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Aim: To compare late toxicity after postoperative hypofractionated radiotherapy (RT) and 

standard fractionated RT in patients with early-stage breast carcinoma.

Methods: This retrospective study included 447 patients (Modulated Accelerated Radiotherapy 

[MARA-1]: 317 patients, and control group [CG]: 130 patients). In the CG, the whole breast 

received 50.4 Gy in 28 fractions (fx) using 3D-radiotherapy, plus a sequential electron boost 

(10 Gy in 4 fx) to tumor bed. In MARA-1 group, a forward-planned intensity-modulated radio-

therapy technique with 40 Gy in 16 fx with a concomitant boost of 4 Gy to breast was used. 

The primary endpoint was to evaluate late toxicity, and secondary endpoints were acute toxicity, 

local control, and survival. ClinicalTrials.gov: NCT03461224.

Results: Median follow-up was 52 months (range: 3–115 months). Late skin and subcutane-

ous toxicity were acceptable: 5-year actuarial cumulative incidence of Grade (G) 3 late skin 

toxicity was 1.5% in CG and 0.0% in MARA-1. Five-year actuarial cumulative incidence of 

G3 late subcutaneous toxicity was 0.8% in CG and 0.3% in MARA-1. On multivariate analysis, 

tobacco smoking and planning target volume were associated with an increased risk of late G1 

skin toxicity (HR: 2.15, 95% CI: 1.38–3.34 and HR: 1.12, 95% CI: 1.07–1.18, respectively), 

whereas patients with a larger planning target volume also showed an increased risk of G1 and 

G2 late subcutaneous toxicity (HR: 1.14, CI 95%: 1.08–1.20 and HR: 1.14, 95% CI: 1.01–1.28, 

respectively). MARA-1 patients also showed an increased risk of late G1 and G2 subcutane-

ous toxicity (HR: 2.35, 95% CI: 1.61–3.41 and HR: 3.07, 95% CI: 1.11–8.53, respectively) 

compared to CG.

Conclusion: In this retrospective analysis, postoperative accelerated-hypofractionated RT for 

early-stage-breast carcinoma was associated with higher incidence of subcutaneous side effects. 

However, this increase was limited to G1–G2 toxicity. In the future, development of predictive 

models could help in tailoring dose and fractionation based on the risk of toxicity.

Keywords: breast cancer, radiotherapy, hypofractionation, retrospective study

Introduction
Radiotherapy (RT) after surgery is a standard component of breast conserving therapy 

(BCT) for invasive breast cancer (BC). RT reduces the risk of local and regional recur-

rences and improves overall survival.1,2 Historically, the standard dose after breast 

conservative surgery was 50 Gy, delivered in 25 fractions (fx) of 2 Gy, with or without 

a boost to the tumor bed.3

With an improved understanding of α/β ratio of BC, accelerated-hypofractionated 

(AHF) regimens have been proposed. Available clinical data suggest an intermediate 

α/β ratio for BC, lower than that of other tumors and early-reacting tissues; thus, a 
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clinical advantage from AHF regimens should be expected.4 

Furthermore, AHF-RT may limit the engagement of patients 

and RT departments with discomfort and cost reduction.5 

However, the use of AHF may theoretically result in increased 

late toxicity with worsened cosmetic results.6

Improvement of local control (LC) and OS in early-stage 

BC are the most common benefits of postoperative RT, and 

studies have demonstrated the noninferiority of AHF whole-

breast irradiation as compared to conventionally fractionated 

whole-breast-irradiation.7–9 In 2011, the American Society for 

Radiation Oncology published consensus recommendations 

for the use of hypofractionated whole breast (HF-WB).10 

Another study about acute toxic effects demonstrated sig-

nificantly reduced higher maximum physician-assessed skin 

reaction, self-reported pain, and fatigue.11

Despite available evidence, the use of AHF schedules is 

still debated due to pending questions such as the optimal 

AHF treatment schedule, tolerability in high-risk patients 

requiring chemotherapy or regional nodes irradiation, car-

diac toxicity in patients with left-sided tumor, and efficacy 

in patients with ductal carcinoma in situ.

The aim of this study was to evaluate the clinical results in 

terms of late skin and subcutaneous toxicity of AHF forward-

planned intensity-modulated radiotherapy (IMRT) in patients 

with early-stage BC. Results were compared with a historical 

control group (CG) of patients treated with 3D-conformal 

postoperative RT delivered with conventional fractionation, 

before the introduction of AHF treatments in this setting in 

our department.

