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Abstract: Titanium (Ti) and its alloys have been extensively used as implant materials in 

orthopedic applications. Nevertheless, implants may fail due to a lack of osseointegration and/or 

infection. The aim of this in vitro study was to endow an implant surface with favorable biological 

properties by the dual modification of surface chemistry and nanostructured topography. The 

application of a nanostructured titanium dioxide (TiO
2
) coating on Ti-based implants has been 

proposed as a potential way to enhance tissue-implant interactions while inhibiting bacterial 

colonization simultaneously due to its chemical stability, biocompatibility, and antimicrobial 

properties. In this paper, temperature-controlled atomic layer deposition (ALD) was introduced 

for the first time to provide unique nanostructured TiO
2
 coatings on Ti substrates. The effect 

of nano-TiO
2
 coatings with different morphology and structure on human osteoblast and fibro-

blast functions and bacterial activities was investigated. In vitro results indicated that the TiO
2
 

coating stimulated osteoblast adhesion and proliferation while suppressing fibroblast adhesion 

and proliferation compared to uncoated materials. In addition, the introduction of nano-TiO
2
 

coatings was shown to inhibit gram-positive bacteria (Staphylococcus aureus), gram-negative 

bacteria (Escherichia coli), and antibiotic-resistant bacteria (methicillin-resistant Staphylococcus 

aureus), all without resorting to the use of antibiotics. Our results suggest that the increase in 

nanoscale roughness and greater surface hydrophilicity (surface energy) together could con-

tribute to increased protein adsorption selectively, which may affect the cellular and bacterial 

activities. It was found that ALD-grown TiO
2
-coated samples with a moderate surface energy 

at 38.79 mJ/m2 showed relatively promising antibacterial properties and desirable cellular func-

tions. The ALD technique provides a novel and effective strategy to produce TiO
2
 coatings 

with delicate control of surface nanotopography and surface energy to enhance the interfacial 

biocompatibility and mitigate bacterial infection, and could potentially be used for improving 

numerous orthopedic implants.

Keywords: atomic layer deposition, titanium dioxide, nanostructure, osteoblast, fibroblast, 

antimicrobial activity

Introduction
Orthopedic implants are widely used devices implanted into the human body, with the 

aim of permanently supporting fractured or replacing disease-damaged bones for pain 

relief and functional improvement. Titanium (Ti)-based materials, as a representative 

of metallic biomaterials, are recognized as the most promising materials for orthopedic 

implants.1 Ti itself is considered a bioinert material with good biocompatibility, 

excellent corrosion resistance, and appropriate mechanical properties. It is well known 

that a stable titanium dioxide (TiO
2
) layer of 3–10 nm in thickness spontaneously forms 
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when Ti is exposed to air or water, endowing the surface with 

biocompatibility.2 Nevertheless, implants may still fail due to 

a lack of integration with bone tissue and/or infection.3–5 For 

example, it has been reported that ~10% of these implants fail 

prematurely within the first 10–20 years, and 18% of implant 

failures have been due to aseptic loosening, while 20% of fail-

ures have been attributed to infection.6 In recent years, most 

research so far has focused on the design of implant surfaces 

either to prevent infection while ignoring osseointegration 

or vice versa. For example, silver nanoparticle technology 

is receiving much interest in the field of orthopedics for its 

antimicrobial properties; however, at present, concerns have 

been raised regarding their toxic effect on mammalian cells.7,8 

For a successful implant, strong osseointegration and anti-

infection properties are indispensable, necessitating implant 

designs to satisfy both simultaneously.9

It is clear that both chemical and physical properties of 

the surface play a major role in modulating the biological 

events directly at the tissue-implant interface.10–12 For 

Ti-based implants, the naturally formed TiO
2
 thin layers are 

thought to act as a barrier between the implant and tissue to 

prevent metallic ion release into the body and consequently 

minimizing the chances of an immune response; however, 

recent studies have indicated that this few-nanometer-

thin layer does not provide sufficient long-term corrosion 

protection.2,13 Understanding the role of this native TiO
2
 

film on biomedical Ti implants paves the way for in-depth 

studies focused on developing a multifunctional Ti implant 

surface by modifying and structuring the natural oxide layer 

to further improve biocompatibility. On the other hand, TiO
2
 

in the form of coatings has also been extensively exploited for 

antibacterial activities due to photocatalysis, demonstrating 

a promising potential in fighting against infections without 

sacrificing osseointegration.14–16 Additionally, it has been 

reported that the physical topography and structure of the 

implant surfaces can be optimized down to the nanoscale to 

produce favorable surface properties (ie, surface roughness, 

surface wettability, surface energy, surface phase, etc.) to 

promote desirable cell functions while minimizing bacterial 

colonization.17–20 Taking all these into consideration, func-

tionalizing Ti implant surfaces via deposition of a thin, 

nano-TiO
2
 coating presents an attractive way to tailor the 

bioactivity of implant material, and hence the osseointegra-

tion and disinfection of the implant.

