.9595275
			(Continued)

Table 9 (Continued)

Gene	ID	Normalized intensity	
		Control	FH535
TSCI	7248	7.6562896	9.700143
BRCA I	672	7.620017	10.24544
CUL2	8453	7.566332	9.5496025
STMNI	3925	7.5155845	6.8102884
CDK8	1024	7.5133963	6.9160185
TERT	7015	7.4070444	7.4882307
ABLI	25	7.3099413	6.6226487
PTEN	5728	7.0376005	9.120998
MDM4	4194	6.996299	8.63818
HUSI	3364	6.976554	7.3689637
RBLI	5933	6.7265186	8.035306
CCND2	894	6.3239446	5.996339
BMP2	650	6.0141077	7.1390386
ATRIP	84126	5.912352	6.682503
CDC6	990	5.8019896	6.064807
SOX2	6657	5.6166873	6.7975965
PTGS2	5743	5.5262737	7.601541
APC	324	5.3153567	6.5241365
BTRC	8945	5.3152456	7.7473273

Acknowledgments

This study was supported by the National Natural Science Foundation of China (grant nos 81472296, 81101867, 81272542, 81200369, and 81372443), the CSPAC-Celgene Foundation, the China International Medical Foundation (grant no CIMF-F-H001-057), the Special Foundation of Clinical Medicine of Jiangsu Provincial Bureau of Science and Technology (grant no BL2014039), the Scientific Research Project of Jiangsu Provincial Bureau of Traditional Chinese Medicine (grant no L213236), the Medical Scientific Research Project of Jiangsu Provincial Bureau of Health (grant no Z201206), the Special Foundation of Wu Jieping Medical Foundation for Clinical Scientific Research (grant nos 320.6753.1225 and 320.6750.12242), the Science and Education for Health Foundation of Suzhou for Youth (grant nos SWKQ1003 and SWKQ1011), the Science and Technology Project Foundation of Suzhou (grant nos SYS201112, SYSD2012137, and SYS201335), the Science and Technology Foundation of Suzhou Xiangcheng (grant nos SZXC2012-70 and XJ201451), and a project founded by the priority academic program development of Jiangsu higher education institutions.

Disclosure

The authors report no conflicts of interest in this work.

References

- 1. Jemal A, Siegel R, Ward E, et al. Cancer statistics, 2006. CA Cancer J Clin. 2006;56(2):106-130.
- 2. Li D, Xie K, Wolff R, Abbruzzese JL. Pancreatic cancer. Lancet. 2004;363(9414):1049-1057.