Materials and methods
Study design
This trial was a retrospective study on postoperative AHF 

IMRT (MARA-1). Preliminary positive results in terms 

of acute toxicity were previously published on a group of 

99 patients.12 From that analysis and the evidence coming 

from randomized trials,8,9 the MARA-1 schedule became 

our institutional standard protocol for postoperative RT in 

low-risk early-stage BC.

Endpoints
The primary endpoint was to evaluate late (cutaneous and 

subcutaneous) toxicity. Secondary endpoints were acute 

toxicity, LC, and survival.

Eligibility
Patients at low risk of recurrence were eligible for the study. 

Inclusion criteria were as follows: confirmed histologic 

evidence of early-stage BC who underwent BCT, postmeno-

pausal (at least 3 years) status, and patients with clear surgical 

margins (>3 mm). Exclusion criteria were pT4 pathologic 

stage, positive or close resection margins, ≥3 metastatic axil-

lary nodes, nodal irradiation, and distant metastasis.

Treatment planning
All patients had computed tomography scans for treatment 

planning. An alpha cradle immobilization device was used for 

patient treatment reproducibility. The clinical target volume 1 

(CTV1) delineation included the tumor bed, while the clinical 

target volume 2 (CTV2) was the entire WB tissue with the 

exclusion of the skin (5 mm). The planning target volumes 

(PTV1 and PTV2) were defined as CTV1 and CTV2 plus 

an isotropic 8 mm margin excluding the skin surface. In the 

CG patients, the WB tissue was irradiated by two conformed 

tangential beams with standard multileaf collimators and 

wedge filters while the tumor bed (boost) was irradiated by 

a direct electron beam. The dose was prescribed according 

to the ICRU 62 report. In the MARA-1 patients, the treat-

ment planning optimization was obtained using a forward-

planned IMRT technique, as previously described.12 This is 

a simplified form of IMRT, in which the contribution from 

each tangential beam was divided into two different seg-

ments. One segment was designed to include the WB using 

6 MV photon beams. This configuration, in the absence of 

filters, results in a volume of underdosage in the thickest 

region of the breast. From this resulting inhomogeneous 

dose distribution, the second segment, usually with 15 MV 

photon energy, was conformed to block the dose >107% and 

directed to the areas of underdosage in order to increase the 

dose to the deepest part of the breast while sparing the most 

superficial part (Figure 1).

Treatment
In CG patients, the residual breast (PTV2) was irradiated 

with a dose of 50.4 Gy in 28 daily fx and the PTV1 with 

a sequential boost of 10 Gy in 4 fx. In MARA-1 patients, 

PTV2 was irradiated with a total dose of 40 Gy in 16 fx with 

a concomitant 3D-RT boost of 4 Gy in 0.25 Gy/ fx. RT was 

performed after at least 3 weeks from the end of systemic 

treatments in patients undergoing adjuvant chemotherapy. 

Toxicity was assessed in both groups, using the same tim-

ing. Patient’s clinical examinations were performed at least 

once a week during RT. All patients applied Biafin cream 

(Janssen-Cilag AG, Zug, Switzerland) at least once a day on 

the irradiated skin, and in case of Grade 2 toxicity supportive 

therapy with topical steroids was given.
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Follow-up
All patients underwent clinical examinations every 6 months 

and bilateral mammography every 12 months. Late toxic-

ity was graded using Radiation Therapy Oncology Group/

European Organization for Research and Treatment Cancer 

(RTOG/EORTC) criteria13 in both groups of patients (Table 1) 

and was assessed every 6 months for the first 2 years and 

annually thereafter. Information on possible predictors of 

late toxicity was collected at the first medical examination.

Statistical analysis
Ten patients with missing information on PTV volume (n=8) 

or diabetes (n=2) were excluded from the main analysis (list 

wise deletion). In the descriptive tables, summary statis-

tics were expressed as numbers (percentages) or medians 

(interquartile range). Survival curves were plotted using 

the Kaplan–Meier method and compared through log-rank 

test. We fit Cox proportional-hazards regression models to 

estimate HR of Grade 1 and 2 skin and subcutaneous toxicity 

and 95% CIs using time since diagnosis as the main temporal 

axis. HRs of Grade 3 late skin and subcutaneous toxicity 

Figure 1 Example of the used IMRT technique (forward-planned).
Notes: The two tangential beams were divided into two different segments: one 
segment (A) was designed to include the WB without filters (6 MV photons) and a 
second segment (B) was directed to the area of under dosage to compensate for 
dose loss (15 MV photons).
Abbreviations: IMRT, intensity-modulated radiotherapy; WB, whole breast.

