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Abstract: Alzheimer’s disease and Parkinson’s disease are two common neurodegenerative 

diseases of the elderly people that have devastating effects in terms of morbidity and mortality. 

The predominant form of the disease in either case is sporadic with uncertain etiology. The 

clinical features of Parkinson’s disease are primarily motor deficits, while the patients of 

Alzheimer’s disease present with dementia and cognitive impairment. Though neuronal death 

is a common element in both the disorders, the postmortem histopathology of the brain is very 

characteristic in each case and different from each other. In terms of molecular pathogenesis, 

however, both the diseases have a significant commonality, and proteinopathy (abnormal 

accumulation of misfolded proteins), mitochondrial dysfunction and oxidative stress are the 

cardinal features in either case. These three damage mechanisms work in concert, reinforcing 

each other to drive the pathology in the aging brain for both the diseases; very interestingly, 

the nature of interactions among these three damage mechanisms is very similar in both the 

diseases, and this review attempts to highlight these aspects. In the case of Alzheimer’s disease, 

the peptide amyloid beta (Aβ) is responsible for the proteinopathy, while α-synuclein plays a 

similar role in Parkinson’s disease. The expression levels of these two proteins and their aggrega-

tion processes are modulated by reactive oxygen radicals and transition metal ions in a similar 

manner. In turn, these proteins – as oligomers or in aggregated forms – cause mitochondrial 

impairment by apparently following similar mechanisms. Understanding the common nature 

of these interactions may, therefore, help us to identify putative neuroprotective strategies that 

would be beneficial in both the clinical conditions.

Keywords: proteinopathy, amyloid beta, oxidative stress, α-synuclein, mitochondrial 

dysfunction

Introduction
Alzheimer’s disease (AD) and Parkinson’s disease (PD) are the two commonest 

neurodegenerative diseases of the elderly that follow a relentlessly downhill course 

until the patients succumb to the illness.1–3 Both the diseases appear predominantly 

in a sporadic fashion, but a small subset of patients in either AD or PD suffer from 

the familial variety of the disease with well-defined mutations.1–3 The clinical pre-

sentations of AD and PD are different, but both are progressive over the years, with 

PD primarily presenting with motor deficits and AD presenting with dementia and 

cognitive decline.1–3 Both the diseases show characteristic but complex histopatho-

logical findings in the brain at autopsy. However, there are overlapping similarities 

in AD and PD in terms of molecular pathogenesis, which we attempt to highlight in 

this review.4–6
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The pathogenesis of sporadic AD or PD is highly complex, 

but several cardinal cellular and molecular mechanisms, such 

as proteotoxicity, mitochondrial dysfunction and oxidative 

stress, have been suggested based on postmortem studies in 

patients and evidence acquired from various experimental 

models.7–10 Although abnormal accumulation of proteins of 

altered conformation is considered as the most characteristic 

molecular signature of AD or PD, it is highly unlikely that 

only proteinopathy acts as the driving force of the pathol-

ogy, while others such as oxidative stress and mitochondrial 

dysfunction are secondary consequences. Instead, it is 

plausible that they represent interacting damage pathways 

that culminate in neuronal death and degeneration. Thus, 

the cross talk among proteinopathy, oxidative stress and 

mitochondrial dysfunctions on the one hand and the genetic 

or nongenetic factors that trigger these damage mechanisms 

on the other have to be analyzed critically to obtain a deeper 

understanding of the pathogenesis of AD and PD. The 

literature is replete with studies that demonstrate the varied 

aspects of proteotoxicity culminating in neurodegeneration 

in AD or PD, as well as the detailed biophysical aspects 

of altered protein conformation and aggregation in these 

disorders; these aspects are not covered in this review.11–14 

This review instead analyzes in detail the possible inter-

actions among proteotoxic mechanisms, oxidative stress 

and mitochondrial functional impairment in relation to the 

pathogenesis of AD or PD.

Proteinopathy: links with 
oxidative stress and mitochondrial 
dysfunction
The accumulation of a specific protein, either the wild-type 

or a mutant variety, in excess with altered conformations 

that facilitate aggregation is a hallmark of many neuro-

degenerative diseases, including AD and PD, which has 

been often termed as proteinopathy.15 The accumulation of 

proteins can occur intraneuronally (tau or α-synuclein) or 

outside the cells (amyloid beta [Aβ] peptide) and can take 

on varied histopathological forms.15 Some elaboration of this 

concept in the context of the pathogenesis of AD and PD 

is necessary before the cross talk of proteinopathy with 

oxidative stress or mitochondrial function can be analyzed 

in the individual disease. The accumulation of a specific 

toxic protein may result from the transcriptional activation 

or enhanced translation of a specific mRNA or a diminished 

degradation rate of the protein through impairment of the 

proteasomal or lysosomal pathway.15–20 In some conditions, 

the mutant gene produces an abnormal product that is not 

readily cleared by the protein degradation machinery, lead-

ing to its accumulation, and a similar thing can happen if the 

protein is posttranslationally modified because of changes in 

the internal milieu of the cell, such as the redox status and 

the activity of kinases.19,20 The accumulation of the wild-type 

or the mutant protein in excess amount can trigger confor-

mational alterations, eg, helix to β-strand, which facilitate 

oligomerization and self-aggregation. The chaperones and 

co-chaperones, such as heat shock protein (Hsp)70, Hsp90, 

Hsp40 and others, normally prevent misfolding of intracel-

lular proteins, but excess accumulation, mutations or redox 

modifications of such proteins may overwhelm this system 

and, additionally, there may be altered expression levels 

of these chaperones.21,22 The toxic effect of these protein 

oligomers or aggregates on diverse functions of the cell 

organelles defines the term proteotoxicity, but it is also likely 

that even the monomeric forms of some of these proteins 

could be toxic when present in excess amounts.

