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Abstract: Fosfomycin (C
3
H

7
O

4
P) is a phosphonic acid derivative representing an epoxide class 

of antibiotics. The drug is a re-emerging bactericidal antibiotic with a wide range of actions 

against several Gram-positive and Gram-negative bacteria. Among the existing antibacterial 

agents, fosfomycin has the lowest molecular weight (138 Da), which is not structurally associ-

ated with other classes of antibiotics. In intensive care unit (ICU) patients, severe soft tissue 

infections (STIs) may lead to serious life-threatening problems, and therefore, appropriate 

antibiotic therapy and often intensive care management (ICM) coupled with surgical interven-

tion are necessary. Fosfomycin is an antibiotic primarily utilized for the treatment of STIs in 

ICUs. Recently, fosfomycin has attracted renewed interest for the treatment of serious systemic 

infections caused by multidrug-resistant Enterobacteriaceae. In some countries, intravenous 

fosfomycin has been prescribed for various serious systemic infections, such as acute osteo-

myelitis, nosocomial lower respiratory tract infections, complicated urinary tract infections, 

bacterial meningitis, and bacteremia. Administration of intravenous fosfomycin can result in a 

sufficient concentration of the drug at different body regions. Dose modification is not required 

in hepatic deficiency because fosfomycin is not subjected to enterohepatic circulation.

Keywords: fosfomycin, soft tissue infections, intensive care management

Introduction
Fosfomycin (C

3
H

7
O

4
P) is a phosphonic acid derivative representing an epoxide class 

of antibiotics. Fosfomycin is a re-emerging bactericidal antibiotic with a wide range 

of actions against several Gram-positive and Gram-negative bacteria, including 

vancomycin-resistant enterococci, methicillin-resistant Staphylococcus aureus, and 

carbapenem-resistant Enterobacteriaceae. Some non-fermenters such as Acinetobacter 

are inherently resistant to fosfomycin, whereas Pseudomonas is susceptible to the 

antibiotics in vitro.1–3 In the past decade, fosfomycin was isolated from some strains 

of Streptomyces, but nowadays it is produced synthetically. Among the existing anti-

bacterial agents, fosfomycin has the lowest molecular weight (138 Da), which is not 

structurally associated with other classes of antibiotics.4,5

In intensive care unit (ICU) patients, severe soft tissue infections (STIs) may lead 

to serious life-threatening problems, and therefore, appropriate antibiotic therapy6 

and often intensive care management (ICM) coupled with surgical intervention 

are necessary. Fosfomycin is considered an antibiotic primarily appropriate for the 

treatment of STIs in ICUs.7

Some appropriate properties of fosfomycin in healthy volunteers (eg, identical 

concentrations of the drug in the soft tissues and plasma) have made the drug a fre-

quently administered antibiotic in the treatment of patients with sepsis and/or STI 
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especially in Europe.8 Nevertheless, in USA, the Food and 

Drug Administration (FDA) has approved fosfomycin only 

for the management of uncomplicated cystitis.

Recently, the use of fosfomycin has attracted renewed 

interest for the treatment of serious systemic infections 

caused by multidrug-resistant Enterobacteriaceae.3 In some 

countries, intravenous fosfomycin has been prescribed 

for various serious systemic infections, such as acute 

osteomyelitis, nosocomial lower respiratory tract infections, 

complicated urinary tract infections, bacterial meningitis, and 

bacteremia.3,9 Fosfomycin trometamol, an oral formulation of 

fosfomycin, is available in USA and in Europe (in additional 

to the parenteral disodium compound) as used for therapy 

of cystitis in one 3  g dose or multiple oral doses of 3  g 

administered every other day.

Mechanism of action
Generally, antibiotics have the bactericidal and/or 

bacteriostatic activities and affect the vital functions essential 

for bacteria, including cell wall synthesis, protein translation, 

DNA duplication, RNA transcription, and/or cell membrane 

organization. Fosfomycin mechanism of action is unique; 

the drug irreversibly inhibits the initial phase of microbial 

cell wall synthesis.10 Chemical structure of fosfomycin is 

shown in Figure 1.

