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Abstract: Influenza is the leading cause of death from an infectious cause. Because of its 

clinical importance, many investigators use animal models to understand the biologic mecha-

nisms of influenza A virus replication, the immune response to the virus, and the efficacy of 

novel therapies. This review will focus on the biosafety, biosecurity, and ethical concerns that 

must be considered in pursuing influenza research, in addition to focusing on the two animal 

models – mice and ferrets – most frequently used by researchers as models of human influenza 

infection.
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Influenza in the human host
Epidemiology and pathogenesis
Influenza is the leading cause of death from an infectious cause.1 During the pandemic 

of 1918–1919, influenza A virus (IAV) caused as many as 50–100 million deaths.2 Even 

in nonpandemic years, 5%–20% of people in the USA are infected, with the annual aver-

age of deaths as a result of influenza infection being .40,000.3,4 The influenza virus is 

a single-stranded, negative-sense, enveloped RNA virus within the family Orthomyxo-

viridae. Influenza viruses are the only orthymyxoviridae viruses with the ability to 

cause infection in humans. There are three types of influenza viruses – influenza A, 

B, and C, but only influenza viruses A and B cause infection in humans. Possessing 

eight negative-sense RNA segments that encode 11 or 12 known proteins depending 

on the overlapping protein-coding region, influenza A is the most virulent subtype.5 

Each IAV has major surface glycoproteins, including 18 hemagglutinin (HA) and 11 

neuraminidase (NA) proteins, but only three major subtypes of HA (H1, H2, and H3) 

and two subtypes of NA (N1 and N2) have caused pandemics in humans.6 The virus 

has a remarkable ability to undergo periodic changes in the antigenic characteristics of 

NA and HA. Stepwise point mutations that yield amino acid substitutions in the RNA 

gene segments as the virus replicates result in “antigenic drift” of the virus.7 When two 

different viruses coinfect a single host, the reassortment of genetic segments within 

this “mixing vessel” may occur, resulting in “antigenic shift.” Exposure of this novel 

IAV to a naïve population may potentially lead to the next epidemic or pandemic.8

In humans, the primary targets for the virus are epithelial cells of the upper and 

lower respiratory tracts. HA binds to sialic acid residues on glycoproteins of the respi-

ratory epithelial cell surface.9 Human influenza viruses bind to sialic acids attached 

to galactose in an α-2,6 configuration, while avian viruses preferentially bind to 
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sialic acids attached to galactose in an α-2,3 linkage, limit-

ing the transmission of avian influenza viruses to humans. 

Protease-mediated cleavage of HA results in its endocytosis, 

whereby the low pH of the endosome promotes uncoating of 

the virion, which is required for viral replication.10 Progeny 

virions from cytoplasmic viral replication are transported 

to the membrane, where they bind to sialic acid residues. 

Release of the progeny virions from the membrane requires 

the cleavage of these linkages by NA.11 Intracellular viral 

replication alone can result in the death of the epithelial cell, 

or the epithelial cell might be killed through activation of 

innate antiviral immunity.

Clinical findings in humans
Within a few days of exposure, uncomplicated influenza 

typically presents acutely with fever, chills, cough, myalgias, 

headache, lethargy, and sore throat.12 Peak temperatures 

usually occur on the first day of symptoms. Primary viral 

pneumonia and secondary bacterial pneumonia are the most 

common complications of influenza, but other complications 

include central nervous system (CNS) involvement, myositis, 

myocarditis, and rhabdomyolysis. Primary influenza pneu-

monia presents with progressive cough, dyspnea, persistent 

high fever, and hypoxia. Secondary bacterial pneumonia is 

a common complication of influenza and is responsible for 

25% of all influenza deaths.13 These patients may show signs 

of improvement followed by acute worsening or may exhibit 

persistent or progressive symptoms. Secondary bacterial 

pneumonia is associated with significantly higher mortality, 

particularly when the infecting organism is Staphylococ-

cus aureus or Streptococcus pneumoniae. S. aureus can 

express cytotoxins such as Panton–Valentine leukocidin, 

which have the ability to cause life-threatening necrotizing 

pneumonia.14

Transmission of influenza
Transmission of influenza virus among humans is a major 

area of study. There are two main modes of transmission 

of the virus, through contact and air. Contact transmission 

occurs directly by hand-to-hand contact or indirectly when 

the infectious virus is transferred from an inanimate object 

to the hand of a susceptible individual. Airborne transmission 

occurs when the influenza virus inoculates the respiratory 

tract directly from the air. This can occur through droplet 

spray transmission, eg, when the infected person coughs or 

sneezes, expelling respiratory droplets that come in contact 

with the nasal mucosa of a susceptible individual. Aerosol 

transmission occurs when water- and virus-laden respiratory 

droplets that are exhaled by an infected person desiccate, 

becoming light enough to remain suspended in the air for 

minutes to hours and are then inhaled by another individual. 