Table 1 RTOG/EORTC scale for late toxicity

Organ tissue Grade 1 Grade 2 Grade 3 Grade 4

Skin Slight atrophy; pigmentation 
change; some hair loss

Patch atrophy; moderate 
telangiectasia; total hair loss

Marked atrophy; gross telangiectasia Ulceration

Subcutaneous 
tissue

Slight induration (fibrosis) and 
loss of subcutaneous fat

Moderate fibrosis but asymptomatic; 
slight field contracture <10% linear 
reduction

Severe induration and loss of 
subcutaneous tissue; field contracture 
>10% linear measurement

Necrosis

Abbreviation: RTOG/EORTC, Radiation Therapy Oncology Group/European Organization for Research and Treatment Cancer.

were not estimated due to the limited number of events (two 

for each outcome). Covariates to be introduced in the multi-

variable models were selected based on backward stepwise 

strategy (P inclusion <0.1; P exclusion ≥0.1). A possible 

nonlinear association between PTV volume and the risk 

of late skin and subcutaneous toxicity was explored using 

natural cubic splines, but no evidence of nonlinear relation-

ship was observed. Therefore, PTV volume was included 

in the models as a continuous variable with one degree of 

freedom. Statistical analyses were performed using Stata 12.1 

SE (Stata Corp, College Station, TX, USA). We defined as 

statistically significant a two-sided P-value <0.05. The sta-

tistical significance in the actuarial analyses was evaluated 

considering the outcomes as continuous variables and not as 

a specific time point.

Ethical issues
All patients signed a written informed consent to treatment. 

The study was approved by the institutional review board of 

the Catholic University. The study is registered in an inter-

national public registry (ClinicalTrials.gov: NCT03461224).

Results
Four hundred and forty-seven patients were included in 

this analysis: MARA-1 (317) and CG (130). The median 

follow-up was 52 months (range: 3–115). In Table 2 patient 

characteristics and in Table 3 treatment characteristics are 

shown, respectively. Five patients (1.1%) had local or regional 

relapses: 4 (3.1%) in CG and 1 (0.3%) in MARA-1 group. 

Five-year LC was 96.7% and 100% in CG and MARA-1 

groups, respectively (P=0.02).

Late skin and subcutaneous toxicity were acceptable: 

5-year G1 skin late toxicity-free survival (LTFS) was 61.1% 

in CG and 56.1% in MARA-1 (P: NS) while G2 skin LTFS 

was 93.3% in CG and 92.9% in MARA-1 (P: NS), respec-

tively (Table 4; Figures 2 and 3). G3 skin LTFS was 98.2% 

in CG while no G3 toxicity was observed in MARA-1 (P: 

NS) (Table 4). On multivariate analysis, tobacco smoking 

and larger PTV2 volume were significantly associated with 
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an increased risk of late G1 skin toxicity, whereas only larger 

PTV volume was significantly associated with G2 late skin 

toxicity (Table 5). G1 subcutaneous LTFS was 73.4% and 

49.1% in CG group and MARA-1 (P<0.001), respectively, 

and G2 subcutaneous LTFS was 96.5% in CG group and 

Table 2 Patients’ characteristics

 Characteristics Fractionation schedule Total, N=447

50.4 Gray in 28 fx, N=130 40 Gy in 16 fx, N=317

Average age, median (IQR) 55 (46–65) 65 (60–71) 63 (56–70)
Cancer site, N (%)

Right 61 (46.9) 146 (46.1) 207 (46.3)
Left 69 (53.1) 171 (53.9) 240 (53.7)

Histologic type, N (%)
Invasive ductal 75 (57.7) 201 (63.4) 276 (61.7)
Invasive lobular 14 (10.7) 39 (12.3) 53 (11.9)
Mixed 21 (16.2) 37 (11.7) 58 (13.0)
Ductal in situ 10 (7.7) 17 (5.4) 27 (6.0)
Lobular in situ 0 (0) 1 (0.3) 1 (0.2)
Other 10 (7.7) 22 (6.9) 32 (7.2)

