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Background and purpose: Lipid metabolism plays an important role in Alzheimer’s disease 

(AD), and recent evidence suggests that single nucleotide polymorphisms (SNPs) in the StAR-

related lipid transfer domain 6 (STARD6) and near the enzyme enoyl CoA hydratase domain 

containing 3 (ECHDC3) gene are related to plasma lipid levels or lipid traits in AD.

Materials and methods: To identify whether the variants in or near the STARD6 and ECHDC3 

genes contribute to AD susceptibility, we carried out an association analysis of STARD6 

rs10164112 and ECHDC3 rs7920721 in combination with the apolipoprotein E (APOE) ε4 

allele in a case–control study (278 cases, 509 controls) in China.

Results: We identified that SNP rs10164112 in the STARD6 gene was a risk factor associ-

ated with AD and the APOE ε4 carriers (all P,0.05) after Bonferroni correction. However, 

multivariate logistic regression analysis indicated that only the minor T allele of STARD6 

rs10164112 combined with the APOE ε4 allele increased the risk of AD under the additive 

and dominant models (additive model: P=0.0078, OR=1.988, 95 % CI: 1.198–3.298; dominant 

model: P=0.0172, OR=2.169, 95% CI: 1.147–4.102).

Conclusion: These results suggest that the rs10164112-T allele is not an independent risk factor 

for AD patients. However, in combination with the APOE ε4 allele, the rs10164112-T allele 

has been found to be a risk factor for AD in the Han Chinese population reported in this study.
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Introduction
Alzheimer’s disease (AD) is the most common type of dementia and is characterized 

by the interaction of both genetic and environmental factors.1 Amyloid-β (Aβ) peptide 

and phosphorylated Tau (p-Tau) ref﻿lect cerebral amyloid deposition and tau-related 

neurodegeneration, respectively, and both are potential diagnostic biomarkers for AD.

The ε4 allele of the apolipoprotein E gene (APOE ε4) is the strongest known genetic 

risk factor for AD, indicating that lipid metabolism may significantly contribute to 

AD risk and progression.2–6 However, the molecular mechanisms behind APOE ε4 are 

not fully understood. One potential mechanism connecting AD to lipid metabolism is 

the fact that APOE also involves the aggregation and clearance of brain Aβ peptide, 

which is the main component of senile plaques.7 The amyloid-β protein precursors 

(AβPP), presenilin 1 (PSEN1) and presenilin 2 (PSEN2), have been shown to lead to 

familial forms of AD and have also been reported to influence Aβ metabolism.8 Thus, 

it is important that additional AD risk genes are uncovered.

In the last 2 years, studies have identified two single nucleotide polymorphisms 

(SNPs) that are associated with AD susceptibility, including rs7920721 (closest 
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gene, ECHDC3; enzyme enoyl CoA hydratase domain 