Humans are infected by both airborne and contact-based 

transmission modes, but contact modes are thought to require 

higher doses of virus for effective transmission.15

Prevention and treatment
The main method of disease control during the influenza 

season is vaccination. The Centers for Disease Control 

and Prevention regularly tracks influenza viral isolates 

from .100 national influenza centers in .100 countries to 

monitor disease activity. Every February, the World Health 

Organization consults with experts to predict components of 

the annual influenza vaccine that best match the circulating 

viruses for the following season.16 The US Vaccines and 

Related Biological Products Advisory Committee makes the 

final decision regarding the composition of the flu vaccine. 

As seen in the recent H1N1 pandemic, vaccine strains are 

chosen according to previous viral strains. Unfortunately, 

anticipating pandemics or epidemics created by large anti-

genic shifts is often impossible.

Antiviral therapy is recommended for all patients with 

severe disease or high-risk status.17,18 Those with severe 

disease include individuals hospitalized for their illness 

or those with evidence of lower respiratory tract infection 

including dyspnea, tachypnea, and/or hypoxia.19 Treatment 

is also indicated for high-risk individuals including resi-

dents of chronic care facilities, the elderly, the morbidly 

obese, pregnant women, or individuals with chronic medical 

conditions. Adults ,65 years of age with mild illness and 

without chronic medical conditions do not require influenza 

testing, but treatment within 48 hours of onset of their illness 

may shorten the duration of influenza symptoms by approxi-

mately 0.5–3 days. Some researchers incorporate antiviral 

therapies in their research.

The adamantanes amantadine and rimantadine, prevent 

replication of the virus by blocking the viral M2 protein ion 

channel. This halts fusion of virus and host cell membranes.20 

Due to the high rates of influenza isolates resistant to 

adamantanes, the Advisory Committee on Immunization 

Practices, in 2008, recommended against their routine use for 

influenza viral infection.17 The NA inhibitors zanamivir and 

oseltamivir, effectively treat both influenza A and B viruses 

by selectively inhibiting NA.9 After blocking the active 

sites of NA, NA inhibitors leave uncleaved sialic acid residues 

on the surfaces of host cells and influenza viral envelopes, 

leading to viral aggregation at the host cell surface without a 
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mechanism to release the virus.21 These antivirals may reduce 

the duration of symptoms from 1 day to 3 days, especially 

if administered within 24–48 hours of symptom onset.22,23 

In cases of severe influenza infection, early initiation of 

oseltamivir also decreases overall mortality24,25 and length 

of hospitalization.26 Increasing resistance to NA inhibitors 

has been reported, particularly in recent H5N1 and H1N1 

influenza A strains. For example, isolates of the 2009 H1N1 

virus harbor a H275Y mutation, resulting in substitution of 

histidine for tyrosine at position 275 in the NA molecule, 

which prevents oseltamivir from inhibiting NA activity.27 

A different mutation has been reported (H274Y) in strains of 

the influenza A H5N1 virus, resulting in the substitution of 

tyrosine (encoded by TAC) for histidine (encoded by CAC) 

at amino acid position 274, conferring high-level resistance 

to oseltamivir.28,29 The development of resistance to therapies 

emphasizes the need for researchers to identify multipronged 

approaches to therapy.

Biosafety and ethical concerns
Biological containment levels
Although clearly documented laboratory-associated infec-

tions have not been reported, they are theoretically possible 

and some data suggest that they have occurred.30–32 The public 

health consequences of influenza A infection with unaltered 

human viruses that have been circulating in the population 

for years or with murine-adapted viruses are minimal and the 

risk of severe infection in laboratory workers is very small. 