Fosfomycin must enter into the bacterial cytoplasm for 

the bactericidal activity. To reach the target cell, fosfomycin 

uses the bacterial hexose monophosphate transport system 

(stimulated by glucose-6-phosphate [G6P]) and the bacte-

rial l-a-glycerophosphate transport system (activated by 

glycerol-3-phosphate [G3P]). The chemical structure of 

fosfomycin mimics both G6P and G3P.11,12

In the bacterial cytoplasm, fosfomycin binds UDP-

GlcNAc enolpyruvyl transferase (MurA) and inactivates 

a vital enzyme such as enolpyruvyl transferase (MurA) 

involved in the peptidoglycan biosynthesis.13 MurA 

catalyzes the first phase of the peptidoglycan biosynthesis.14 

Fosfomycin inhibits the peptidoglycan biosynthesis via 

preventing the formation of UDP-GlcNac-3-O-enolpyruvate 

from UDP-GlcNAc and phosphoenolpyruvate (PEP), 

resulting in bacterial cell destruction.12 Fosfomycin acts 

as a PEP analog and competes with that.15 Furthermore, 

fosfomycin reduces penicillin-binding proteins (PBPs).10

Pharmacodynamic (PD) 
characteristics of fosfomycin
It is not clear whether fosfomycin shows a concentration-

dependent or a time-dependent bactericidal function.16 

In this regard, some studies have demonstrated that fos-

fomycin exhibits a concentration-dependent activity to 

destruct strains of Escherichia coli and Proteus mirabilis 

in vitro as well as strains of Streptococcus pneumoniae in 

vivo.17,18 However, other studies have indicated a time-

dependent bactericidal action of fosfomycin to destroy 

strains of S. aureus in vitro.4,19

Depending on the applied concentration of fosfomycin, 

the drug may exhibit an extended post-antibiotic effect 

(PAE) (between 3.4 and 4.7 h) against strains of E. coli and 

P. mirabilis in vitro.17 However, a comparatively smaller 

PAE has been seen against S. aureus strains (0.5–1.4 h).20

Pharmacokinetic (PK) 
characteristics of fosfomycin
Fosfomycin disodium is a very hydrophilic agent. Approxi-

mately 3% of the drug is bound to serum proteins and permits 

favorable tissue availability. The low molecular weight war-

rants high diffusibility of the drug.3

After intravenous administration, blood content of fosfo-

mycina shows a rapid disposition phase followed by a slow 

distribution phase.21 Following the administration of multiple 

doses, a cumulative effect is seen. Elimination half-life of 

fosfomycin disodium is 1.5–2 h.22–24 The C
max

 calculated with 

the standard intravenous formulation of the drug ranges from 

200 to 644 mg/L, which is 10–20 times greater than the oral 

dose.25,26 The volume of the drug distribution is 18–27 L at 

a steady state.11

Administration of intravenous fosfomycin can result in a 

sufficient concentration of the drug at different body regions, 

such as bone, muscle, lung, appendix, cerebrospinal fluid, 

gallbladder, common bile duct, and heart valves.11,25 Dose 

modification is not required in the hepatic deficiency because 

fosfomycin is not subjected to enterohepatic circulation.11 

Approximately 93% of an administered dose undergoes the 

glomerular filtration in the kidney and is excreted unaltered 

in the urine.11 For serious systemic infections, fosfomycin 

disodium is utilized between 12 and 24 g as 2–4 divided 

Figure 1 Chemical structure of fosfomycin.
Note: The empirical formula of the compound is C3H7O4P (molecular weight: 
138.059 g/mol).
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doses. Reduction of daily dose of the drug is necessary for 

creatinine clearance of ,40  mL/min. Addition of a dose 

of 2 g after each session has been suggested for patients 

subjected to intermittent hemodialysis. No dose adjustment 

is needed in continuous renal replacement therapy (CRRT).27

Adverse effects
A number of adverse effects, including mild and self-limited 

gastrointestinal disorders (eg, nausea, abdominal pain, 

diarrhea, and dyspepsia), have also been reported following 

the oral administration of fosfomycin.27 Other side effects, 

including dizziness, headaches, vaginitis, respiratory 

infections, and microbial superinfections, may also occur. 