Various techniques have been employed to prepare TiO
2
 

coatings, including e-beam evaporation, sputtering, sol-gel 

spinning, pulsed laser deposition, chemical vapor deposi-

tion, and atomic layer deposition (ALD).21–26 In selecting 

an appropriate deposition technology for this specific 

application, several criteria have to be considered such as 

coating morphology, deposition rate and coverage, inter-

facial quality, and industrial applicability. Among these 

methods, the ALD process is based on the sequential use 

of self-terminating surface reactions, which is perfect for 

the deposition of metal oxide layers with atomic layer con-

trol on geometrical nanostructures with high aspect ratios. 

Compared with other more common techniques, ALD pos-

sesses several advantages in the deposition of TiO
2
, such as 

precise thickness control, extremely conformal coating for 

nanostructures, excellent large-area uniformity, strong bond-

ing strength, low growth temperature, good reproducibility 

and straightforward scale-up, and applicability to sensitive 

substrates (ie, biomaterials).25

For deposition of TiO
2
 by the ALD processes, various 

metal-organic precursors exist; some of the most com-

monly used precursors are titanium tetrachloride, tita-

nium isopropoxide, and tetrakis(dimethylamino)titanium 

(TDMATi) in combination with water (H
2
O) or ozone as an 

oxidant.27,28 Since the bond energy of metal-halide is much 

stronger than that of the metal-nitrogen bond, metal amide 

compounds are expected to have much higher reactivity 

with H
2
O and, therefore, TDMATi and H

2
O have been used 

for ALD processes. In addition, they possess the advantage 

that precursors and decomposition products are non-toxic 

and non-corrosive.29 A growth regime with a linear increase 

in layer thickness with the number of ALD cycles has been 

reported for deposition temperatures ranging from 50°C to 

300°C.30 Numerous studies have reported the formation of 

homogeneous amorphous films at relatively low tempera-

tures and rough anatase surfaces at high temperatures.31–33 

Therefore, in this study, nano-TiO
2
 thin films were deposited 

on commercial Ti substrates by ALD using TDMATi and 

H
2
O. The effect of surface morphology and structure of the 

TiO
2
 layer at different temperatures were investigated here. 

The antibacterial properties of the as-grown TiO
2
 thin films 

against three different types of bacteria (Staphylococcus 

aureus, Escherichia coli, and methicillin-resistant Staphy-

lococcus aureus [MRSA]) were determined and the cellular 

biological effects with osteoblasts and fibroblasts were 

studied in vitro. Furthermore, the role of surface wettability/

surface energy to changes in specific protein adsorption and 

biological activities (ie, cell adhesion and bacterial growth) 

was correlated.

Materials and methods
ALD-grown TiO2 sample preparation
From Alfa Aesar, 99.5% Ti foils (0.25 mm thick, annealed) 

were purchased. All the chemicals related to the ALD process 
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were provided by Ultratech, Inc. (Waltham, MA, USA); 

others were purchased from Sigma-Aldrich. Ti samples were 

cut into identical size pieces (1×1 cm2) and were cleaned 

with acetone, 70% ethanol, and deionized water (Milli-Q 

water) separately, each for 15 minutes. Then, the cleaned 

samples were placed in an ALD chamber. The TiO
2
 thin 

films were deposited onto the Ti substrates using TDMATi 

and H
2
O as ALD precursors, and N

2
 served as a purging 

gas. In this study, a standard ALD cycle consisted of a  

0.1 second exposure to TDMATi, a 6 second N
2
 purge, a  

0.1 second exposure to H
2
O, and a 6 second N

2
 purge. The 

total flow rate of the N
2
 was 100 sccm. The TiO

2
 thin films 

were grown at a temperature of 120°C, 160°C, and 190°C.  

A total of 2,500 cycles corresponding to ~100 nm of the TiO
2
 

film were carried out.

All the samples were sterilized by ultrasonication in 

70% ethanol followed by UV irradiation (30 minutes) for 

the biological experiments.