Accordingly, cell culture and animal research conducted 

using circulating influenza strains (eg, H1/H3/B), murine-

adapted strains, and low-pathogenicity avian influenza strains 

(eg, H1–4, H6, and H8–16) can usually be performed at 

Biosafety Level (BSL)-2. Worker protection can be enhanced 

by regular influenza vaccination.

The study of novel strains or the intentional generation of 

novel strains poses a greater public health risk. Laboratory 

personnel could be infected by handling the virus or by com-

ing in contact with respiratory tissues or secretions from 

infected animals or from contact with other organs when 

viral dissemination has occurred. It has been estimated that 

laboratory-associated infections in BSL-3 facilities occur at 

a rate of approximately 2 per 1,000 laboratory-years. For the 

approximately ten BSL-3 laboratories in the United States, 

this corresponds to a 20% risk of resulting in at least one 

laboratory-acquired infection over a period of 10 years.33 The 

probability that a laboratory-acquired influenza infection could 

spread to the population through airborne spread or direct 

contact is about 10%,34,35 with a range from 5% to 60%.36 

Genetic manipulation may alter the host range, pathogenicity, 

and antigenic composition of the influenza virus. Because of 

the public health consequences of laboratory-acquired infec-

tions, permits from the Animal and Plant Health Inspection 

Service in the United States are required before investiga-

tors can use them for research. These strains usually include 

highly pathogenic avian influenza (HPAI), the 1918 influenza 

strain, the H7N9 strain, and the H2N2 strain.37 These specific 

strains require BSL-3 and animal Biosafety Level 3 (ABSL-

3) practices, procedures, and facilities. Workers must wear 

a negative-pressure, high-efficiency particular arrestance 

(HEPA)-filtered respirator or positive air-purifying respirator 

and change clothes after interaction with the virus. For indi-

viduals who work with the 1918 influenza and the HPAI strains, 

personal showers are required prior to exiting the laboratory. 

Further occupational health considerations for those working 

with the HPAI and avian viruses that have infected humans 

include a detailed proactive plan of action. Some of these 

plans include requiring storage of baseline serum samples 

from the workers, annual vaccination, counseling regarding 

disease symptoms, and establishing a clear plan of action for 

a suspected laboratory-acquired infection. Special permits 

may also be required for low-pathogenic avian influenza H5 

and H7 and swine influenza viruses.

Working with poultry and pigs:  
concern for antigenic shift
IAVs have the potential to infect a number of different 

species. Since the HA and NA subtypes of IAVs have been 

isolated from birds,38 there is concern that novel influenza 

viruses may emerge from birds and infect other mammals 

including humans. Similarly, swine are susceptible to both 

human and avian influenza viruses and when coinfected, 

the animal can serve as a mixing vessel for viral reassort-

ment.39 Furthermore, the transmission of influenza viruses 

from swine to humans is not rare.40 These events are thought 

to underlie the emergence of recent novel H5N1 or H7N7 

viruses, which represent an ongoing concern. While markets 

in Southeast Asia, where humans, swine, and poultry coex-

ist, are likely locations for the emergence of novel influenza 

strains, similar recombination events are possible when 

humans, pigs, or poultry come in contact in the course of 

influenza research.

Intentional mutation of the H5N1 virus
In September 2011, news was released that two groups of 

scientists had independently created mutant HPAI variants 

capable of airborne transmission among ferrets.41 These 
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reports resulted in discussions in both the lay and scientific 

press with respect to the ethical implications of this research. 

The controversy was fueled by the high mortality rates (58%) 