- Bosetti C, Bertuccio P, Malvezzi M, et al. Cancer mortality in Europe, 2005–2009, and an overview of trends since 1980. *Ann Oncol.* 2013; 24(10):2657–2671.
- Cai HH, Sun YM, Miao Y, et al. Aberrant methylation frequency of TNFRSF10C promoter in pancreatic cancer cell lines. *Hepatobiliary Pancreat Dis Int*. 2011;10(1):95–100.
- Iida J, Wilhelmson KL, Price MA, et al. Membrane type-1 matrix metalloproteinase promotes human melanoma invasion and growth. *J Invest Dermatol*. 2004;122(1):167–176.
- Eisenmann KM, McCarthy JB, Simpson MA, et al. Melanoma chondroitin sulphate proteoglycan regulates cell spreading through Cdc42, Ack-1 and p130cas. *Nat Cell Biol*. 1999;1(8):507–513.
- Vaid M, Prasad R, Sun Q, Katiyar SK. Silymarin targets beta-catenin signaling in blocking migration/invasion of human melanoma cells. *PLoS One*. 2011;6(7):e23000.
- Iida J, Pei D, Kang T, et al. Melanoma chondroitin sulfate proteoglycan regulates matrix metalloproteinase-dependent human melanoma invasion into type I collagen. *J Biol Chem.* 2001;276(22): 18786–18794.
- Clevers H. Wnt/beta-catenin signaling in development and disease. Cell. 2006;127(3):469–480.
- Handeli S, Simon JA. A small-molecule inhibitor of Tcf/beta-catenin signaling down-regulates PPARgamma and PPARdelta activities. *Mol Cancer Ther*. 2008;7(3):521–529.
- 11. Iida J, Dorchak J, Lehman JR, et al. FH535 inhibited migration and growth of breast cancer cells. *PLoS One*. 2012;7(9):e44418.
- Ren J, Wang R, Song H, Huang G, Chen L. Secreted frizzled related protein 1 modulates taxane resistance of human lung adenocarcinoma. *Mol Med.* 2014;20:164–178.
- Hannigan G, Troussard AA, Dedhar S. Integrin-linked kinase: a cancer therapeutic target unique among its ILK. *Nat Rev Cancer*. 2005; 5(1):51–63.
- Legate KR, Montanez E, Kudlacek O, Fassler R. ILK, PINCH and parvin: the tIPP of integrin signalling. *Nat Rev Mol Cell Biol*. 2006;7(1): 20–31.
- Palacios F, Price L, Schweitzer J, Collard JG, D'Souza-Schorey C. An essential role for ARF6-regulated membrane traffic in adherens junction turnover and epithelial cell migration. *EMBO J.* 2001;20(17): 4973–4986.
- Pece S, Gutkind JS. E-cadherin and Hakai: signalling, remodeling or destruction? Nat Cell Biol. 2002;4(4):E72–E74.
- 17. D'Souza-Schorey C. Disassembling adherens junctions: breaking up is hard to do. *Trends Cell Biol.* 2005;15(1):19–26.
- 18. Tsukita S, Furuse M, Itoh M. Multifunctional strands in tight junctions. *Nat Rev Mol Cell Biol.* 2001;2(4):285–293.
- Cheng CY, Mruk DD. Cell junction dynamics in the testis: sertoli-germ cell interactions and male contraceptive development. *Physiol Rev.* 2002;82(4):825–874.
- Matter K, Balda MS. Signalling to and from tight junctions. Nat Rev Mol Cell Biol. 2003;4(3):225–236.
- Balda MS, Matter K. Epithelial cell adhesion and the regulation of gene expression. Trends Cell Biol. 2003;13(6):310–318.
- Bazzoni G, Dejana E. Endothelial cell-to-cell junctions: molecular organization and role in vascular homeostasis. *Physiol Rev.* 2004;84(3): 869–901.
- 23. Furuse M, Tsukita S. Claudins in occluding junctions of humans and flies. *Trends Cell Biol*. 2006;16(4):181–188.
- Linder S. The matrix corroded: podosomes and invadopodia in extracellular matrix degradation. *Trends Cell Biol.* 2007;17(3): 107–117.
- Chhabra ES, Higgs HN. The many faces of actin: matching assembly factors with cellular structures. Nat Cell Biol. 2007;9(10):1110–1121.
- McEver RP, Zhu C. Rolling cell adhesion. Annu Rev Cell Dev Biol. 2010;26:363–396.
- Parsons JT, Horwitz AR, Schwartz MA. Cell adhesion: integrating cytoskeletal dynamics and cellular tension. *Nat Rev Mol Cell Biol*. 2010; 11(9):633–643.