T stage, N (%)
T1 77 (59.2) 235 (74.1) 312 (69.8)
T2 41 (31.6) 67 (21.1) 108 (24.2)
T3 3 (2.3) 2 (0.6) 5 (1.1)
T4 4 (3.1) 0 (0.0) 4 (0.9)
Not known 5 (3.8) 13 (4.2) 18 (4.0)

Tumor grade, N (%)
1 19 (14.6) 73 (23.0) 92 (20.6)
2 59 (45.4) 162 (51.1) 221 (49.4)
3 48 (36.9) 76 (24.0) 124 (27.7)
Not known 4 (3.1) 6 (1.9) 10 (2.3)

Pathological nodal status, N (%)
Positive 41 (31.6) 53 (16.7) 94 (21.0)
Negative 89 (68.4) 264 (83.3) 353 (79.0)
Not known 0 (0.0) 0 (0.0) 0 (0.0)

Abbreviations: fx, fractions; IQR, interquartile range; N, number of patients.

Table 3 Treatment characteristics

 Characteristics Fractionation schedule Total, N=447

50.4 Gy in 28 fx, N=130 40 Gy in 16 fx, N=317

Regional node irradiation, N (%)
No 109 (83.8) 317 (100) 42 (95.3)
Yes 21 (16.2) 0 (0) 21 (4.7)

Adjuvant chemotherapy, N (%)
No 46 (35.4) 212 (66.9) 258 (57.7)
Yes 84 (64.6) 105 (33.1) 189 (42.3)

Chemotherapy schedule, N (%)
No 45 (34.6) 213 (67.1) 258 (57.7)
CMF 28 (21.6) 23 (7.3) 51 (11.4)
Anthracycline 55 (42.3) 69 (21.8) 124 (27.7)
Anthracycline + docetaxel 2 (1.5) 12 (3.8) 14 (3.2)

Adjuvant hormonotherapy, N (%)
No 46 (35.4) 34 (10.7) 80 (17.9)
Yes 84 (64.6) 283 (89.3) 367 (82.1)

Abbreviations: CMF, cyclophosphamide, methotrexate, and 5-fluorouracil; fx, fractions; N, number of patients.

89.6% in MARA-1 (P: 0.03), respectively (Table 6). Mul-

tivariate analysis confirmed that late subcutaneous toxicity 

was significantly associated with RT modality (Table 7). 

The use of the AHF regimen increased the risk of late G1 

and G2 toxicity (HR 2.35, 95% CI: 1.61–3.41 and HR 3.07, 
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95% CI: 1.11–8.53, respectively). Furthermore, patients with 

a larger PTV presented an increased risk of G1 and G2 late 

subcutaneous toxicity. Moreover, diabetes was associated 

with increased G1 late subcutaneous toxicity (Table 7). G3 

late LTFS were 99.2% in CG and 99.6% in MARA-1 (P: 

NS), respectively.

Table 4 Univariate analysis of late skin toxicity

 Variable 5-year late skin toxicity-free survival

G1 P G2 P G3 P

Technique
CG 61.1 0.49 93.3 0.99 98.2 0.16
MARA-1 56.1 92.9 100

Hypertension
No 54.7 0.20 93.5 0.60 100 0.07
Yes 64.3 92.7 97.7

Diabetes
No 54.7 0.16 93.5 0.69 100 0.74
Yes 64.3 92.7 97.7

Tobacco smoking
No 60.4 0.007 93.1 0.95 99 0.64
Yes 43.4 93.7 100

Alcohol
No 56.8 0.22 92.1 0.16 98.8 0.40
Yes 61.6 95.6 100

Chemotherapy
No 60.0 0.77 93.5 0.72 100 0.17
Yes 57.2 92.6 98.3

Hormone therapy
No 59.2 0.98 95 0.45 100 0.41
Yes 58.1 92.8 98.8

PTV volume
1 64.4 0.002 98.5 <0.001 100 0.21
2 55.3 90.4 97.7
3 36.1 74.7 100

Abbreviations: CG, control group; G, grade; MARA-1, Modulated Accelerated 
Radiotherapy; PTV, planning target volume.