Laboratory changes involve alterations in the number of 

blood cells (eosinophils, neutrophils, red blood cells, and 

platelets) and increase in the liver enzymes and bilirubin but 

no change in the renal function.28

Following intravenous administration of fosfomycin, the 

potential adverse effects such as hypokalemia and sodium 

overload may occur. Each gram of intravenous fosfomycin 

consists of 0.32 g of sodium.29 Furthermore, fosfomycin may 

increase potassium renal excretion, resulting in hypokalemia. 

Other adverse effects, including infusion site reactions, heart 

failure, and hypertension (because of sodium overload), 

and increased alanine aminotransferase (ALT) may be 

developed by an intravenously administered fosfomycin 

dose.30 Therefore, administration of potassium supplements 

is deemed to be necessary in patients receiving fosfomycin, 

and their levels should be monitored regularly. In patients 

with heart failure, caution is also essential.27

Drug interaction
ICU patients are at a high risk for developing the resistant 

bacterial infections, and therefore, a combined antibacterial 

treatment is suggested for them.31,32 Fosfomycin has been 

reported to show a 100% synergistic effect after combining 

with other antibacterial drugs.33

Preventing the different stages of cell wall synthesis may 

lead to the synergistic effect of fosfomycin and β-lactam 

antibiotics; fosfomycin prevents the first stage of the cell 

wall synthesis procedure, whereas β-lactam antibiotics 

inhibit the final phase.34 The potency of fosfomycin to 

alter the function of PBPs may also induce the synergistic 

effect between fosfomycin and β-lactam antibiotics.35,36 

The ciprofloxacin-mediated destruction of the bacterial 

outer membrane can enhance the penetration and action 

of fosfomycin and promote the synergistic effect between 

fosfomycin and ciprofloxacin.37 For treating Pseudomonas 

aeruginosa infections, synergy between fosfomycin and 

a wide range of other antibiotics, including cefepime, 

amikacin, aztreonam, meropenem, imipenem, ceftazidime, 

gentamicin, and ciprofloxacin, has been reported.38,39 

Fosfomycin combined with amikacin or sulbactam has a 

synergistic effect to fight against Acinetobacter baumannii 

strains and may consider an efficient combination therapy for 

the treatment of A. baumannii infections.40,41 With respect to 

methicillin-resistant S. aureus, Enterococcus, Streptococcus, 

and Enterobacteriaceae species, fosfomycin also has 

synergistic effects when combined with other antibacterial 

agents.33,34 In addition to high antibacterial effectiveness, 

fosfomycin can decrease toxicity related to other drugs (eg, 

glycopeptides, aminoglycosides, and polymyxin B) as lower 

doses of these antibiotics can be administered.42–44

Fosfomycin resistance
Some mechanisms of fosfomycin resistance have been 

described.45 The chromosomal resistance is caused by 

mutations in the genes encoding the G6P transporter or the 

G3P transporter resulting in the reduced uptake of the drug 

by the pathogen.46,47 Another resistance mechanism is based 

on modifications in the targeted enzyme (Mur A) (point 

mutations at the binding site of the murA gene),48 which 

decreases the affinity of fosfomycin. Increased expression 

of the murA gene also results in clinical resistance to 

fosfomycin.49 The third mechanism of resistance is based on 

the inactivation of fosfomycin either by enzymatic cleavage 

of the epoxide ring or by phosphorylation of the phosphonate 

group. In the presence of the plasmid-mediated fosfomycin-

modifying metalloenzymes (FosA, FosB, and FosX), the 

epoxide structure is cleaved.50 Some kinases including FomA 

and FomB cause phosphorylation of fosfomycin to the 

diphosphate and triphosphate states leading to fosfomycin 

degradation.51,52

Fosfomycin in critically ill patients
In recent years, the multidrug resistance to the used antibi-