Surface characterization
Surface morphology, composition, phase, and 
roughness measurements
All the samples were thoroughly rinsed with deionized water 

and then dried at room temperature. The surface morphol-

ogy of the samples was characterized by scanning electron 

microscopy (SEM; Hitachi S-4800). Compositional analysis 

was conducted using EDAX. For surface roughness measure-

ments, an atomic force microscope (AFM; Parks Scientific 

XE-7 AFM) was used to scan Ti samples. Each sample was 

analyzed in ambient air under non-contact mode using a 

silicone ultrasharp cantilever (probe tip radius of 10 μm; 

MikroMasch); 1.5×1.5 μm AFM fields were analyzed and 

the scan rate was chosen as 0.4 Hz. Image analysis software 

(XEI) was used to generate micrographs and to quantitatively 

compare the root-mean-square (RMS) roughness of the 

samples. The crystallinity of the films was investigated using 

an X-ray diffractometer (XRD; Ultima, Rigaku Corp.) fitted 

with a Cu Kα radiation. The XRD was operated at 40 kV 

and 44 mA with a step size of 0.02° and a scanning range of 

2θ=20°–60°. Phase identification was performed using the 

standard JCPDS database. Experiments were completed in 

triplicate.

Surface wettability and surface energy measurements
The surface wettability and surface energy of the substrates 

of interest were measured by contact angles. Contact angle 

measurements were conducted and analyzed automatically 

using a SEO Phoenix 300 Contact Angle Measurement 

System. One droplet each (5 μL) of deionized water, ethanol, 

and ethylene glycol was added on top of the substrates of inter-

est by controlling injection. The contact angle was immediately 

measured 5 seconds after placing the drop on each sample and 

the test was conducted at room temperature. Measurements 

were performed three times, the average contact angle was 

determined, and results were used to calculate the surface free 

energy according to the Owens–Wendt method.34

	
( )1

1 1 1
+ = 2 +cos θ γ γ γ γ γd

s
d p

s
p( )

�

Here, γ s
d
 and γ s

p are the dispersive and polar compo-

nents of the substrate surface energy, γ s; γ 1
d
 and γ 1

p
 are the 

dispersive and polar components of the liquid surface tension, 
γ

1, respectively; and θ is the contact angle as determined.

Antimicrobial assays
Bacterial inhibitory assays
Bacteria cell lines of S. aureus (ATCC 25923), E. coli 

(ATCC 25922), and MRSA (ATCC 43300) were used in 

this study. All sterilized Ti samples were transferred into 

24-well non-tissue culture plates and rinsed twice with 

phosphate-buffered saline (PBS). Then, the samples were 

treated with the prepared bacterial solutions at a concentra-

tion of 106 bacteria/mL in tryptic soy broth (TSB, 0.03 g/mL) 

and cultured for 24 hours in an incubator (37°C, humidified, 

5% CO
2
). Afterward, the samples were washed twice with 

PBS to remove the floating bacteria and were transferred 

into 15 mL tubes with 3 mL of PBS each. Following this, the 

samples were sonicated for 10 minutes to release the bacteria 

attached on the sample surface into the PBS solution. Then, 

a series of diluted solutions with bacteria were pipetted onto 

TSB agar plates (3×10 μL spots per dilution) and bacteria 

colonies were counted after 14 hours of incubation.

Live/dead fluorescent microscopy assays
Samples were prepared and seeded with bacterial solutions 

as already described. After 2 hours and 24 hours of incuba-

tion, the samples were washed three times with PBS and then 

stained for fluorescence microscopy analysis. The Live/Dead 

Baclight bacterial viability kit (Life Technologies) was used 

to view adherent bacteria. Equal volumes of 3.34 mM SYTO 

9 dye and 20 mM propidium iodide were mixed together and 

then added to a 0.85% sodium chloride (NaCl) solution at 

3 μL per 1 mL of NaCl. Then, 1 mL of this mixed solution 

was added onto each sample and allowed to incubate in the 

dark for 15 minutes. Following this, the samples were turned 

upside down into a new 24-well plate and viewed using a 

Zeiss Axio Observer Z1 with Zen 2 Pro Software.
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Protein adsorption assays
A bicinchoninic acid (BCA) protein assay kit (Thermo 

Scientific) was used to quantify the adsorption of the total 

amount of protein and target protein (casein) in bacterial 

culture medium to sample surfaces. Each sample was treated 

separately with 1 mL of sterile TSB and then cultured for 

24 hours in an incubator (37°C, humidified, 5% CO
2
). After 

that, samples were transferred to a new 24-well plate and 

washed twice with PBS to remove non-absorbed proteins. 