The molecular links of proteinopathy and proteotoxicity 

with oxidative stress could be varied and complicated. For 

example, reactive oxygen species (ROS)-responsive tran-

scription factors can alter the expression of genes encoding 

such toxic proteins or the enzymes involved in the synthesis, 

processsing or degradation of such proteins.23 Furthermore, 

the oxidative stress can directly inactivate the proteasomal 

system to varying degrees, especially the 26S proteasome 

that is responsible for the degradation of the toxic protein 

aggregates; many details of such ROS-mediated regulation 

of proteasomal degradation are currently being elucidated.24,25 

The lysosomal removal of the toxic proteins may also be 

affected by ROS, which are known to have complex inter-

actions with the phenomenon of autophagy.25 Furthermore, 

ROS may also potentiate the oligomerization of proteins such 

as α-synuclein and amyloid beta, or these proteins may inter-

act with transition metals or other components to generate 

further ROS.26,27 Similarly, proteotoxicity and mitochondrial 

functional impairment are also interdependent. There is 

evidence to show that aggregated or oligomerized proteins – 

or even monomers of amyloid beta or α-synuclein – cause 

varied mitochondrial damages, such as impairment of bio-

energetics, altered fusion/fission and impaired mitophagy, 

as evident in studies with isolated mitochondria, cultured 

cells and postmortem brain samples.28–31 The dysfunctional 

mitochondria resulting from proteotoxicity in turn may 

produce excess ROS, triggering cellular death pathways. 

These myriad interactions of oxygen radicals, mitochondria 
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and toxic protein oligomers are analyzed in the context of 

AD and PD separately to understand their importance in the 

disease pathogenesis.

Alzheimer’s disease
Currently, ~24 million people across the globe suffer from 

AD, which is characterized by progressive dementia and 

deficits in multiple cognitive domains.2 The diagnosis of 

probable AD is made clinically supported by magnetic 

resonance imaging (MRI) findings, but a more accurate 

antemortem diagnosis is possible with positron emission 

tomography (PET) scan of amyloid deposition or decreased 

18F-fluoro-2-deoxyglucose uptake or cerebrospinal fluid 

(CSF) analysis of amyloid beta peptide 1–42 (Aβ42), tau 

and phosphorylated tau. The diagnosis can be confirmed by 

postmortem analysis of brain histopathology showing dif-

fuse neuronal and synaptic loss with extracellular amyloid 

plaques of different varieties and intraneuronal formation of 

neurofibrillary tangles.2

Proteinopathy: amyloid beta and tau
The toxic proteins that are deposited extracellularly in the 

brain as amyloid and neuritic plaques are called amyloid beta 

peptides (Aβ42 and Aβ40 peptides, in particular) derived 

from a precursor known as amyloid precursor protein (APP) 

through the sequential actions of two proteases.3,32 These 

two proteases, β and γ secretases, cleave out the peptides 

from APP, which is a type I membrane protein expressed 

as several isoforms in the brain.32,33 The expression, pro-

cessing and intracellular trafficking of APP and amyloid 

beta peptides in the trans-Golgi network, endosomes and 

plasma membrane are well-established events, and the 

multiple toxicities of the amyloid peptides – especially in 

the soluble oligomeric form – are thought to spearhead the 

pathogenesis of AD (amyloid cascade hypothesis).3,34 Thus, 

based on postmortem data and experimental studies in cell 

lines, primary culture of hippocampal neurons and transgenic 

animal models, it has been suggested that oligomers of amy-

loid beta peptides can lead to mitochondrial dysfunction, 

calcium dysregulation, inflammatory reaction, endoplasmic 

reticulum (ER) stress and oxidative damage to trigger the 

process of neurodegeneration.33,34 Apart from the amyloid 

beta proteinopathy, another characteristic of AD pathology 

is the accumulation of phosphorylated tau proteins within 

the neurons, which also contributes to synaptic dysfunction 

and axonal degeneration.35,36 The reasons for the abnormal 

accumulation of amyloid beta protein or phosphorylated tau 

in the sporadic AD brain are not entirely clear, but it would 

be interesting to accrue evidence on how oxidative stress may 

interact with the proteinopathy of the AD brain.

Oxidative stress affects amyloid beta 
accumulation
The evidence of oxidative damage in postmortem AD brain 

is quite compelling, with significant accumulation of oxida-

tive damage markers of lipid, protein and DNA, increased 

accumulation of transition metals such as Fe, Cu and Zn as 

well as impaired antioxidant defense.37 The recent redox 

proteomics analysis of the postmortem AD brain has demon-

strated oxidative damage to key enzymes involved in energy 

metabolism, neurotransmitter-related proteins, mitochondrial 

proteins and proteasomal components.38

The cross talk between oxidative stress and amyloid 

beta proteinopathy may occur via multiple ways affecting 

transcription of the APP gene or translation of APP mRNA, 

processing and degradation of APP and amyloid beta pep-

tides as well as interactions of APP with transition metals. 