- Mullins RF, Skeie JM, Folk JC, et al. Evaluation of variants in the selectin genes in age-related macular degeneration. *BMC Med Genet*. 2011:12:58.
- Ciriza J, Garcia-Ojeda ME. Expression of migration-related genes is progressively upregulated in murine lineage-Sca-1+c-Kit+ population from the fetal to adult stages of development. Stem Cell Res Ther. 2010; 1(2):14.
- Kaartinen V, Voncken JW, Shuler C, et al. Abnormal lung development and cleft palate in mice lacking TGF-beta 3 indicates defects of epithelial-mesenchymal interaction. *Nat Genet*. 1995;11(4):415–421.
- Timmerman LA, Grego-Bessa J, Raya A, et al. Notch promotes epithelial-mesenchymal transition during cardiac development and oncogenic transformation. *Genes Dev.* 2004;18(1):99–115.
- 32. Moreno-Bueno G, Cubillo E, Sarrió D, et al. Genetic profiling of epithelial cells expressing E-cadherin repressors reveals a distinct role for snail, slug, and E47 factors in epithelial-mesenchymal transition. *Cancer Res.* 2006;66(19):9543–9556.
- Yang J, Weinberg RA. Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. *Dev Cell.* 2008;14(6): 818–829.
- Hoffman AE, Zheng T, Ba Y, et al. Phenotypic effects of the circadian gene cryptochrome 2 on cancer-related pathways. *BMC Cancer*. 2010;10:110.
- Tetsu O, McCormick F. Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells. *Nature*. 1999;398(6726):422–426.
- Fearon ER. PARsing the phrase "all in for axin" Wnt pathway targets in cancer. Cancer Cell. 2009;16(5):366–368.
- White BD, Chien AJ, Dawson DW. Dysregulation of Wnt/beta-catenin signaling in gastrointestinal cancers. *Gastroenterology*. 2012;142(2): 219–232.
- MacDonald BT, Tamai K, He X. Wnt/beta-catenin signaling: components, mechanisms, and diseases. *Dev Cell*. 2009;17(1):9–26.
- Di Cristofano A, Pandolfi PP. The multiple roles of PTEN in tumor suppression. Cell. 2000;100(4):387–390.
- Waite KA, Eng C. Protean PTEN: form and function. Am J Hum Genet. 2002;70(4):829–844.
- 41. Chalhoub N, Baker SJ. PTEN and the PI3-kinase pathway in cancer. *Annu Rev Pathol*. 2009;4:127–150.
- Wang H, Chen P, Liu XX, et al. Prognostic impact of gastrointestinal bleeding and expression of PTEN and Ki-67 on primary gastrointestinal stromal tumors. World J Surg Oncol. 2014;12:89.
- Tang H, Yao L, Tao X, et al. miR-9 functions as a tumor suppressor in ovarian serous carcinoma by targeting TLN1. *Int J Mol Med*. 2013; 32(2):381–388.
- Sakamoto S, McCann RO, Dhir R, Kyprianou N. Talin1 promotes tumor invasion and metastasis via focal adhesion signaling and anoikis resistance. *Cancer Res.* 2010;70(5):1885–1895.
- Sommers CL, Byers SW, Thompson EW, Torri JA, Gelmann EP. Differentiation state and invasiveness of human breast cancer cell lines. *Breast Cancer Res Treat*. 1994;31(2–3):325–335.
- Zhu H, Lu J, Wang X, et al. Upregulated ZO-1 correlates with favorable survival of gastrointestinal stromal tumor. *Med Oncol*. 2013;30(3): 631.
- Doi Y, Yashiro M, Yamada N, Amano R, Noda S, Hirakawa K. VEGF-A/ VEGFR-2 signaling plays an important role for the motility of pancreas cancer cells. *Ann Surg Oncol*. 2012;19(8):2733–2743.
- Walsh N, Clynes M, Crown J, O'Donovan N. Alterations in integrin expression modulates invasion of pancreatic cancer cells. *J Exp Clin Cancer Res*. 2009;28:140.
- Sena P, Mariani F, Marzona L, et al. Matrix metalloproteinases 15 and 19 are stromal regulators of colorectal cancer development from the early stages. *Int J Oncol*. 2012;41(1):260–266.
- Wu Y, Zhou BP. Snail: more than EMT. Cell Adh Migr. 2010;4(2): 199–203
- Fan F, Samuel S, Evans KW, et al. Overexpression of snail induces epithelial-mesenchymal transition and a cancer stem cell-like phenotype in human colorectal cancer cells. *Cancer Med.* 2012;1(1):5–16.

- Hotz B, Arndt M, Dullat S, Bhargava S, Buhr HJ, Hotz HG. Epithelial to mesenchymal transition: expression of the regulators snail, slug, and twist in pancreatic cancer. Clin Cancer Res. 2007;13(16):4769–4776.
- von Burstin J, Eser S, Paul MC, et al. E-cadherin regulates metastasis of pancreatic cancer in vivo and is suppressed by a SNAIL/HDAC1/HDAC2 repressor complex. *Gastroenterology*. 2009;137(1):e361–e365.
- Shin NR, Jeong EH, Choi CI, et al. Overexpression of snail is associated with lymph node metastasis and poor prognosis in patients with gastric cancer. BMC Cancer. 2012;12:521.
- Kuo KT, Chou TY, Hsu HS, Chen WL, Wang LS. Prognostic significance of NBS1 and snail expression in esophageal squamous cell carcinoma. *Ann Surg Oncol*. 2012;19(suppl 3):S549–S557.
- van Nes JG, de Kruijf EM, Putter H, et al. Co-expression of SNAIL and TWIST determines prognosis in estrogen receptor-positive early breast cancer patients. *Breast Cancer Res Treat*. 2012;133(1):49–59.
- Wu Y, Zhou BP. New insights of epithelial-mesenchymal transition in cancer metastasis. *Chin J Biochem Biophys*. 2008;40(7):643–650.
- Friess H, Yamanaka Y, Büchler M, et al. Enhanced expression of transforming growth factor beta isoforms in pancreatic cancer correlates with decreased survival. *Gastroenterology*. 1993;105(6):1846–1856.
- Rowland-Goldsmith MA, Maruyama H, Kusama T, Ralli S, Korc M. Soluble type II transforming growth factor-beta (TGF-beta) receptor inhibits TGF-beta signaling in COLO-357 pancreatic cancer cells in vitro and attenuates tumor formation. *Clin Cancer Res.* 2001;7(9): 2931–2940.
- Melisi D, Ishiyama S, Sclabas GM, et al. LY2109761, a novel transforming growth factor beta receptor type I and type II dual inhibitor, as a therapeutic approach to suppressing pancreatic cancer metastasis. Mol Cancer Ther. 2008;7(4):829–840.
- Misra S, Sharma S, Agarwal A, et al. Cell cycle-dependent regulation of the bi-directional overlapping promoter of human BRCA2/ZAR2 genes in breast cancer cells. *Mol Cancer*. 2010;9:50.
- Lu H, Yue J, Meng X, Nickoloff JA, Shen Z. BCCIP regulates homologous recombination by distinct domains and suppresses spontaneous DNA damage. *Nucleic Acids Res.* 2007;35(21):7160–7170.
- Liu X, Cao L, Ni J, et al. Differential BCCIP gene expression in primary human ovarian cancer, renal cell carcinoma and colorectal cancer tissues. *Int J Oncol.* 2013;43(6):1925–1934.