Then, each sample was treated with 0.5 mL RIPA buffer 

(Sigma-Aldrich) for 10 minutes to solubilize the adsorbed 

protein. Afterward, the amount of total proteins in the 

supernatant was tested according to the BCA assay protocol. 

Casein protein has been shown to be a key protein in TSB 

medium (17 g casein/L); thus, to quantify casein protein 

adsorption, we incubated samples with the prepared 1.7% by 

weight casein solution (17 g casein/L H
2
O, Sigma-Aldrich), 

and then the same procedures, as already described, to deter-

mine total protein adsorption were used.

Cell assays
Cell culture
Human osteoblasts (PromoCell, C-12720) and human dermal 

fibroblasts (Lonza, CC-2509) at population numbers less 

than 10 were used for all cell experiments. Osteoblasts were 

cultured in phenol red-free osteoblast basal medium with an 

osteoblast growth medium supplemental mix (PromoCell) 

and 1% penicillin/streptomycin (P/S; Sigma-Aldrich). 

Fibroblasts were cultured in Dulbecco’s modified Eagle’s 

medium (ATCC) supplemented with 10% fetal bovine serum 

(Sigma-Aldrich) and 1% P/S. All cells were cultured at 37°C 

in a humidified, 5% CO
2
/95% air environment.

Cell adhesion and proliferation assays
All the sterilized Ti samples were placed individually into 

the wells of 24-well tissue culture plates. Before cell seeding, 

samples were rinsed twice with PBS to remove any possible 

debris. Cells were then seeded onto the samples at a density 

of 10,000 cells/cm2 and were allowed to adhere for 4 hours 

at 37°C in a humidified 5% CO
2
 atmosphere to determine 

cell adhesion. Cell proliferation was measured after 1, 3, and 

5 days of culture. The medium was changed every other day 

during proliferation trials. After the prescribed incubation 

time, the samples were washed twice with PBS and were 

carefully transferred to fresh 24-well tissue culture plates. 

Then, fresh medium was added to each well along with an 

MTS dye (Promega) at a 5:1 ratio (medium:MTS). Next, 

the plates were cultured for another 4 hours to allow the 

MTS dye to completely react with the metabolic products 

of the adherent cells, and then 200 μL of the solution from 

each well was transferred to a 96-well plate in triplicate. 

Finally, the absorbance was measured at 490 nm by a plate 

reader (Molecular Devices, SpectraMax M3) to determine 

cell density.

Statistical analysis
All cell and bacteria studies were conducted in triplicate 

and repeated at least three times. Data were collected and 

the significant differences were assessed using ANOVA 

followed by one-tailed Student’s t-tests. Statistical signifi-

cance was considered at p,0.05.

Results
Surface morphology, composition, 
roughness, phase
It has been reported that the choice of the ALD growth 

temperature enables one to grow TiO
2
 films with either 

very smooth or rough surfaces. Moreover, films with certain 

crystal structure can be achieved in appropriate growth con-

ditions.30 The surface morphology of Ti-TiO
2
 (ALD treated at 

120°C, 160°C, and 190°C) and untreated Ti as a control was 

visualized by SEM as shown in Figure 1A–D. It was found 

that the ALD-grown TiO
2
 films showed a remarkable increase 

in surface roughness and noticeable agglomeration occurred 

with an increase in temperature. Formation of crystallites 

on the film surfaces can be clearly observed. EDAX spectra 

(Figure 1E) showed the presence of a remarkable TiO
2
 nano-

scale coating. The elemental concentration of each sample 

determined by EDAX as shown in Table 1 indicated that all 

the TiO
2
-coated samples had similar chemical composition, 

which could be attributed to the precise film thickness control 

of the ALD process.

AFM measurements were performed to characterize 

the nanotopography and measure surface roughness of the 

samples. The RMS roughness obtained by AFM showed 

increased surface roughness from 12.7 nm (Ti control) to 

around 40 nm (Ti-TiO
2
) (Figure 2). XRD patterns of the 

samples are shown in Figure 3. All diffraction peaks are in 

good agreement with the standard JCPDS data. XRD pat-

terns exhibited strong diffraction peaks at 2θ=25.4° and 48.0° 

for Ti-TiO
2
 (190°C) indicating the formation of crystalline 

anatase TiO
2
 films compared with all other samples.