The promoter sites of the APP gene have been mapped in 

different species, and several transcription factors such as 

HSF-1 and NF-kB, which are responsive to ROS, can bind 

here and induce APP expression.39,40 The involvement of 

NF-kB and ROS in upregulating APP expression has been 

demonstrated in various experimental models.41,42 The post-

transcriptional control of APP expression has been elucidated 

in great detail, and APP mRNA contains a 5′-untranslated 

region (UTR) stem–loop arrangement of the iron-responsive 

element (IRE), where the IRE-binding protein (IREBP) binds 

and downregulates translation. In the presence of increased 

level of intracellular iron, IREBP dissociates from the binding 

site at the 5′-UTR of APP mRNA, leading to translational 

upregulation in a manner similar to the translational regula-

tion of ferritin by iron.43 Transition metals such as Fe are 

important catalysts for ROS production, and elevated levels 

of iron have been reported from postmortem analyses of AD 

brains; thus, an obvious connection is implied between oxida-

tive stress and APP production in the AD brain.44 The major 

processing enzymes of APP in the amyloidogenic pathway 

are β-secretase (BACE1) and γ-secretase.3,32 There are several 

binding sites for redox-responsive transcription factors, such 

as Sp1, NF-kB, and HIF-1α, near the promoter region of 

BACE1 and the expression of BACE1 may be modulated by 

ROS.45,46 However, the effect on gene expression of BACE1 

by such transcription factors is often very complex, and both 

up- and downregulation of BACE1 gene have been reported 
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after binding of such transcription factors depending on the 

cell types and the physiological or experimental conditions 

of the cells.45,47 There are multiple reasons for such varied 

response following binding of these transcription factors. 

For example, the nature of the subunits binding to the NF-kB 

binding sites may determine whether up- or downregulation 

of BACE1 gene takes place.45 Similarly, though NF-kB is a 

redox-sensitive transcription factor, its interaction with ROS 

is complex and may lead to either activation and enhanced 

nuclear translocation in certain experimental conditions or 

decreased nuclear binding in others.48 However, oxidative 

stress-induced increased BACE1 activity has been reported in 

many experimental systems.46,49 In several studies, products 

of oxidative damage (such as 4-hydroxynonenal [4-HNE]) 

or oxidants (such as H
2
O

2
 and iron–ascorbate mixture) have 

been shown to increase BACE1 activity through activation of 

stress-activated protein kinase.50,51 In a more extensive study, 

it has been shown that oxidative stress-induced increase in 

BACE1 activity both in cultured cells and in experimental 

animals requires the involvement of γ-secretase and activation 

of the JNK/c-jun pathway.52 Additionally, oxidative stress 

increases BACE1 activity at the translational level involv-

ing double-stranded RNA-dependent protein kinase (PKR) 

and eukaryotic initiation factor-2 (eIF2) phosphorylation.53 

Such data do suggest that oxidative stress contributes to the 

increase in BACE1 activity in AD. The γ-secretase enzyme 

complex, composed of presenilin1 (PS1), nicastrin, PEN2 

and APH1, is also essential for the release of Aβ42 from 

APP, and its activity is enhanced by oxidative stress through 

upregulation of PS1.52

In different experimental models, oxidative stress has 

been shown to increase the production and accumulation of 

Aβ42, which could be accounted for by its effect on APP 

expression and processing.54 Additionally, in AD, the clear-

ance of amyloid beta from the brain is affected as a result of 

oxidative damage. The clearance of amyloid beta from the 

brain is regulated by the low-density lipoprotein receptor-

related protein 1 (LRP1) and the receptor for advanced 

glycation end products (RAGE).55–57 The LRP1 exists in 

two forms; the membrane-bound form is responsible for the 

removal of cerebral amyloid beta to the circulation across the 

blood–brain barrier and is expressed in neurons, astrocytes, 

vascular endothelial cells and smooth muscle cells, while 

the soluble form binds the amyloid beta in the peripheral 

circulation.55,56 RAGE, present in the blood–brain barrier, 

on the other hand, may allow the reentry of amyloid beta 

from the peripheral circulation. Under oxidative stress, the 

membrane-bound LRP1 is altered, preventing the clearance 

of amyloid beta from the brain; furthermore, the oxidized 

soluble LRP1 fails to bind the circulating amyloid beta 

properly, allowing its reentry into the brain.57

Amyloid beta induces oxidative stress
Multiple mechanisms are operative in initiating the oxida-

tive damage in the AD brain, but in particular, amyloid 

beta-induced ROS generation has been well documented in 

a large number of experimental studies with cultured cells, 

subcellular fractions, experimental animals and cell-free 

chemical systems.58–60 Both Aβ42 and Aβ40 can bind transi-

tion metals in a redox-active form through several amino acid 

residues that include His6, His13 and His14, and the related 

coordination chemistry has been elaborately described.61 The 

bound metal ions can take part in redox-cycling reactions 

that generate ROS, and the mechanism – though not fully 

understood – may require Met35 of the peptide or another 

reducing agent in the surroundings.61 These experimental 

studies are significant because of the postmortem evidence 

of increased levels of transition metals such as Fe, Cu and 

Zn in the AD brain, especially near the plaque, which implies 

that amyloid beta-mediated ROS production could be impor-

tant in AD pathogenesis. However, based on scattered but 

substantial experimental evidence, an opposite view posits 

an antioxidant and protective role of amyloid beta, whereby 

the peptide scavenges the reactive radicals of lipid oxida-

tion, prevents the formation of ROS through sequestration 

of the transition metals or even blocks the mitochondrial 

production of oxygen free radicals.62 Apart from this direct 

production of ROS by bound redox-active metals, amyloid 

beta may lead to increased production of ROS intracellularly 

and to subsequent neuronal death through the involvement 

of ASK 1.58 In neuronal culture, amyloid beta increases ROS 

production presumably through the activation of reduced 

nicotinamide adenine dinucleotide phosphate (NADPH) 