otics has increased. Therefore, there is a crucial need for the 

development of new antimicrobial candidates.53–61 Obtaining 

the appropriate concentrations of antibiotics at target sites 

is crucial to eliminate the relevant pathogens and clinical 

outcomes.62–64 Recent studies in patients with sepsis have 

shown that despite sufficient concentrations of antibiotics 

in plasma, their concentrations in the interstitial fluid of soft 

tissues may be inadequate. This may be due to deficiency in 

transcapillary transfer of antibiotics to target sites.65–69 Thus, 

most available antibiotics have a reduced tissue penetration 
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in the septic patients. In this regard, the target site penetra-

tion of fosfomycin, an antibiotic mainly appropriate for the 

treatment of STIs in ICU patients, has been investigated. 

In nine patients with sepsis, the microbiologically active 

levels of fosfomycin were evaluated in the interstitial space 

fluid of skeletal muscle and correlated with the correspond-

ing plasma concentrations.7 The results demonstrated that 

fosfomycin concentrations in plasma and muscle interstitium 

exceeded the minimum inhibitory concentrations (MICs) 

for various clinically important pathogens (Streptococcus 

pyogenes, S. aureus, and P. aeruginosa). Thus, fosfomycin 

shows a tissue PK profile, which suggests a substitute for 

other broad-spectrum antibiotics in critically ill patients 

undergoing STI.7

In a study on critically ill patients, the optimal dosage 

regimen of intravenous fosfomycin in combination with 

carbapenem and based on PK/PD targets was evaluated 

for the treatment of P. aeruginosa.70 The P. aeruginosa 

isolates were recovered from various clinical specimens. 

MICs of all the isolates were determined, and PK parameters 

were obtained. Monte Carlo simulation was performed to 

determine the percentage of target attainment (PTA) and 

cumulative fraction of response (CFR). The results indicated 

that the extended infusion of fosfomycin 16–24 g combined 

with prolonged carbapenem infusion could be utilized in 

non-MDR P. aeruginosa treatment.70

Gram-negative resistance is a crucial global crisis that has 

been illustrated by the rapid growth of carbapenem-resistant 

Enterobacteriaceae (CRE). For serious systemic infections 

induced by multidrug-resistant Enterobacteriaceae, the 

use of fosfomycin as an essential and beneficial option has 

been recently renewed. The new evidence on the hidden 

capacity of intravenous fosfomycin to destroy Gram-negative 

pathogens has been demonstrated elsewhere.3 Although 

several hopeful evidence are available for fosfomycin as 

the last antibacterial option to treat severe Gram-negative 

infections, more investigations are still necessary before 

using the intravenous fosfomycin.3

Along with harmonization of current breakpoints and 

according to the European Committee on Antimicrobial Sus-

ceptibility Testing (EUCAST) and Clinical and Laboratory 

Standards Institute (CLSI), fosfomycin has a high potency 

to treat serious systemic infections. However, breakpoints 

for Pseudomonas sp. need to be defined urgently. Dose of 

fosfomycin requires to be defined for serious infections where 

probably higher daily dosages (24 g/day) may be required 

to prevent the heteroresistant mutant selection. Well con-

trolled and randomized studies comparing fosfomycin versus 

colistin and investigating mono and combination therapy are 

essential to identify optimal regimens of fosfomycin in criti-

cally ill populations with resistant Gram-negative infections. 

Until the abovementioned need gaps are clear, fosfomycin 

should not be used as a monotherapy option to treat severe 

systemic infections.3
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