Figure 2 Actuarial grade 1 late subcutaneous toxicity-free survival vs treatment 
technique.
Notes: The y axis indicates survival probability; the red colour shows the control 
group curve; the blue colour shows the MARA-1 curve.

Discussion
We started this trial was in 2003 to evaluate late toxicity 

using an AHF regimen prior to the publication of several 

randomized studies.8,9,14 To reduce the potential risk of 

increased toxicity, we opted for the use of IMRT technique. 

Our study reported a significant difference between AHF and 

conventional 3D-technique with higher rates of G1–G2 late 

subcutaneous toxicity after AHF and no differences between 

the two techniques in terms of late skin toxicity. A relevant 

limitation of our study is the lack of evaluation of cosmesis 

and patient-reported outcome measures. However, regarding 

the higher incidence of mild–moderate fibrosis in patients 

who underwent the MARA-1 protocol, in our opinion the 

impact was modest if not entirely irrelevant from the patient’s 

point of view. However, we must admit that our study had 

a retrospective design and the comparisons were made on a 

previously treated CG. Moreover, the results of our analysis 

are potentially affected by bias and cannot be considered as 

“high level of evidence.”

The 10-year results from START-A and START-B trials 

and from the Ontario Clinical Oncology Group trial did not 

show a higher toxicity after AHF in women undergoing BCT 

for early-stage invasive BC with clear surgical margins and 

negative axillary nodes.8,9

The UK randomized trials compared the standard frac-

tionation 50 Gy in 25 fx with three schemes of HF-RT: 39 

or 41.6 Gy in 13 fx over 5 weeks and 40 Gy in 15 fx over 3 

weeks. In both trials a boost of 10 Gy in 5 fx was delivered 

after initial RT in a variable percentage of patients. In that 

study a nonsignificantly higher rate of breast induration and 

telangiectasia was recorded in the 41.6 Gy AHF group.8 

The authors reported a 10-year good to excellent cosmetic 

Figure 3 Actuarial grade 2 late subcutaneous toxicity-free survival vs treatment 
technique.
Notes: The y axis indicates survival probability; the red colour shows the control 
group curve; the blue colour shows the MARA-1 curve.
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Table 5 HRs of G1 and G2 late skin toxicity estimates from Cox proportional-hazards regression models

Variable Value Late skin 
toxicity

Univariate analysisa Multivariate analysisa

HR (95% CI) P HR (95% CI) P

Technique MARA-1 G1 1.07 (0.77–1.50) 0.686
G2 1.31 (0.54–3.17) 0.555

Hypertension G1 0.80 (0.58–1.12) 0.191
G2 1.03 (0.44–2.42) 0.939

Diabetes G1 1.43 (0.85–2.39) 0.179
G2 1.22 (0.29–5.23) 0.788

Tobacco smoking G1 1.88 (1.22–2.91) 0.005 2.15 (1.38–3.34) 0.001
G2 0.88 (0.21–3.79) 0.869

Alcohol G1 0.77 (0.53–1.11) 0.156
G2 0.38 (0.11–1.28) 0.117

Chemotherapy G1 0.95 (0.69–1.30) 0.734
G2 1.34 (0.58–3.12) 0.497

Hormone therapy G1 0.85 (0.58–1.24) 0.399
G2 1.81 (0.53–6.13) 0.342

PTV volume G1 1.11 (1.06–1.17) 0.001 1.12 (1.07–1.18) 0.001
G2 1.27 (1.15–1.41) 0.001 1.27 (1.15–1.41) 0.001

Notes: Analysis of 437 patients with complete information. aCovariates to be included in multivariable models were selected with a stepwise backward elimination (P removal 
=0.10; P addition <0.10) based on likelihood ratio test.
Abbreviations: G, grade; P, probability; MARA-1, Modulated Accelerated Radiotherapy.