observed in the nearly 700 patients infected with the newly 

emergent HPAI H5N1 viruses between 2003–2015 caused 

by influenza viruses containing the HA from the A/goose/

Guangdong/1/96 lineage.42,43 Publication of the research was 

delayed while researchers, regulators and funding agencies 

discussed the rationale, safety measures, and policies in 

place for this type of research. The papers were eventually 

published; however, as a result of this controversy, the US 

Department of Health and Human Services (HHS) developed 

new regulations that would restrict all research using highly 

pathogenic H5N1 viruses. These regulations also considered 

whether the HPAI H5N1 viruses should be a tier-1 HHS select 

agent, a designation restricted to only a few agents (eg, Ebola 

or small pox) that are of “the greatest risk of deliberate mis-

use with the most significant potential for mass casualties or 

devastating effects to the economy, critical infrastructure, or 

public confidence.”44 While this consideration was rejected, 

the recently released regulations place strict controls on the 

handling of these viruses for research.45 These include an 

occupational health plan that mandates the use of a respirator 

with appropriate training, storage of baseline serum samples, 

influenza vaccination (including a licensed HPAI H5N1 

vaccine if available), enrollment in a medical surveillance 

program, and appropriate placement of isolation and antiviral 

treatment protocols. The biocontainment guidelines for influ-

enza viruses with the HA from the A/goose/Guangdong/1/96 

lineage include BSL-4 and ABSL-4 or BSL-3 agriculture 

(BSL-3-Ag).45 The BSL-3-Ag guidelines include a detailed 

personnel quarantine policy (eg, no contact with susceptible 

avian species for at least 5 days after last possible contact with 

the virus) and more stringent personal protective equipment, 

including disposable hood or head cover, protective eyewear, 

respiratory protection, disposable double gloves, disposable 

protective suit, and disposable shoe or foot covers. For in 

vitro work, there are additional regulations including air 

handling, showering, and decontaminations of laboratory 

liquid effluents. There are also regulations for special caging 

procedures and the decontamination of solid animal wastes 

of infected animals.

Use of human volunteers
The first human influenza viral challenge was performed by 

Russian scientists in 1936. This study involved 72 subjects 

who were given an inhalation of atomized droplet suspen-

sions of influenza H1N1 strains.46 For decades, similar studies 

involving experimentally induced influenza infections have 

been conducted to test the effectiveness, tolerability, and 

pharmacological properties of influenza therapies. Although 

the benefits for such studies are clear, even at the time of the 

first human challenge study with rimantidine, concerns have 

been raised about the safety of the volunteers and the risk 

of dissemination of the “challenge” virus into the commu-

nity.47,48 These concerns affect the medicolegal and ethical 

environment for conducting influenza challenge studies and 

generally tend to restrict this type of research, necessitating 

the use of animal models to reflect key aspects of the human 

disease.

Use of laboratory animals  
for scientific purposes
Although the use of animals for influenza research is quite 

common, researchers must care for and use animals in 

ways judged to be scientifically, technically, and humanely 

appropriate. Researchers are also obliged to plan and con-

duct experiments involving animals with the highest ethical 

principles. The National Research Council and the Institute 

of Laboratory Animal Resources have written detailed 

guidebooks on this topic.49

Animal models
To better mimic influenza A infection in humans, investiga-

tors have used a number of animal models, including mice, 

ferrets, nonhuman primates, guinea pigs, cats, and dogs. 

As domestic poultry and pigs are often intermediate hosts 

between birds and humans, their use as animal models are 

often used to understand influenza transmission to humans; 

however, because of their susceptibility to circulating viruses, 

studies in these species require careful safety precautions 

(as discussed in the previous sections). As a result, most 

influenza research is carried out in murine and ferret models. 

When pursuing, reviewing, or critiquing influenza research, 

it is paramount to keep the animal model used for study into 

context. Important factors to consider include the susceptibil-

ity of the animal to viral infection, its ability to support viral 

replication, the clinical manifestations of the infection in that 

animal model, transmission of the virus, and whether the 

model requires adaptation of the human virus. Therefore, the 

choice of animal model for any given study must be selected 

on the basis of the research question.

Ferret model of influenza infection
Ferrets have widely been used in influenza research since 

the early 1930s.50 The main advantages of this model 
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are that infection in the ferret closely reflects the clinical 

manifestations of human influenza infection, airborne 

transmission of the virus between ferrets can be studied 

as an end point, and the ferret is susceptible to a variety of 

nonadapted human influenza isolates. Limitations of the 

ferret model include its larger size, increased expense on 

husbandry requirements, the limited availability of reagents 

for detailed phenotyping, and the lack of genetically modi-

fied strains (Figure 1).