Surface wettability and surface energy
Surface chemistry together with surface topography 

can affect surface wetting properties (hydrophilicity/
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contact angle measurements were carried out to determine 

the surface wettability and surface energy of the Ti-TiO
2
 and 

Ti control samples. By combining the contact angle results 

from three different liquids, surface energy was obtained 

based on the Owens–Wendt method. γ s  is the total surface 

energy, which is composed of polar and dispersive com-

ponents. The dispersive component theoretically accounts 

for van der Waals and other non-site specified interactions, 

and the polar component is associated with dipole-dipole, 

dipole-induced dipole, hydrogen bonding, and other site-

specified interactions. As a whole, the data taken from these 

experiments indicated that all the ALD-TiO
2
-coated surfaces 

were slightly hydrophilic, and the total surface energy was 

relatively higher compared to the Ti control surface, as 

shown in Table 2.

°

°

°

Figure 1 SEM images of (A) Ti control, (B) Ti-TiO2 (190°C), (C) Ti-TiO2 (160°C), and (D) Ti-TiO2 (120°C) and (E) EDAX spectra of Ti samples. Scale bars are 200 nm.
Abbreviations: O, oxygen; SEM, scanning electron microscopy; Ti, titanium; TiO2, titanium dioxide.

Table 1 The elemental concentration (atomic percentage) in 
the outermost layer of Ti samples with or without TiO2 coatings 
determined by EDAX 

Substrates Ti O

Ti control 100 0
Ti-TiO2 (190°C) 48.16±0.10 51.84±0.10
Ti-TiO2 (160°C) 48.86±0.36 51.14±0.36
Ti-TiO2 (120°C) 49.48±0.16 50.52±0.16

Note: All experimental samples were statistically (p,0.01) different from controls 
but not different from each other.
Abbreviations: O, oxygen; Ti, titanium; TiO2, titanium dioxide.

hydrophobicity) and surface energy, and can also further 

affect the absorption of proteins to the implant surface, 

which act as the key factor in mediating cell and bacteria 

activities at the tissue-implant interface.35–38 Therefore, 

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


International Journal of Nanomedicine 2017:12submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

8716

Liu et al

Figure 2 AFM images and RMS roughness values (in nm) of (A) Ti control, (B) Ti-TiO2 (190°C), (C) Ti-TiO2 (160°C), and (D) Ti-TiO2 (120°C).
Abbreviations: RMS, root-mean-square; Ti, titanium; TiO2, titanium dioxide; AFM, atomic force microscopy.

θ °

°

°

°

Figure 3 XRD patterns of the Ti samples with different TiO2 coatings.
Abbreviations: A, anatase; Ti, titanium; TiO2, titanium dioxide; XRD, X-ray diffraction.
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Antimicrobial assays
The effect of these coatings on the activities of three differ-

ent types of bacteria (gram-positive bacteria, gram-negative 

bacteria, and antibiotic-resistant bacteria) was determined. 

In vitro bacterial results indicated that the Ti-TiO
2
 samples, 

specifically Ti-TiO
2
 (160°C), inhibited the adhesion and 

growth of all three different types of bacteria (S. aureus, 

E. coli, and MRSA) significantly (exceeding 80%) compared 

to the results obtained from the Ti control as shown in 

Figure 4A–C; again, this was accomplished without 

using antibiotics.

To further analyze these findings, additional fluorescent 

microscopy experiments employing SYTO® 9/propidium 

iodide (to distinguish between live and dead bacteria) 

were carried out. Fluorescent micrographs of S. aureus 

(Figure 5), E. coli (Figure 6), and MRSA (Figure 7) cultured 

for 2 hours and 24 hours on Ti-TiO
2
 (160°C) and Ti control 

samples showed that these TiO
2
 coatings not only inhibited 

bacterial adhesion and growth but also killed the bacteria to 

some extent.

Protein adsorption assays
Based on the results from protein adsorption assays as shown 

in Figure 8, the TiO
2
-coated samples significantly increased 

protein adsorption over Ti control samples after being treated 

with 3% TSB and 1.7% casein protein solution for 24 hours. 

The increased protein adsorption might play an important role 

in inhibiting bacteria adhesion and growth, because those 

Table 2 Summary of surface wettability and surface energy of Ti 
samples with different TiO2 coatings 

Substrates Surface wettability
(water contact 
angle/°)

Surface energy 
(mJ/m2)

γγ s γγ s
p γγ s

d

Ti control 70.27±1.16 32.78 9.83 22.95
Ti-TiO2 (190°C) 55.61±2.43 46.20 6.68 39.52
Ti-TiO2 (160°C) 62.80±2.00 38.79 13.93 24.87
Ti-TiO2 (120°C) 53.10±2.76 48.51 6.69 41.82

Notes: Data represent mean ± SD, N=3. All experimental samples had statistically 
(p,0.01) greater total surface energy than controls.
Abbreviations: Ti, titanium; TiO2, titanium dioxide.