Table 6 Univariate analysis of late subcutaneous toxicity

 Variable 5-year late subcutaneous toxicity-free 
survival

G1 P G2 P G3 P

Technique
CG 73.4 <0.001 96.5 0.03 99.2 0.67
MARA-1 49.1 89.6 99.6

Hypertension
No 57 0.41 92.6 0.91 99.1 0.25
Yes 59.7 92.3 100

Diabetes
No 59.7 0.02 93.8 0.05 99.4 0.68
Yes 31.5 82.2 100

Tobacco smoking
No 57.3 0.50 92.8 0.23 99.7 0.07
Yes 65.7 90 96.8

Alcohol
No 56.1 0.51 92.3 0.53 99.2 0.36
Yes 62.6 95.5 100

Chemotherapy
No 57.1 0.14 91.8 0.35 100 0.11
Yes 59.6 94.8 98.7

Hormone therapy
No 66.5 0.34 95.8 0.35 100 0.48
Yes 55.4 91.3 99.3

PTV volume
1 68.1 <0.001 95.2 0.24 99.4 0.91
2 50.2 89.4 99.4
3 27.3 91 100

Abbreviations: CG, control group; G, grade; MARA-1, Modulated Accelerated 
Radiotherapy; PTV, planning target volume; P, probability.

outcome in 69.8% of AHF as compared with 71.3% of 

patients in the standard fractionation arm.8

Furthermore, the 10-year results from START A8 trial 

showed that normal tissue effects (like breast shrinkage, 

telangiectasia, and breast edema) were less common in the 

39 Gy group and did not differ significantly between 41.6 

Gy group and 50 Gy group.8

The reason for the differences between AHF impact on late 

toxicity between our study and the randomized trials could 

arise from the heterogeneity in the assessment of late toxicity. 

In fact, in START-A and B, the cosmetic outcomes (presence 

of breast shrinkage and hardness, change in skin appearance, 

breast swelling) were defined by patient self-reported assess-

ments. Moreover, in 1,055 of 2,236 patients of START-A 

and in 923 of 2,215 patients of START-B, change in breast 

appearance was assessed by photographs taken at baseline, 

and then at 2 and 5 years with scores on 3-point graded scales. 

The physician assessments of normal tissue effects in START-

A and B were scored on a 4-point scale (none, a little, quite 

a bit, or very much). The same authors reported variations 

between centers in the practice used to complete the yearly 

reports forms, which could equally have led to underreporting 

of physician assessment of normal tissue effects.8

In our study, normal tissue effects were assessed by two 

trained physicians (CD, AGM) using the RTOG/EORTC 
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Scale to evaluate skin and subcutaneous tissue toxicity. We 

can hypothesize that the palpation of the irradiated breast is 

more sensitive than photographic evaluation in detecting a 

mild degree of fibrosis.

Another reason for the different outcomes from our study 

as compared to the results of the randomized trials could be 

the fractionation used in our CG (1.8 Gy/fraction), which 

was lower compared to the standard arm of the randomized 

trials (2 Gy/fraction). This reduced dose per fraction could 

have impacted on the incidence of late toxicity in the CG. In 

addition, the boost technique was different between CG and 

MARA-1 trial. In fact, in the CG the boost was delivered 

with a direct electron beam, while in the MARA-1 trial it 

was with tangential photon beams. The latter irradiation 

modality could have probably caused delivery of boost 

dose to a larger volume. Finally, the finding of a higher 

rate of fibrosis in MARA-1 patients could be associated to 

the concomitant boost while CG patients had a sequential 

boost. In fact, MARA-1 patients received not only a larger 

dose on PTV1 compared to PTV2 (44 vs 40 Gy) but even 

a more accelerated fractionation (2.75 vs 2.5 Gy). But 

comparing the Equivalent Dose in 2 Gy/fraction (EQD
2
) 

between the two treatment techniques at the boost site, 

the EQD
2
 of MARA-1 and CG groups were 50.6 and 59.4 

Gy, respectively. It is therefore difficult to weigh the boost 

timing as the reason for the recorded differences in terms 

of late toxicity. Table 3 shows a clear imbalance in terms 

of adjuvant pharmacological treatments. The percentage of 

patients receiving chemotherapy was close to double in the 

Table 7 HRs of G1 and G2 late subcutaneous toxicity estimates from Cox proportional-hazards regression models

Variable Value Late 
subcutaneous 
toxicity

Univariate analysisa Multivariate analysisa

HR (95% CI) P HR (95% CI) P

Technique MARA-1 G1 2.35 (1.61–3.41) 0.001 2.18 (1.50–3.18) 0.001
G2 3.07 (1.11–8.53) 0.031 3.01 (1.08–8.42) 0.036