oxidase, but enhanced mitochondrial production of oxygen 

radicals, which is preventable by mitochondria-targeted anti-

oxidants, has been demonstrated.63,64 The other mechanisms 

of amyloid beta-induced ROS production involve microglial 

activation and priming by the soluble or fibrillar form of 

the peptide, as observed in primary cultures of microglia 

or coculture of microglia and neurons.65,66 The activated 

microglial cells produce both ROS and proinflammatory 

cytokines such as interleukin (IL)-6, IL-1β, tumor necrosis 

factor (TNF)-α and initiate the inflammatory response in AD 

brain following activation by amyloid beta acting through a 

variety of receptors.67 Thus, the microglia contain a B-type of 

scavenger receptor, called CD36, which has been shown to 

act as a receptor for fibrillar amyloid beta, and the activation 

of this receptor by the peptide leads to increased microglial 
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ROS production, cytokine expression and phagocytosis.67,68 

Others have shown that amyloid beta-induced microglial 

activation and ROS production is mediated by MAC-1 recep-

tor and PI3K, causing activation of NADPH oxidase.69 The 

central role of NADPH oxidase in microglial production of 

ROS induced by amyloid beta has been highlighted in many 

other studies.65,69

Oxidative stress and tau phosphorylation
The formation of neurofibrillary tangles from intracel-

lular accumulation of hyperphosphorylated tau protein is 

another characteristic feature of AD pathogenesis, which 

contributes significantly to the axonal degeneration and 

synaptic dysfunction associated with these disorders.70,71 The 

microtubule-associated tau protein has multiple phosphoryla-

tion sites in the C-terminal and in the proline-rich regions of 

the protein, and a number of kinases – especially GSK3β and 

CDK5 – can phosphorylate the latter.71 Several phosphatases, 

predominantly PP2A, PP1 and PP2B, can dephosphorylate 

tau.71 In AD, the increased phosphorylation of tau protein is 

the result of increased activities of GSK3β and CDK5, with 

an associated decrease in PP2A activity, but the reasons for 

such alterations in the activities of kinases and phosphatases 

in this disease condition are not clear. In different experimen-

tal models, the role of oxidative stress on tau phosphoryla-

tion has been investigated. Chronic oxidative stress in the 

form of glutathione depletion has been shown to increase 

tau phosphorylation in cultured M17 neuroblastoma cells 

through activation of JNK and p38 as well as diminished 

activity of PP2A.72 In cultured cortical neurons, amyloid 

beta-induced tau phosphorylation is mediated by oxidative 

stress through the involvement of p38 kinase and the phenom-

enon is blocked by the antioxidant trolox.73 Similarly, in rat 

primary cortical neuronal culture, a combination of Fe2+ and 

H
2
O

2
 causes increased phosphorylation of tau, presumably 

through the activation of GSK3.74 On the contrary, there are 

reports of decreased phosphorylation of tau under oxidative 

stress in different experimental models through modulations 

of kinases (such as GSK3 or CDK5) or phosphatases (such as 

PP1), and thus, the relationship between oxidative stress and 

tau phosphorylation is somewhat uncertain at present.75,76

Amyloid beta and mitochondrial 
functions
Mitochondrial dysfunction is a key mechanism in the patho-

genesis of AD, and studies with both postmortem AD brains 

and various experimental models have corroborated this.77 

For example, a variety of structural changes such as frag-

mented mitochondria with abnormal cristae, impairment of 

bioenergetics along with diminished cytochrome oxidase, 

α-ketodehydrogenase, pyruvate dehydrogenase activities, 

decreased adenosine triphosphate (ATP) synthesis, mitochon-

drial membrane depolarization, increased ROS production 

and altered mitochondrial biogenesis and dynamics have been 

reported.77,78 Since mitochondrial oxidative phosphorylation 

is the major source of ROS, it is reasonable to assume that 

mitochondrial dysfunction contributes significantly to genesis 

of oxidative stress in AD brain. However, the interrelation-

ship between mitochondrial dysfunction and proteotoxicity 

is the subject of intense research. In particular, extensive 

studies have been conducted using transgenic AD models, 

postmortem AD brain, cultured cells and isolated mitochon-

dria to elucidate how amyloid beta or its soluble oligomers 

interact with mitochondria through multiple mechanisms. 