Figure 4 (A) S. aureus, (B) E. coli, and (C) MRSA growth on Ti samples with different TiO2 coatings after 24 hours of culture. Data represent mean ± SD, N=3. *p,0.05 
compared with Ti control (labeled as Ti).
Abbreviations: S. aureus, Staphylococcus aureus; E. coli, Escherichia coli; MRSA, methicillin-resistant Staphylococcus aureus; Ti, titanium; TiO2, titanium dioxide; CFU, colony-forming unit.

°°°

°°°

°°°
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Figure 5 Fluorescent micrographs of S. aureus cultured for 2 hours and 24 hours on Ti and Ti-TiO2 (160°C) samples. SYTO® 9 and propidium iodide were used to stain live 
(green) and dead (red) bacteria cells, respectively. Scale bars are 100 μm.
Abbreviations: S. aureus, Staphylococcus aureus; Ti, titanium; TiO2, titanium dioxide.

°

Figure 6 Fluorescent micrographs of E. coli cultured for 2 hours and 24 hours on Ti and Ti-TiO2 (160°C) samples. SYTO® 9 and propidium iodide were used to stain live 
(green) and dead (red) bacteria cells, respectively. Scale bars are 100 μm.
Abbreviations: E. coli, Escherichia coli; Ti, titanium; TiO2, titanium dioxide.
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proteins could interact with bacterial cell membranes and 

prevent bacterial cells from attaching to the surface.

Cell assays
Since osteoblasts are bone-forming cells, a successful ortho-

pedic implant should promote the initial adhesion and 

proliferation of osteoblasts on the implant surfaces. However, 

if the body encapsulates the implant by the formation of a soft 

fibrous tissue and tries to separate it as much as possible, this 

is the sign of an unsuccessful implantation. Thus, orthopedic 

implants should be able to minimize fibrous tissue formation 

and to maximize new bone generation. In other words, the 

modified Ti implant in our study should be able to promote 

osteoblast functions while suppressing fibroblast functions.

In vitro cell results indicated that initial osteoblast 

adhesion (after 4 hours of culture) on all Ti-TiO
2
 samples 

was significantly higher than that measured on Ti control 

samples (Figure 9). In our previous antimicrobial study, 

Ti-TiO
2
 (160°C) samples showed the best antibacterial effi-

ciency toward all types of bacteria; thus, Ti-TiO
2
 (160°C) 

and Ti control substrates were chosen to investigate the 

effect of the ALD-TiO
2
 coatings on osteoblast proliferation. 

As a result, after 5 days of culture, osteoblast cell numbers 

on Ti-TiO
2
 (160°C) samples were 30% higher than those 

measured on Ti control samples (Figure 10). This enhanced 

osteoblast cell adhesion and proliferation can be explained 

by the increased surface nanoroughness and surface energy 

of the TiO
2
-coated samples, which allows the osteoblasts 

to adhere in greater numbers due to the higher cell-surface 

interactions.

Figure 7 Fluorescent micrographs of MRSA cultured for 2 hours and 24 hours on Ti and Ti-TiO2 (160°C) samples. SYTO® 9 and propidium iodide were used to stain live 
(green) and dead (red) bacteria cells, respectively. Scale bars are 50 μm.
Abbreviations: MRSA, methicillin-resistant Staphylococcus aureus; Ti, titanium; TiO2, titanium dioxide.
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Figure 9 Osteoblast adhesion on Ti samples with different TiO2 coatings after 
4 hours of culture. Data represent mean ± SD, N=3. *p,0.05 compared with Ti 
control (labeled as Ti).
Abbreviations: Ti, titanium; TiO2, titanium dioxide.
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Four-hour and 24-hour experiments were conducted with 

fibroblasts on Ti control and all TiO
2
-coated samples. Results 

indicated that less fibroblasts adhered on all TiO
2
-coated 

samples compared with Ti control samples (Figure 11). 

This can be interpreted as follows: TiO
2
 coatings selectively 

promoted osteoblast functions while suppressing undesired 

fibroblast functions.