containing 3) and rs10164112 (STARD6; steroidogenic acute 

regulatory-related lipid transfer domain 6); the genes have 

also been shown to be involved in plasma lipid levels or 

other lipid traits.9–11 Desikan et al9 demonstrated the pleio-

tropic effects of rs7920721 near the ECHDC3 gene for AD, 

plasma C-reactive protein and lipid levels. The rs7920721 

SNP is adjacent to ECHDC3, a gene that encodes the enzyme 

enoyl CoA hydratase domain containing 3; furthermore, the 

expression of ECHDC3 was shown to be altered in the brains 

of AD patients when compared with those of the brains of 

controls.9 Subsequently, a recent, large, transethnic genome-

wide association study (GWAS) identified rs7920721 to be 

specifically associated with persons lacking the APOE ε4 

allele.10 The risk locus rs7920721 was also identified through 

proxy case–control analysis and meta-analysis within a pub-

lished GWAS of AD.12,13 In addition, increased ECHDC3 

expression was reported in patients with acute myocardial 

infarction, and ECHDC3 is known to be involved in fatty 

acid biosynthesis in mitochondria.14 Furthermore, Kim 

et al11 reported that STARD6 rs10164112 was significantly 

correlated with AD. The steroidogenic acute regulatory 

(StAR)-related lipid transfer (START) domain is a conserved 

sequence of approximately 210 amino acids that bind lipids, 

including sterols.15,16 In humans, there are 15 START domain 

proteins, STARD1–STARD15, which can be classified into 

six subfamilies.17,18 START proteins are also implicated in the 

nonvesicular transport of lipids and sterols, lipid metabolism, 

and cell signaling events.17,18 STARD6 behaves similar to 

StAR proteins, which control the rate-limiting step of neuros-

teroid synthesis in which cholesterol is transferred from the 

outer mitochondrial membrane to the inner membrane.19,20 

Accordingly, Létourneau et al21 published on the detailed 

structural and dynamical data obtained by STARD6 in steroid 

transport. Nevertheless, to date, no study has evaluated both 

SNPs rs7920721 and rs10164112 among AD patients in a 

Han Chinese population.

The SNPs rs7920721 and rs10164112 and the APOE 

genotypes are known to be related to lipid metabolism, which 

plays a central role in AD. Therefore, this study was designed 

to explore these two recently reported SNPs in combination 

with the APOE ε4 allele in terms of the risk of AD in the 

Han Chinese population.

Materials and methods
Subjects
Patients with AD were recruited from the Wuxi Mental 

Health Center and diagnosed according to the criteria of the 

National Institute of Neurological and Communicative Dis-

orders and Stroke and the Alzheimer’s Disease and Related 

Disorders Association (NINCDS-ADRDA). Participants 

with a family history of AD, neurological or psychiatric 

illnesses or dementia were excluded. The healthy controls 

without memory complaints or cognition dysfunctions were 

confirmed to be neurologically normal according to their 

medical history, general examinations and Mini-Mental 

State Examination (MMSE). All participants were of the 

Han Chinese ethnic population and were geographically 

from Wuxi city in Jiangsu province. According to self-

reported data, individuals not born in Jiangsu or whose family 

members were not born in Jiangsu were excluded from the 

study. This study was approved by the ethics committee of 

the Wuxi Mental Health Center, and, prior to enrollment, 

signed informed consent was obtained from each participant 

or guardian. The study protocols were performed according 

to the principles of the Declaration of Helsinki.

The study sample included 278 AD patients (118 males 

and 160 females; mean age =72.77 years at recruitment, 

SD=9.09) and 509 unrelated healthy controls (249 males 

and 260 females; mean age =71.78 years at recruitment, 

SD=6.27), which were drawn from a population of people 

of Han descent (Table 1).

DNA extraction and SNP genotyping
Blood samples were collected from all participants using 

K
2
EDTA tubes, and DNA was extracted from whole blood 

using a blood genotyping DNA extraction kit (Tiangen 

Biotech, Beijing, China). DNA samples were stored at -80°C 

until genotype analysis, which used the ligase detection 

reaction–PCR (LDR-PCR) method from Shanghai Biowing 

Applied Biotechnology Co., Ltd. (Shanghai, China) (www.

biowing.com.cn).22,23 Genomic DNA extracted from the clini-

cal samples was first subjected to multiplexed PCR to obtain a 

PCR product including rs7920721 and rs10164112. The DNA 

sequencer was then used to detect the LDR reaction products.

Statistical and bioinformatic analyses
PLINK v1.9 (http://pngu.mgh.harvard.edu/purcell/plink/) 

and SPSS 24.0 software (IBM Corporation, Armonk, NY, 

USA) were used to perform all statistical analyses, including 

association studies, Hardy–Weinberg equilibrium (HWE) 

tests and the calculation of genotype and allele frequencies 

between patients with AD and healthy controls.24 P-values of 

allelic and genotypic tests were calibrated using Bonferroni 

correction and were considered statistically significant 

if they were less than 0.05. A power calculation of our 
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sample size was carried out using PS software (http://biostat.

mc.vanderbilt.edu/wiki/Main/PowerSampleSize).25,26 ORs 

and 95% CI were calculated to assess the influence of any 

difference in heterogeneity.