- Huang YY, Dai L, Gaines D, et al. BCCIP suppresses tumor initiation but is required for tumor progression. *Cancer Res.* 2013;73(23): 7122–7133.
- Cui X, Yu L, Wang Y, et al. The relationship between cyclin G1 and survival in patients treated surgically for HCC. *Hepatogastroenterology*. 2013;60(121):153–159.
- Wen W, Ding J, Sun W, et al. Cyclin G1-mediated epithelial-mesenchymal transition via phosphoinositide 3-kinase/Akt signaling facilitates liver cancer progression. *Hepatology*. 2012;55(6):1787–1798.
- Li J, Muscarella P, Joo SH, et al. Dissection of CDK4-binding and transactivation activities of p34(SEI-1) and comparison between functions of p34(SEI-1) and p16(INK4A). *Biochemistry*. 2005;44(40): 13246–13256.
- Tang DJ, Hu L, Xie D, et al. Oncogenic transformation by SEI-1 is associated with chromosomal instability. *Cancer Res.* 2005;65(15): 6504–6508.
- van Dekken H, Alers JC, Riegman PH, Rosenberg C, Tilanus HW, Vissers K. Molecular cytogenetic evaluation of gastric cardia adenocarcinoma and precursor lesions. *Am J Pathol.* 2001;158(6):1961–1967.
- Tang TC, Sham JS, Xie D, et al. Identification of a candidate oncogene SEI-1 within a minimal amplified region at 19q13.1 in ovarian cancer cell lines. *Cancer Res.* 2002;62(24):7157–7161.
- Hsu SI, Yang CM, Sim KG, Hentschel DM, O'Leary E, Bonventre JV. TRIP-Br: a novel family of PHD zinc finger- and bromodomaininteracting proteins that regulate the transcriptional activity of E2F-1/ DP-1. EMBO J. 2001;20(9):2273–2285.
- Sugimoto M, Nakamura T, Ohtani N, et al. Regulation of CDK4 activity by a novel CDK4-binding protein, p34(SEI-1). *Genes Dev.* 1999; 13(22):3027–3033.
- Hong SW, Kim CJ, Park WS, et al. p34SEI-1 inhibits apoptosis through the stabilization of the X-linked inhibitor of apoptosis protein: p34SEI-1 as a novel target for anti-breast cancer strategies. *Cancer Res*. 2009;69(3):741–746.

OncoTargets and Therapy

Publish your work in this journal

OncoTargets and Therapy is an international, peer-reviewed, open access journal focusing on the pathological basis of all cancers, potential targets for therapy and treatment protocols employed to improve the management of cancer patients. The journal also focuses on the impact of management programs and new therapeutic agents and protocols on

 $\textbf{Submit your manuscript here:} \ \texttt{http://www.dovepress.com/oncotargets-and-therapy-journal}$

Dovepress

patient perspectives such as quality of life, adherence and satisfaction. The manuscript management system is completely online and includes a very quick and fair peer-review system, which is all easy to use. Visit http://www.dovepress.com/testimonials.php to read real quotes from published authors.