Hypertension G1 0.88 (0.64–1.23) 0.458
G2 1.15 (0.52–2.54) 0.725

Diabetes G1 1.77 (1.08–2.90) 0.023 1.65 (1.01–2.71) 0.047
G2 2.57 (0.87–7.54) 0.086

Tobacco smoking G1 0.89 (0.52–1.53) 0.682
G2 1.82 (0.62–5.33) 0.275

Alcohol G1 0.82 (0.57–1.18) 0.295
G2 0.79 (0.31–1.97) 0.606

Chemotherapy G1 0.80 (0.58–1.10) 0.167
G2 0.71 (0.32–1.60) 0.414

Hormone therapy G1 2.34 (0.69–8.00) 0.174
G2 1.20 (0.80–1.81) 0.371

PTV volume G1 1.14 (1.09–1.20) 0.001 1.14 (1.08–1.20) 0.001
G2 1.13 (1.01–1.27) 0.027 1.14 (1.01–1.28) 0.035

Notes: Analysis of 437 patients with complete information. aCovariates to be included in multivariable models were selected with a stepwise backward elimination (P removal 
=0.10; P addition <0.10) based on likelihood ratio test.
Abbreviations: G, grade; MARA, Modulated Accelerated Radiotherapy.

CG compared to the MARA-1 patients (64.6% vs 33.1%). 

This figure may have played a role in the different late toxic-

ity rates recorded in the two groups. However, it should be 

emphasized that the significant impact of RT was confirmed 

on multivariate analysis, in which both chemotherapy and 

hormone therapy were included.

Despite the higher rate of late subcutaneous toxicity in the 

MARA-1 group, the significant differences were limited only 

to the lower grades (G1–G2), whereas the absence of G3–G4 

could be attributed to the IMRT technique. In fact, several 

studies have confirmed the role of IMRT in BC in terms of 

improvement of dosimetric parameters, higher homogeneity 

in dose distribution, and reduced severity of acute toxicity.15,16 

Two retrospective cohort studies have reported late toxicity, 

both with positive results.17,18 The study by Harsolia et al,17 

showed a significant difference between IMRT and conven-

tional wedge-based RT, and was in favor of IMRT for chronic 

(G2 or greater) breast edema (3% vs 30%; P=0.007) with 

no differences in terms of hyperpigmentation or fibrosis. In 

the study of McDonald et al,18 the authors reported a trend 

toward a reduced incidence of lymphedema in patients treated 

by IMRT compared to conventional treatment (0% vs 4%; 

P=0.06). In contrast, the 10-year results of the Canadian 

randomized trial comparing IMRT with traditional RT did not 

show significantly different results in terms of late toxicity. 

The authors concluded that IMRT cannot be recommended 

in all BC patients treated with BCT.19

Our study also showed a significant difference in terms 

of 5-year locoregional control (96.7% and 100% in CG and 
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MARA-1 groups, respectively; P=0.02). However, this result 

should be considered with caution considering the different 

inclusion criteria between the two groups. In CG group, even 

patients with >3 metastatic axillary nodes, in premenopausal 

status, with close margins, and pT4 tumors were enrolled. In 

fact, Table 2 shows a clear imbalance of prognostic factors in 

favor of MARA-1 group in terms of tumor grading and nodal 

stage. For these reasons, we did not compare the differences 

in terms of disease-free and overall survival.

Conclusion
Our study confirmed the feasibility of an AHF treatment, 

especially using IMRT technique. Assessing late toxicity by 

clinical examination, a higher incidence of subcutaneous side 

effects was recorded in patients undergoing AHF. However, 

this increase was limited to G1–G2 toxicity. Therefore, the 

results of our study are not enough to question the safety of 

hypofractionated regimens in this setting, which have been 

tested in large randomized controlled trials and have become 

the clinical standard in many centers. However, we believe 

that in patients with multiple risk factors for late toxicity 

(larger PTV volume, diabetes, tobacco smoking), caution 

should be taken during and after treatment also considering 

the demonstrated correlation between acute and late effects.19 

Further trials on this topic will be useful to identify more 

precisely the patients who deserve this particular attention. 

The results from some trials20,21 that completed enrollment 

some years ago and pending publication could clarify some 

unanswered questions regarding this issue.

Dedication
This paper is dedicated to our colleague Cinzia Digesù (1971–

2015) who passed away when the study was under develop-

ment and whose contribution to this trial was invaluable.
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