Multivariate logistic regression was carried out to ana-

lyze the association between the SNP and susceptibility to 

AD after adjusting for age, gender and the APOE ε4 allele 

in the additive, dominant or recessive models. We defined 

various genetic models such as A2A2 vs (A1A1+ A1A2) 

for dominant, (A1A2+ A2A2) vs A1A1 for recessive and 

A1A1 vs A1A2 vs A2A2 for additive (A1: minor allele; 

A2: major allele).

Results
In this study, we analyzed the data from 278 patients with 

AD and 509 unrelated healthy controls. The demographic 

and clinical characteristics of the participants are summa-

rized in Table 1. There were no significant differences in 

age (P=0.106) or gender (P=0.106) between the two groups. 

However, there were significant differences in MMSE 

scores, marital status, education level and APOE genotype 

between the AD and control groups (P,0.001). One copy 

of the APOE ε4 allele was a significant risk factor for AD 

(P,0.001, OR =2.422, 95% CI=2.718–3.414).

Genotype distributions were in HWE for rs7920721 and 

rs10164112 in both the AD and control groups (P.0.05). The 

total genotyping rate of all individuals was 100%. In addi-

tion, the power of this study for both SNPs were estimated to 

be ~70% using PS software (assumption condition: α=0.05, 

P
0
=0.25, n=556, m=1.83, Ψ=1.339).

The results of the association study suggested that SNP 

rs10164112 within STARD6 was significantly associated with 

the risk of AD after Bonferroni correction (P
allele

 =0.0254, 

OR =1.339, 95% CI: 1.064–1.685; P
genotype

 =0.0460) 

(Table 2). Subsequently, according to APOE ε4 status, we 

stratified our data to investigate whether APOE ε4 influenced 

the relationship between SNPs and AD susceptibility risk. 

The allele and genotype frequencies of STARD6 rs10164112 

were significantly different between AD patients and 

healthy controls in the APOE ε4 carriers (ε4+: P
allele

 =0.0016, 

P
genotype

 =0.0072) (Table 2). However, there were no signifi-

cant differences in the genotype and allele frequencies of 

the rs7920721 SNP closest to ECHDC3 between the AD 

and control groups.

Multivariate logistic regression analyses were applied 

to re-evaluate the relation between STARD6 rs10164112 

and AD susceptibility risk in subjects with APOE ε4 status 

while adjusting for age and gender under different genetic 

models (Table 3). In APOE ε4 carriers, the minor T allele 

of STARD6 rs10164112 strongly increased the risk of 

AD under the additive and dominant models (the addi-

tive model: P=0.0078, OR =1.988, 95% CI: 1.198–3.298; 

Table 1 Demographic characteristics of the study participants

Characteristics AD (n=278) Controls (n=509) P-value OR (95% CI)

Age, years (mean ± SD) 72.77±9.09 71.78±6.27 0.106
Sex

Men:women (%) 42.4:57.6 48.9:51.1 0.072
MMSE score (mean ± SD) 10.93±7.18 28.12±3.83 ,0.001
Marital status (%)

Married 69.8 91.6
Widower 29.5 7.1
Divorced 0.7 1.4 ,0.001

Education level (%)
Primary 46.8 12
Incomplete primary 1.4 0.2
Upper secondary 18 31.2
Lower secondary 27.3 46.2
Bachelor or equivalent 6.5 10.4 ,0.001

APOE genotype (%)
ε2/ε2 0.7 1.2
ε2/ε3 9.4 11.8
ε2/ε4 1.1 0.2
ε3/ε3 57.6 70.5
ε3/ε4 29.1 15.7
ε4/ε4 2.2 0.6 ,0.001
APOE ε4+ vs ε4− (%) 32.4 vs 67.6 16.5 vs 83.5 ,0.001 2.422 (2.718–3.414)

Note: Bold figures indicate P,0.05.
Abbreviations: AD, Alzheimer’s disease; APOE, apolipoprotein E; MMSE, Mini-Mental State Examination.
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the dominant model: P=0.0172, OR =2.169, 95% CI: 

1.147–4.102).