Intentional infection of animals with IAVs can be accom-

plished through the intranasal or intratracheal route. When the 

virus is administered intranasally, a viral aliquot is placed at 

the tip of the nose and aspirated during spontaneous breath-

ing. During intratracheal administration, a tube is placed in 

the trachea under direct visualization and the virus is deliv-

ered through the tube directly into the lungs. The route of 

inoculation and viral strain should be carefully considered 

in designing influenza challenges in ferrets.51,52 For example, 

Bodewes et al53 found that intratracheal inoculation of ferrets 

with influenza A/H5N1 caused severe bronchointerstitial 

pneumonia, while intranasal inoculation caused mild or 

moderate bronchointerstitial pneumonia in less than half 

of the ferrets and moderate-to-severe CNS lesions in all of 

the ferrets. They concluded that intranasal inoculation of 

influenza A/H5N1 virus resulted in direct innoculation of the 

brain from the nasal cavity and suggested that CNS lesions 

contributed more than pulmonary lesions to the pathogenic-

ity of the virus within the ferret model. This finding was 

especially important as CNS infection is rarely observed in 

human influenza infection.54

A distinct advantage of the ferret model for influenza A 

infection is the resemblance of the ferret’s respiratory tract 

to that of humans. In particular, ferrets have a similar dis-

tribution of α-2,6-linkage sialic acid receptors within the 

respiratory tract, which is likely partially responsible for their 

susceptibility to human influenza viral strains.55 In addition, 

the expression of N-acetylneuraminic acid (Neu5Ac), a sialic 

acid, has recently been shown to contribute to the susceptibil-

ity of ferrets to human-adapted IAV strains.56 It has also been 

noted that both the avian H5N1 and human H3N2 influenza 

viruses exhibit similar patterns of virus attachment to tissues 

from both species.57,58

Many of the clinical signs of influenza viral infection in 

humans, including fever, nasal congestion and discharge, 

anorexia, sneezing, and lethargy, are present in ferrets.59 The 

ferret develops fever as early as 24 hours after inoculation, 

and high fever has been observed after infection with virulent 

viruses.60 As the ferret has an exquisite sneeze reflex, sneez-

ing is typically a prominent feature for influenza infection in 

the ferret model; it is so sensitive that researchers often use an 

anesthetic to intranasally inoculate the animal.50,61 Although 

the clinical presentation of ferrets is quite similar to that in 

humans, some influenza viruses, eg, the reconstructed 1918 

pandemic virus and the H5N1 avian virus, manifest as an 

upper respiratory tract disease in ferrets as opposed to the 

lower respiratory tract manifestation of disease in humans.62 

Therefore, influenza infection in ferrets rarely progresses to 

pneumonia. As mentioned above, ferrets frequently display 

CNS manifestations of influenza infection, especially when 

intranasally inoculated with the HPAI H5N1 viruses.63

Since the 1930s when it was discovered that asymptom-

atic ferrets housed with infected ferrets would develop the 

same disease, the ferret has been used as a model to study 

viral and host factors responsible for transmission of the 

influenza virus.64 Most importantly, the model may be used 

to assess the pandemic potential of avian and swine influenza 

strains, to study their reassortment with human circulating 

viruses, and to compare the transmissibility of antiviral 

Advantages

Mice

•   Low cost •   Clinical disease manifestation is very similar
     to human presentation

•   Limited commercial availability
•   Complex husbandry requirements
•   More expensive
•   Ferret genome not fully annotated
•   Outbred nature of model yields greater
     possible number of occasional outliers

•   Susceptible to unadapted human influenza
     virus isolates
•   Able to be used as a model of influenza
     transmission

•   Readily available
•   Small size
•   Ease of handling/housing
•   Availability of transgenic mice and mice
     with targeted gene disruptions
•   Murine-specific immunological reagents
     are widely available
•   Well suited to study alternative routes of
     inoculation

•   Necessary to use murine-adapted viruses
•   Clinical manifestation in mice is primarily a
     lower respiratory tract infection that is
     different from typical uncomplicated
     influenza
•   Not suitable to study transmission of virus