Discussion
Implant surfaces play a fundamental role in determining their 

success due to their control over initial biological events. To 

develop biomaterials with combined biocompatible and anti-

microbial surfaces, various surface modification or coating 

methods have been investigated.39–41 In the present study, 

ALD, a well-established coating technique that is based 

on the sequential use of self-terminating surface reactions, 

was used to produce TiO
2
 coatings at the nanoscale with 

different surface morphology and topography on the top 

of Ti substrates by controlling coating temperatures. Com-

pared to other coating techniques, ALD is more adaptable 

for growing uniform films on large areas with precise film 

thickness control. In addition, the surface morphology of the 

ALD-grown TiO
2
 films can be well controlled to achieve 

favorable nanoroughness and crystallinity.31,42

In this study, TiO
2
 coatings were deposited onto the Ti 

substrates by adjusting the reactor temperatures from 120°C 

and 160°C to 190°C. Morphological observations by SEM 

(Figure 1A–D) indicated that all TiO
2
 coatings were com-

posed of grains with sizes 200 nm and exhibited remark-

able nanorough surfaces that were obviously different from 

Ti controls. It was noted that agglomeration occurred with 

an increase in temperature and the apparent variability in 

the TiO
2
 coating observed in each SEM image was largely 

attributable to unevenness of the Ti substrate. RMS roughness 

values obtained from AFM (Figure 2) confirmed the increased 

surface nanoroughness on the TiO
2
-coated samples quantita-

tively. XRD analysis was performed to determine the crys-

talline structure of the TiO
2
 thin layers (Figure 3). The XRD 

patterns of all the Ti-TiO
2
 (190°C) exhibited additional peaks 

at 2θ=25.4° and 48.0° (an indicator of the anatase TiO
2
 phase) 

compared to all other samples, which is in agreement with 

previous reports indicating the formation of crystalline TiO
2
 

films at higher temperatures.43 Surface wettability and associ-

ated surface energy affected by surface chemistry and surface 

topography are of prime importance for the optimization of 

surrounding biological activities. The values of contact angles 

for deionized water over Ti samples, as shown in Table 2, 

indicated slightly higher surface hydrophilicity for the TiO
2
-

coated samples compared to the Ti controls. These findings 

are consistent with the many previous studies showing that 

Figure 10 Osteoblast proliferation on Ti and Ti-TiO2 (160°C) samples. Data 
represent mean ± SD. N=3. *p,0.05 compared with Ti at the same time period, 
**p,0.05 compared with the same sample (Day 1).
Abbreviations: Ti, titanium; TiO2, titanium dioxide.
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Figure 11 Fibroblast adhesion and growth on Ti and Ti-TiO2 samples. Data 
represent mean ± SD. *p,0.05 compared with Ti control at the same time period, 
**p,0.05 compared with the same sample (4 hours).
Abbreviations: Ti, titanium; TiO2, titanium dioxide.
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increased surface nanoroughness could contribute to increased 

wettability and, thus, greater surface energy.18

Once the sample surfaces were characterized, we pro-

ceeded to evaluate the effect of these TiO
2
 coatings on 

biological activities. Infection has been reported to be a 

leading cause of the implant failure. Most of the orthopedic 

implant-related infections are caused by Staphylococci 

(gram-positive bacteria). Among them, S. aureus has been 

identified as the predominant pathogen. In addition, gram-

negative bacteria (E. coli) also account for a small proportion 

of these infections.6 Here, it was found that the TiO
2
 coatings 

were shown to significantly inhibit the adhesion and growth 

of both S. aureus (Figures 4A and 5) and E. coli (Figures 4B 

and 6), and the antibacterial efficiency was achieved all above 

80% impressively. It has been reported that this antibacterial 

effect could be attributed presumably to the semiconductor 

nature of TiO
2
.44 Upon exposure to UV for 30 minutes in the 

beginning, the photoactivated TiO
2
 coatings could result in 

the destruction of both gram-positive and gram-negative bac-

teria. Photoactivated surfaces as reported are capable of kill-

ing more gram-negative bacteria than gram-positive bacteria 

due to the difference in cell wall structure and peptidoglycan 

thickness, which was concordant with our results.45

In addition, since more and more people become infected 

with bacteria that are resistant to antibiotics, we also tested 

the antibacterial effect of the TiO
2
 coatings against MRSA. 

Results indicated that Ti-TiO
2
 (160°C) samples exhibited a 

notable decrease in MRSA growth compared with all other 

TiO
2
-coated samples and Ti control as well (Figures 4C 

and 7). Apart from the photocatalysis action, another possible 

explanation is that the increased surfaces roughness at the 

nanoscale could limit the number of anchoring points for 

these bacteria and further to decrease bacterial adhesion and 

growth. Herein, although numerous other studies indicated 

that crystalline structures compared to amorphous structures 

could further decrease bacterial adhesion and growth, no 

significant antibacterial result was found for this on Ti-TiO
2
 

(190°C) samples.19,20 This might be attributed to the appear-

ance of agglomeration at the beginning of phase transition 

from an amorphous to a crystalline state.