Discussion
To our knowledge, this is the first study to associate the 

T allele of rs10164112 within STARD6 with an increased 

risk for AD in the Han Chinese population. There were sig-

nificant differences in the allele and genotype distributions 

of the STARD6 rs10164112 polymorphism between the AD 

and control groups in subjects with the APOE ε4 allele. Thus, 

it is possible to suggest that the risk of AD increases with 

the combination of the T allele of rs10164112 and APOE ε4 

alleles (OR
ADD

 =1.988, OR
DOM

 =2.169) in the Han Chinese 

population.

It was initially reported by Kim et al11 that STARD6 

rs10164112 was significantly correlated with AD using mul-

tivariate logistic regression models (P#0.0014, OR #0.037). 

Although the genotype and allele frequencies had a statisti-

cally significant correlation between STARD6 rs10164112 

and AD within the total sample of this study, the logistic 

regression models indicated no significant correlation in 

the total samples. In addition, inconsistent from the results 

reported by Kim et al,11 the frequency of the rs10164112 “T” 

allele in the AD patients was significantly higher than that 

in the controls in this study. Moreover, when we compared 

the allele frequency of STARD6 rs10164112 from different 

ethnic groups using dbSNP data from the 1,000 Genomes 

Project, the C allele frequency was 0.39, as shown in Figure 1, 

as it consists of different ethnic groups; however, it ranged 

from 0.06 to 0.70. The Han Chinese population (1,000 

genomes) frequency is similar to what was described in the 

manuscript. Thus, our allele frequency analysis of these data 

for STARD6 rs10164112 revealed substantial differences T
ab
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Table 3 Logistic regression analysis of rs10164112 in AD patients 
and controls

SNP Groups Model Padj-value OR (95% CI)

rs10164112 Totala ADD 0.0517 1.277 (0.998–1.634)
DOM 0.1265 1.265 (0.936–1.711)
REC 0.0826 1.716 (0.933–3.156)

APOE ε4+b ADD 0.0078 1.988 (1.198–3.298)
DOM 0.0172 2.169 (1.147–4.102)
REC 0.0670 3.075 (0.924–10.23)

APOE ε4−b ADD 0.6852 1.062 (0.793–1.424)
DOM 0.7758 1.052 (0.743–1.488)
REC 0.6519 1.198 (0.546–2.629)

Notes: aTotal sample: P-values in the logistic regression model, adjusted by gender, 
age and APOE ε4 status. bAPOE ε4+/APOE ε4− subset: P-values in the logistic regression 
model, adjusted by gender and age. Bold figures indicate P,0.05.
Abbreviations: AD, Alzheimer’s disease; ADD, the additive model; APOE, 
apolipoprotein E; DOM, the dominant model; REC, the recessive model; SNP, single 
nucleotide polymorphism.

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Neuropsychiatric Disease and Treatment 2019:15 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

217

Association analysis of polymorphisms in STARD6

when compared to other ethnic groups (Figure 1). The dif-

ferences in the rs10164112 polymorphism profiles suggested 

that populations from different geographies might exhibit 

genetic heterogeneity for AD. Therefore, in studies involving 

the association between the STARD6 gene polymorphism 

and AD, racial and geographic aspects should be taken 

into account. Additional limitations of this study that should 

be considered are that our results may be influenced by the 

lack of statistical power (~70%) due to a limited sample size.

Conclusion
The rs10164112-T allele of the STARD6 gene was not an inde-

pendent risk factor for AD. However, this allele, combined with 

the APOE ε4 allele, leads to an increased risk for AD in the stud-

ied Han Chinese population. When compared with the results 

of previous research, inconsistent results were obtained. Thus, 

in the future, the data need to be replicated and tested using 

large-scale genetic studies involving different ethnic groups.
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