In transgenic AD mice, progressive accumulation of amy-

loid beta occurs in the brain mitochondria, with diminished 

activities of respiratory chain enzymes and decreased oxygen 

consumption rate; similar accumulations of amyloid beta also 

take place in different AD-affected brain regions in postmor-

tem AD brain.79 Immunofluorescence staining and confocal 

microscopy, as well as other techniques, have identified that 

amyloid beta (Aβ) binds to mitochondrial short-chain alcohol 

dehydrogenase, which is known as Aβ-binding alcohol dehy-

drogenase (ABAD).79 The other protein with which amyloid 

beta may remain in association is Hsp60, which is a marker of 

the mitochondrial matrix.79 The accumulation of amyloid beta 

may lead to inhibition of mitochondrial peptidasome (PreP), 

which removes the presequences from the N-terminals of 

mitochondrially targeted proteins.80 The impaired process-

ing of these preproteins may change the protein profile of 

mitochondria, leading to multiple functional anomalies 

of this organelle in AD.80 Another possible mechanism of 

multiple functional impairments of mitochondria in AD is 

the blockage of protein import channels of this organelle by 

APP, preventing the entry of nuclear DNA-coded proteins 

of mitochondria, including the subunits of the respiratory 

chain complexes.30,81 The soluble oligomers of amyloid beta, 

however, can impair functions of isolated mitochondria incu-

bated in vitro, which may possibly be related to its interac-

tions with many other mitochondrial proteins, such as adenine 

nucleotide translocase (ANT), components of translocase of 

outer membrane (TOM) or translocase of inner membrane 

(TIM), cyclophilin D, uncoupler protein (UCP) and others.82 

The interactions of soluble oligomers of amyloid beta with 

lipid biomembranes have been studied in depth by several 

groups, which indicates that membrane-spanning channels 

(Aβ channels) could be created by such oligomers, allowing 

different ions to pass through these channels.83,84 If such a 
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β

Figure 1 Amyloid beta proteinopathy in AD brain.
Notes: Oxidative stress causes increased expression of APP and BACE1, leading to accumulation of Aβ42. The clearance of Aβ42 from the brain is also retarded by oxidative 
stress. On the other hand, the multiple interactions of Aβ42 with mitochondria, microglia and metal ions lead to further oxidative stress. Arrows suggest interactions; a line 
with an end bar indicates retardation.
Abbreviations: Aβ42, amyloid beta peptide 1–42; AD, Alzheimer’s disease; APP, amyloid precursor protein; BACE1, β-secretase; eIF2, eukaryotic initiation factor-2; IRE, 
iron-responsive element; LRP1, low-density lipoprotein receptor-related protein 1; PKR, double-stranded RNA-dependent protein kinase; RAGE, receptor for advanced 
glycation end products; ROS, reactive oxygen species.

mechanism is operative in the interactions of amyloid beta 

oligomers with mitochondria, it may explain some of the 

toxic effects of amyloid beta on this organelle. The other 

interesting finding in the context of amyloid beta-induced 

mitochondrial dysfunction in astrocytes is the involvement 

of cytosolic and calcium-independent phospholipase A2 

in this process.85 Furthermore, in astrocytes, amyloid beta 

has been reported to activate NADPH oxidase to enhance 

ROS production, which in turn may cause mitochondrial 

dysfunction and glutathione depletion in both neurons and 

astrocytes.86

Figure 1 summarizes the various possible mechanisms in 

AD brain through which oxidative stress leads to an accumu-

lation of amyloid β42, which in turn impairs mitochondrial 

function and interacts with metal ions in microglia.

Parkinson’s disease
The disease presents clinically as a triad of bradykinesia, 

muscular rigidity and resting tremor in elderly people, 

with a prevalence of 425 per 100,000 in the age group of 

64–75 years, which increases further with advancing age.1,87 

As the disease gradually worsens, many secondary symptoms 

develop, such as postural instability; difficulty in swallowing, 

breathing and speaking; sleep disturbance; depression and 

dementia. Majority of PD patients (.95%) suffer from 

the sporadic variety of the disease, while mutations in 18 

chromosomal loci (PARK 1, PARK 2, PARK 3, PARK 4, 

PARK 5 and so on) lead to familial PD (,5%).1,88 Some 

mutations as in α-synuclein (PARK 1), Parkin (PARK 2), 

PINK1 (PARK 6) or DJ-1 (PARK 7) give rise to monogenic 

forms of familial PD, with either autosomal dominant or 

recessive inheritance.1,88 The pathological hallmark of the 

disease is the degeneration of the dopaminergic (DAergic) 

neurons of the substantia nigra projecting into the striatum, 

but extensive postmortem studies have now established that 

the neurodegeneration affects many other areas of the brain, 

beginning in the olfactory bulb and dorsal nucleus of the 

vagus and progressing sequentially to the pons, medulla, 

midbrain, mesocortical areas and, finally, the neocortex.89 In 

sporadic and some types of familial PD, the neurodegenera-

tion is associated with the development of round eosinophilic 

inclusion bodies called Lewy bodies within the soma of the 

neurons and the appearance of spindle-shaped or thread-like 

structures within the cell processes called Lewy neurites.89,90 
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Both Lewy bodies and Lewy neurites are immunoreactive 