Ferrets

Disadvantages

Figure 1 Advantages and disadvantages of the mouse and ferret animal models used for influenza research.
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drug-resistant IAVs. Investigators have used the ferret to 

examine airborne or contact-driven transmission of the virus 

either via detection of the virus in respiratory samples or by 

seroconversion in the uninfected animal.65,66

Several groups of investigators have used the ferret model 

to study the efficacy of novel antiviral agents. The three NA 

inhibitors, oseltamivir, zanamivir, and peramivir, have been 

reported to show efficacy in the ferret model.51,67,68 These 

studies must take into account differential bioavailability, 

pharmacokinetics, and toxicities in ferrets compared with that 

in humans. For example, oseltamivir phosphate is 75% orally 

bioavailable in humans, 30% in mice, and 11% in ferrets.69 

Ferrets were also noted to show toxic effects including lethal 

seizures with the M2 ion channel inhibitor, amantadine.70 

Although ferrets could tolerate lower doses, they experienced 

no improvement in clinical symptoms; however, researchers 

found that the drug was tolerated and reduced viral shedding 

and fever when delivered via inhalation.71 Because ferrets 

inoculated with human influenza strains develop active 

immunity to reinfection with neutralizing antibodies within 

the serum of inoculated animals, they may be useful for 

vaccine research. Researchers have reported that the serum 

of ferrets infected with Influenza A/Puerto Rico/8/34 (PR8) 

and Philadelphia strains neutralized the infectivity of both 

strains for mice.64

Murine model of influenza infection
Mice constitute one of the most commonly used models for 

influenza viral research. Because mice are small, inexpensive, 

and require minimal husbandry requirements, the mouse is a 

convenient model of influenza infection. In addition, the large 

number of genetically mutant murine strains allows investi-

gators to design genetic and loss-of-function approaches to 

causally link proteins and pathways with disease pathogen-

esis and to determine the mechanism of action of proposed 

therapies. Detailed methods to carefully phenotype the 

severity of the infection in mice and the ability to precisely 

vary the delivered viral inoculum allow for the detection of 

small differences that might be important when applied across 

large populations. Despite these advantages, the mouse is not 

a natural host for influenza viruses and human IAV subtypes 

must be adapted to mice for the virus to replicate efficiently 

within the murine respiratory tract. It is also a poor model 

of transmission of the virus (Figure 1).

The susceptibility of mice to the influenza virus is depen-

dent on both the strain of the mouse and the strain of the 

influenza virus. Because the majority of human influenza 

virus isolates cause only mild infection in mice, investigators 

typically use one of a handful of murine-adapted strains. 

These include Influenza A/Puerto Rico/8/34 (PR8), Influenza 

A/WSN/33, and Influenza B/Lee/1940. Infection of mice with 

the WSN and PR8 viral strains results in severe pneumonia 

and, with sufficiently large viral inocula, in mortality in both 

Balb/C and C57BL/6 strains. To generate murine-adapted 

viral strains, investigators passaged isolates of human IAVs 

in murine tissues (most commonly brain). Other viral strains 

used that do not require viral adaptation include the 1918 

H1N1 pandemic strain, the HPAI H5N1 strain, a few of the H7 

subtype and low-pathogenic avian influenza viruses, and the 

2009 H1N1 pandemic strains. Because these viral strains do 

not need prior adaptation, they may be appropriate for studies 

examining the efficacy of novel therapies when appropriate 

safety precautions are taken.

While the basis of murine resistance to human influenza 

viral infection is incompletely understood, an important con-

tributor is the lack of sialic acid moieties with an α-2,6 link-

age to galactose on the epithelial cells in the mouse. Instead, 

mice have sialic acids with an α-2,3 linkage. Furthermore, 

the susceptibility of mice to the influenza virus depends on 

a critical antiviral factor Mx1 protein. Mx1 is a guanosine 

triphosphatase that is typically induced by type I and type III 

interferons in the infected host and that subsequently inhibits 

influenza viral infection by blocking viral transcription and 

replication. Because most inbred laboratory mice lack the 

expression of the Mx1 protein, they fail to carry resistance 

to the virus.72 For mice carrying a knocked-in MX1 gene, 

the 50% lethal dose of PR8 virus is .1,000 fold higher than 

that for the parental C57BL/6 mouse.73 Similarly, most wild 

mice are resistant to even the highest viral loads of the PR8 

and WSN viruses.