Although the exact mechanism of how bacteria respond 

to nano-phase surfaces is not well understood, it is well 

known that for implanted materials, which are coated with 

proteins once inserted, it is the adsorbed protein rather than 

the material surface itself to which cells or bacteria initially 

respond.46 Therefore, in this case, the proteins in the bacterial 

culture medium that adsorbed differently to Ti-TiO
2
 (160°C) 

and Ti control substrates were investigated. Increased protein 

adsorption (specifically casein protein, which is known to 

inhibit bacterial growth) was demonstrated on the TiO
2
-

coated samples. Additionally, this behavior was consistently 

observed on other materials with nanostructures as reported 

in previous studies.47–49 These results together show that sur-

faces with higher nanoroughness and unique surface energy 

(~38.79 mJ/m2) allow more bacteria-repelling proteins with 

closer surface tension to adsorb to the surface, which could 

further interact with bacteria cell membranes and prevent 

bacteria cells from attaching to the surface.

Transitioning focus to the cells, an ideal orthopedic 

implant should be able to minimize fibrous tissue forma-

tion and maximize new bone generation. For this reason, 

osteoblast and fibroblast adhesion and proliferation were 

conducted. After 4 hours of culture, more osteoblasts attached 

to all three series of Ti-TiO
2
 samples than Ti controls, 

suggesting that the TiO
2
 coatings can promote the initial 

adhesion of osteoblasts (Figure 9). Osteoblast proliferation 

assays were conducted on selected Ti-TiO
2
 (160°C) and Ti 

control substrates for up to 5 days. There was no significant 

difference for the osteoblast growth on both samples after 

1 day of culture. However, after 3 and 5 days of culture, the 

osteoblast numbers on TiO
2
-coated samples were around 

30% higher than those measured on the Ti control samples 

(Figure 10). On the contrary, it was found that after 4 hours 

and 24 hours of culture, TiO
2
-coated samples showed lower 

fibroblast densities compared to the Ti control samples 

(Figure 11). Interestingly, osteoblast adhesion on Ti samples 

was found to be directly proportional to initial surface energy 

of those samples, while the adhesion of fibroblasts exhibited 

an inverse trend from that observed for osteoblasts as shown 

in Figure 12. The outcome of the cell experiments could 

be explained presumably as the substrates with nanostruc-

tures might selectively adsorb more vitronectin to which 

osteoblasts (being more hydrophilic and smaller than other 

proteins in serum such as fibronectin) have a high affinity. 

Although this is a speculation at this point and more studies 

are needed to verify this, previous studies have reported 

greater vitronectin adsorption on nano-phase materials with 

higher surface energy.17

What is more, it is interesting to consider why varying 

nanoscale surface roughness and associated surface energy 

has such different effects on bacteria versus osteoblasts. 

Compared to the flexible phospholipid cytoplasmic membrane 

of mammalian cells, the peptidoglycan bacterial cell walls are 

more rigid and thus less sensitive to nanosurface structures 

with relatively high surface energy.50 Taken together, these 

results suggest that surface energy is an important criterion in 
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the design of implants to selectively inhibit bacterial adhesion 

while promoting desirable cell functions.

Conclusion
Nanostructured TiO

2
 coatings on Ti-based implants using 

the ALD technique showed promising antimicrobial efficacy 

toward gram-positive bacteria (S. aureus), gram-negative 

bacteria (E. coli), and antibiotic-resistant bacteria (MRSA). 

In addition, it was found that the TiO
2
 coating stimulated 

osteoblast adhesion and proliferation while suppressing 

fibroblast adhesion and proliferation compared to uncoated 

materials. Mechanistically, data revealed that the increased 

protein (specifically casein) adsorption, presumably due to 

the increased surface nanoroughness and surface energy, 

contributed to these antibacterial properties. Additionally, 

results suggested that surface energy as another important 

factor in determining subsequent cell/bacteria responses 

could be modulated to certain values (~38.79 mJ/m2) to 

achieve a variety of desirable biological functions simulta-

neously. In all, owing to the enhanced biocompatibility and 

antibacterial activity without using pharmaceutical agents, 

there is strong potential to apply this ALD-TiO
2
 coating in 

the field of orthopedic implants.
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