for α-synuclein.89,91

Proteinopathy in PD
The major protein component of the intraneuronal Lewy 

bodies that are present in the degenerating neurons of 

sporadic PD is α-synuclein, which is a small protein of 

140  amino acids (14.1  kDa) abundantly present in the 

brain.4,90 The physiological function of this protein is not fully 

known, but it may play a pivotal role in synaptic plasticity and 

the vesicular transport and release of neurotransmitters.90,92 

This protein, in the native state, remains in an unfolded form 

and has a propensity to bind to liposomes, synthetic mem-

branes and membranes of the organelles.90,92,93 The binding 

to synthetic membranes through the interaction of the acidic 

phospholipids and the N-terminal lysine-rich segment of the 

peptide causes a conformational change from the unfolded 

form to partially helical structures, as observed through 

a variety of biophysical techniques in vitro.90,92,93 The oli-

gomerization and subsequent fibrillization of α-synuclein is 

initiated and propagated through the conformational change 

of the natively unfolded or the membrane-bound helical form 

of the protein to the β-strand conformation, and dimerization 

may be a key step in this process.90,92–94 The process occurs 

in a concentration-dependent manner and is also affected by 

membrane binding or posttranslational modifications such 

as phosphorylation, proteolysis, oxidative modification and 

metal binding.90,92–94

The accumulation of α-synuclein in vulnerable regions 

in the PD brain could be because of overexpression through 

transcriptional (eg, DNA methylation status) and posttran-

scriptional mechanisms (iron acting through IRE and IREBP 

at the 5′-UTR of the mRNA) as well as by the diminished 

degradation of the protein through proteasomal and lyso-

somal pathways.18,95–98 The ubiquitin–proteasomal system 

(UPS) is a major pathway of intracellular protein degradation 

and is particularly responsible for the removal of damaged 

or misfolded proteins.99 The UPS uses a group of enzymes 

(E1, E2 and E3) to conjugate a chain of multiple ubiquitin 

(a small protein of 76 amino acids with a highly conserved 

sequence) units to target proteins destined for degrada-

tion, and subsequently these tagged proteins are delivered 

to the 26S/20S proteasomal complex for ATP-dependent 

degradation.100 The proteasomal impairment has been sug-

gested to be an important mechanism of neurodegeneration 

in PD and has been studied extensively in experimental 

models as well as in postmortem brains, especially because 

mutations in several genes, such as Parkin and ubiquitin 

C-terminal hydrolase L1 (UCH-L1) coding for the UPS 

enzymes, give rise to some varieties of familial PD.88,101–104 

In the substantia nigra of the postmortem PD brain, sig-

nificant loss of the α-subunit of the 26S/20S proteasomal 

complex, coupled with impaired activity of the 20S subunit, 

and diminished levels of endogenous proteasomal activators 

have been observed.99 Moreover, the systemic administration 

of natural and synthetic proteasomal inhibitors to rats has 

been shown to give rise to striatal dopamine (DA) depletion 

and nigral DAergic neuronal death.102 Similarly, the pro-

teasomal inhibitor lactacystin induces apoptosis in cultured 

SH-SY5Y cells through translocation of the cytosolic Bax to 

mitochondria.105 Furthermore, the overexpression of mutant 

α-synuclein in differentiated PC12 cells causes decreased 

proteasomal activity and increased sensitivity of the cells 

to apoptotic death following exposure to subtoxic concen-

trations of the proteasomal inhibitor.104 Thus, proteasomal 

impairment has been suggested to play a pivotal role in the 

pathogenesis of PD, but several inconsistencies have also 

been pointed out with regard to neurodegeneration caused by 

proteasomal inhibitors.98 However, in general, it is plausible 

that proteasomal inactivation could be the mechanism for 

the accumulation of α-synuclein in the sporadic PD brain, 

and in turn, the latter in its aggregated form may further 

downregulate the 26S proteasomal activity presumably by 

interacting with the 19S cap. The other relevant mechanisms 

for the impairment of UPS in PD may include DA-derived 

ROS and quinones.106,107

Several missense mutations (A53T, A30P and E46K) or 

duplication or triplication of the α-synuclein gene results 

in the familial form of PD with autosomal dominance.4,88 

A genome-wide association study has also indicated that 

common variations of the α-synuclein gene constitute a 

risk factor for PD.108 Lentivirus-mediated overexpression 

of wild-type or mutant human α-synuclein after injection 

into substantia nigra in rats leads to DAergic neurodegen-

eration, with the formation of inclusion bodies immunore-

active for α-synuclein.109 Recombinant adeno-associated 

virus-mediated expression of α-synuclein (wild or mutant) 

in mouse substantia nigra triggers progressive neurodegen-

eration, and interestingly, both wild and mutant varieties of 

α-synuclein cause similar degrees of pathology.110 Similarly, 

fibrillar rat α-synuclein injected into mice striatum causes 

neurodegeneration, with Lewy body-like structures in sub-

stantia nigra and other areas.111 When Lewy body-enriched 

fractions from postmortem PD brains are injected into 

substantia nigra or striatum of mice or monkeys, human 

α-synuclein is seen to be internalized within neurons, 
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triggering a progressive neurodegeneration that is dependent 

upon the expression of endogenous α-synuclein of the 

animal.112 Furthermore, in cell-based models, overexpres-

sion or accumulation of α-synuclein induces cell death or 

potentiates DA-induced loss of cell viability.113 Thus, there 

is a growing body of evidence of α-synucleinopathy as the 

pivotal mechanism of PD neurodegeneration, even though 

the mechanism of toxicity is not clearly understood.