The signs of disease within the murine model of influenza 

infection are often different from those in humans and differ 

as a function of the dose administered. Lethal doses result in 

huddling, ruffled fur, lethargy, anorexia and weight loss, and 

eventually labored breathing and death. In contrast to humans, 

mice often develop hypothermia during influenza infection.74 

Viral replication and tissue damage is typically within the 

lower respiratory tract, manifesting as a primary viral pneu-

monia, as opposed to the typical upper respiratory tract 

replication and damage seen in humans.75,76 Histopathology 

usually reveals significant increase in interstitial inflamma-

tory cells, lung edema, and hemorrhage.75,77 Some HPAI 

viruses spread beyond the mouse respiratory tract to infect 

the brain, kidney, thymus, liver, heart, and spleen, likely due 

to the presence of a multibasic cleavage site in the viral HA 

protein.78–80 Parameters to evaluate for viral pathogenicity are 

mortality, weight loss, viral titers, pathology scores, weight 

of the lung, oxygen saturation, and activity of the mouse. 

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Infection and Drug Resistance 2015:8 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

317

Modeling human influenza infection in the laboratory

We recently found that intranasal delivery resulted in less 

severe lung injury along with smaller and more variable 

viral loads in the lung, but we did not find evidence of viral 

inoculation of the brain with either method.77

The ability of mice to transmit IAVs has been historically 

controversial. The first experiments examining transmission 

of influenza virus between mice were reported by Eaton81 in 

the 1940s. Researchers were able to show highly efficient 

transmission of PR8 and WSN viruses in his model of influ-

enza infection, with as many as 88% of the PR8 and 100% 

of the WSN contact mice displaying typical influenza lung 

pathology. Eaton81 also found that there was a higher rate 

of transmission to contact mice when mice were inoculated 

with higher doses of influenza virus, that peak transmis-

sion rate was observable between 24  hours and 48  hours 

postinoculation, and that older mice were most susceptible 

to transmission. For .20 years, the findings of Eaton81 were 

unable to be duplicated. Finally, early in the 1960s, Schulman 

and his colleagues showed that transmission of influenza virus 

from infected to naïve animals could occur both by contact 

and via aerosol routes.82–84 In contrast to the findings reported 

by Eaton,81 he found poor transmissibility of PR8 and WSN 

as well as a number of other strains. Overall, the researchers 

showed that murine transmission of influenza viruses was 

inefficient and was dependent on both murine strain and 

the particular murine-adapted influenza strain. Even until 

recently, researchers have not been able to replicate these 

findings, revealing that attempts to model influenza transmis-

sion have been unsuccessful even with close-contact models 

of the murine-adapted WSN strain, the 1918 pandemic virus, 

a highly pathogenic H5N1 isolate, human seasonal H1N1, 

and the 1968 H3N2 strain.85 The reason for these differ-

ences is unknown, but there is suspicion that it may have 

to do with differences in viral strain, husbandry practices, 

or unknown factors affecting the transmission of influenza 

viruses in mice.

Despite their limitations, murine models of influenza 

infection are often used to test the safety and efficacy of 

antiviral drugs. For example, the M2 ion channel inhibitors, 

amantadine and rimantadine, and the NA inhibitors, oselta-

mivir, zanamivir, and peramivir, have all showed efficacy in 

murine models of disease.68,86–90

Other animal models
The albino Hartley strain of guinea pigs is susceptible 

to nonadapted human influenza virus isolates and it can 

transmit the virus to other species. This guinea pig is 

commercially available, small in size, easy to handle and 

house, and its airway anatomy and physiology more closely 

resemble humans when compared with other rodent strains. 

Unfortunately, the guinea pig also lacks the clinical disease 

manifestations observed in humans and has very few immu-

nological reagents for phenotyping. Other less commonly 

used animal models used for influenza research include 

cotton rats, cats, dogs, domestic pigs, nonhuman primates, 

and hamsters.

Future
The prevention and successful treatment of influenza viral 

infection is still limited by our failure to completely under-

stand host–pathogen interactions, inadequate treatment 

options, and vaccination shortcomings. While the efficacy of 

currently available therapies in murine models is reassuring, 

the importance of findings in murine models using historic and 

murine-adapted viral strains for the human disease is uncer-

tain. Nevertheless, murine and other models allow the design 

of studies that can help us understand the biology of infec-

tion and the host immune response. In addition, innovative 

technologies may allow researchers to get more information 

from these models. For instance, researchers have been able 

to visualize the influenza viral infection in living mice using 

an engineered replication-competent IAV carrying luciferase 

reporter gene.91 After inoculation of the virus, biolumines-

cence can be followed, as it correlates with the dosage of 

infection and viral load within the lung and diminishes with 

antiviral treatment. This allows the researcher to follow the 

progression of the influenza virus in real time.