Alpha-synuclein and mitochondrial 
dysfunction in PD
A most characteristic pathology of PD, as mentioned already, 

is the impairment of mitochondrial functions at different 

levels.4,5,114 The original postmortem finding was a decrease in 

complex I activity in the substantia nigra of PD patients, and 

subsequently, the activities of other respiratory chain com-

plexes have been shown to be decreased to a variable extent 

in the platelets and skeletal muscles of PD subjects.115–117 

Furthermore, mitochondrial fusion and fission, responsible 

for the dynamic morphology and functional quality of the 

organelle, are possibly altered in sporadic PD, as suggested 

from studies in cell-based models of this disease, including 

cybrids.5,118,119 Cybrids are created by the fusion of human 

neuroblastoma cells or teratocarcinoma cells depleted of 

endogenous mitochondrial DNA (mtDNA) with platelets 

from PD subjects.119,120 Such cybrids also show a variety 

of defects in respiratory chain activity, ROS production 

and susceptibility to mitochondrial toxins.119 Several toxins 

and endogenously available molecules, such as rotenone, 

1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), para-

quat, 6-hydroxy-DA (6-OHDA) and DA, which are known 

to impair mitochondrial functions, can produce PD-like 

neurodegeneration in animal models coupled with behavioral 

deficits.7,121–124 In cultured DAergic cell lines such as PC12 

and SH-SY5Y, MPTP, DA or 6-OHDA trigger apoptotic 

cell death with profound mitochondrial dysfunctions.122,124 

Accumulation of mitochondrial DNA mutations has been 

observed in laser-microdissected nigral neurons from 

postmortem PD brains.125 Mutations in several genes, such 

as Parkin and PINK1, cause familial forms of PD, and the 

proteins coded by these genes are known to maintain the 

functional quality of mitochondria through mitophagy.126 

Thus, altered mitophagy could be a possible mechanism of 

the mitochondrial dysfunction observed in PD, and this topic 

needs some elaborate analysis. The detailed mechanism of 

mitophagy, a type of macroautophagy to remove dysfunc-

tional and damaged mitochondria, has been extensively 

studied in both yeast and mammalian systems. In yeast, 

mitophagy requires several proteins, including Uth1, ancient 

ubiquitous protein 1 (Aup1), autophagy 32 (Atg32) and 

so on; Atg32, which is considered the mitophagy-specific 

receptor of mitochondria, interacts with Atg11 during the 

formation of the autophagosome.126,127 In mammals, includ-

ing humans, mitophagy is a more complex phenomenon 

and, along with mitochondrial fusion and fission processes, 

it regulates the quality control of the mitochondria. Several 

proteins, such as BCL2, adenovirus E1B 19 kDa-interacting 

protein 3-like (BniP3), and BNIP3-like protein X (Nix), 

which are proapoptotic proteins belonging to the Bcl-2 

family, are involved in the process of mitophagy, and these 

proteins through their C-terminal transmembrane domains 

get embedded in the mitochondrial outer membrane.126,127 

Many other proteins, such as the Fun14 domain-containing 

protein 1 (Fundc1), Atg7, Parkin and PINK1, have been 

shown to be involved in mitophagy under different experi-

mental conditions.127,128 In particular, the PINK1 and Parkin 

signaling for mitophagy is important in the context of 

PD pathogenesis, and the inducer for mitophagy could be 

mitochondrial membrane depolarization.127,128 It has been 

shown conclusively that PINK1 accumulates on damaged 

and depolarized mitochondria and further recruits Parkin by 

translocating it from the cytosol to the mitochondrial surface, 

triggering mitophagy.128–131 There is some evidence, though 

not conclusively established, that Parkin is phosphorylated by 

PINK1, which also activates the E3 ubiquitin ligase activity 

of Parkin, leading to ubiquitination of the mitochondrial 

membrane proteins.128,129,131 Some recent studies have indi-

cated that PINK1 accumulation, along with Parkin recruit-

ment on damaged mitochondria, depends on the bioenergetic 

state of the cell, and ATP may have a key involvement in 

this process.132,133 Furthermore, other studies have indicated 

complex interactions of Parkin, PINK1 and α-synuclein in 

regulating mitochondrial dynamics and mitophagy.134,135 

Overall, it appears that altered mitophagy and mitochon-

drial dynamics play a key role in PD pathogenesis, with 

the involvement of Parkin, PINK1 and α-synuclein, but the 

molecular scenario is far from clear as of now.

The trigger for mitochondrial alterations in sporadic PD 

in the absence of environmental toxins such as paraquat 

or MPTP is not so far convincingly established, but ROS 

and toxic quinones derived from oxidation of DA could 

be important in this respect.124 On the other hand, there is 

enough evidence to suggest that the interactions of mitochon-

dria with α-synuclein through multiple mechanisms could 

play a determining role in the PD-associated dysfunction of 

this organelle.114,136 The N-terminal region of α-synuclein 
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contains a cryptic sequence containing several positively 

charged residues for targeting the mitochondria, and the 

protein enters the organelle through interaction with TOM40 

and remains associated with the inner membrane.114,136,137 The 

accumulation of α-synuclein within mitochondria has been 

shown to inhibit mitochondrial complex I activity.114,137 In 

postmortem PD brain, increased accumulation of α-synuclein 

within the mitochondria has been shown in the regions of 

the substantia nigra and striatum, but not in the cerebellum, 

and this study has further demonstrated the interaction of 

α-synuclein with complex I both in postmortem PD brain 

tissue and in cultured cell lines.138 Similarly, aggregated 

α-synuclein has been shown to inhibit complex I activity in 

cybrids, leading to impaired ATP synthesis and mitochon-

drial respiration.139 On the other hand, the interaction of 

α-synuclein with mitochondria, which leads to membrane 

depolarization and impaired ATP synthesis but without 

changes in the activities of the respiratory complexes, 

has been clearly demonstrated in vitro, and apparently, 

α-synuclein interacts with components of the mitochondrial 

permeability transition pore (mPTP).28,140 It has been further 

shown that this interaction of α-synuclein with mPTP in 

cultured SH-SY5Y cells triggers cell death, which could be 

prevented by α-synuclein gene knockdown.140 Furthermore, 

α-synuclein has been shown to inhibit mitochondrial fusion, 

resulting in fragmented mitochondria in cultured cells over-

expressing the protein, and the phenomenon can be blocked 

by coexpression of Parkin, PINK1 and DJ-1.141

Alpha-synuclein and oxidative stress: 
interactions in PD pathogenesis
Oxidative stress is considered to be an important element 

of PD pathogenesis as is evident from the accumulation of 

oxidative damage markers and transition metals such as Fe 

in the postmortem PD brain, especially in the substantia 

nigra.142,143 In experimental models of PD, enhanced pro-

duction of ROS has been observed, with alterations of the 

antioxidant enzyme levels.144 Mitochondrial dysfunction 

caused by α-synuclein could be a source of enhanced produc-

tion of ROS, as has been observed in several experimental 

models.140,145 Overexpression of wild or mutant α-synuclein 

in SH-SY5Y cells has also been shown to increase the intra-

cellular level of ROS.146 On the other hand, iron – which 

facilitates ROS production and catalyzes peroxidative 

damage to biomolecules – accumulates in the substantia 

nigra of PD brains in excess amounts and causes translational 

upregulation of α-synuclein.96 Furthermore, the binding of 

transition metals such as Fe and Cu to α-synuclein has been 

studied with a variety of biophysical techniques in different 

studies, and apparently, such binding may lead to enhanced 

cytotoxicity of α-synuclein through multiple mechanisms.147 

For example, Fe can trigger the formation of large sodium 

dodecyl sulfate (SDS)-resistant oligomers of α-synuclein 

capable of forming membrane-spanning channels, which 

may partly explain the toxicity of α-synuclein on intracel-

lular organelles.147 The binding of iron to α-synuclein may 

also lead to the formation of H
2
O

2
 through redox reactions.147 

The binding of Cu to α-synuclein also enhances the toxicity 

of the latter, as has been shown in cultured SH-SY5Y cells 

overexpressing α-synuclein.146 Since DAergic neurons are 

particularly affected in PD, it has been suggested that DA 

oxidation products such as ROS and toxic quinones could 

contribute to PD pathology.124,148 In this context, it is interest-

ing to note that the interaction of α-synuclein with DA has 

been studied by several groups, indicating a modulatory role 

of DA oxidation products on α-synuclein oligomerization 

and cytotoxicity.149 In a very elaborate study, it has been 

shown that in human DAergic neurons and rat DAergic cell 

lines exposed to paraquat, increased accumulation and aggre-

gation of α-synuclein occurs, which is crucially dependent 

upon the activity of NADPH oxidase, implicating the role 

of ROS in the process.150 This study has further shown that 

the systemic injection of paraquat in rats causes increased 

protein expression of α-synuclein and NADPH oxidase, 

along with the accumulation of oxidative damage markers 

in the substantia nigra, which can be abolished by knocking 

down NADPH oxidase (Nox1) gene by adeno-associated 

virus-mediated overexpression of a specific short hairpin 

RNA (shRNA).150 The knockdown of Nox1 also prevents 

the nigral DAergic neuronal loss after paraquat treatment 

of rat.150 Another interesting cross talk between oxidative 

stress and α-synuclein is presumable when oxidatively 

modified protein becomes partially resistant to degradation 

by the UPS or chaperone-mediated autophagy, leading to 

accumulation of the misfolded protein.151 Several types of 

oxidative modifications of α-synuclein have been demon-

strated, such as nitration of tyrosine residues, oxidation of 

methionine residues and covalent adduct formation with 

4-hydroxynonenal.151 Such oxidatively modified α-synuclein 

proteins, in general, inhibit oligomerization and fibril for-

mation by the native monomer and instead may give rise to 

“off-pathway” oligomers, but the toxic consequence of this 

has not been clearly established.151 The various mechanisms 

leading to the accumulation of α-synuclein in the PD brain 

and the toxicity of this protein in monomeric or oligomeric 

form in the mitochondria are highlighted in Figure 2.
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Conclusion
This review has shown that the three cardinal processes of 

molecular pathogenesis of AD and PD, such as proteinopa-

thy, mitochondrial dysfunction and oxidative stress, are 

interdependent phenomena with extensive and reinforcing 

cross talking, but there is no discernible arrangement of 

upstream and downstream events. Thus, targeting one of the 

three processes separately with a putative drug is unlikely 

to be successful as a neuroprotective measure. On the other 

hand, multiple drugs or other measures targeted to these 

pathways taken in combination may be beneficial in pre-

venting the progress of these diseases. Currently, intensive 

research is going on using animal and cell-based models to 

elucidate how these molecular damage pathways finally lead 

to the programmed cell death of neurons in AD and PD. It 

is perhaps more prudent to identify the triggers that lead an 

aging brain to follow the pathway of AD or PD pathology, 

and apparently, the metabolic and environmental risk factors 

of these diseases identified in clinical cases may provide 

us the clue.
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