A major concern in the use of murine models to study the 

innate immune response to IAVs is the presence of impor-

tant differences between the murine and the human immune 

systems. In response to this challenge, investigators have 

developed a humanized murine model.92–94 The humanized 

mouse is an immunodeficient mouse that has been engrafted 

with human hematopoietic stem cells (HSCs), which, in 

turn, develop into a functional human immune system. Until 

recently, the creation of a robust and productive humanized 

murine model to study the human immune system was 

impossible. Many attempts to engraft human immune cells 

into various immunodeficient mice resulted in poor and short-

term engraftment, which was mainly attributed to residual 

activity of the host’s immune system.

A new generation of immunodeficient mouse hosts, 

which became available in the early 2000s, has dramatically 

changed the situation. Conceptually, these mice are generated 

by genetically deleting or introducing genes that prevent the 

murine immune system from reacting to human allografts. 

After lethal irradiation, these mice can then be reconstituted 

using human circulating or bone marrow-derived HSCs or 

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Infection and Drug Resistance 2015:8submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

318

Radigan et al

fetal circulating monocytes.95 The resulting mouse is fully 

reconstituted with a functional human immune system. The 

latest humanized murine model among the most immuno-

deficient to date is the NOD-scid IL2rγnull mouse, commonly 

referred to as NSG mouse. While the function of natural 

killer (NK) cells is affected in non-obese diabetic (NOD) 

mice, the Scid mutation leads to complete absence of mature 

T and B cells. Furthermore, inactivation of the gamma chain 

of the interleukin (IL)-2 receptor, which is also known as 

common cytokine-receptor γ-chain and which is required 

for IL-2, IL-4, IL-7, IL-9, IL-15, and IL-21 signaling, fur-

ther depresses functioning of the innate immune system and 

completely prevents NK cell development. The only cell types 

that remain in these immunodeficient mice are neutrophils, 

monocytes/macrophages, and dendritic cells; however, even 

these cell types are hypofunctional, which is evident by the 

lack of inflammatory immune response to bacterial and 

fungal pathogens. These characteristics not only allow robust 

engraftment of human peripheral blood mononuclear cells but 

also support long-term engraftment of human HSCs, either 

from umbilical cord blood or from granulocyte colony-stimu-

lating factor (G-CSF)-mobilized peripheral blood. Over time, 

engrafted HSCs undergo multilineage development, resulting 

in a fully functional human immune system, including T, B, 

NK, and dendritic cells, and, to a lesser degree, monocytes/

macrophages and granulocytes.

This humanized murine model revolutionized studies 

of human-specific infectious species, such as HIV, dengue 

virus, and recently, Salmonella typhi, to which animals 

are not susceptible.95 Recently, several new substrains of 

NSG mice, carrying human knock-in or transgenes that 

improve the function of the transplanted human immune 

system, have become commercially available. These mice 

have the potential to contribute significantly to influenza 

research, especially in the development of vaccines against 

infectious diseases. A new generation of humanized mice 

created on Rag-knockout background supports superior 

development of the myeloid lineage.96 Moreover, due 

to replacement of the murine granulocyte-macrophage 

colony-stimulating factor (GM-CSF) with human GM-CSF, 

these mice lack murine alveolar macrophages. However, 

upon engraftment with human HSCs, their lungs become 

populated with human alveolar macrophages. Two other 

new murine strains called MITRG and MISTRG support 

development of NK cells, in addition to supporting devel-

opment of myeloid lineage.97 These mice can contribute to 

delineating the role of the innate immune response during 

influenza A infection.

Conclusion
Investigators conducting research using IAVs should be famil-

iar with concerns about biosafety, biosecurity, and ethics. 

Both mice and ferrets provide investigators with unique 

features for the study of influenza infection. Unfortunately, 

no model can fully reproduce influenza infection. When 

pursuing the study of influenza viral infection, the researcher 

must not only select the most appropriate model in which to 

investigate the experimental question, but also understand the 

limitations of that model when interpreting data and making 

conclusions. New technologies, including the development 

of luminescent virions and humanized mice, might improve 

the relevance of information obtained from mouse and other 

animal models to human disease.
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