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Background: Decreased gamma-aminobutyric acid (GABA)-ergic neurons in the brain

of both schizophrenic patients and animal models indicates that impairment of

GABAergic function is implicated in pathophysiology of the disorder. Decreased

GABAergic neurotransmission might be also involved in cognitive impairment, which

is developed in schizophrenia. Brahmi (Bacopa monnieri) could be a new treatment and

prevention for this cognitive deficit in schizophrenia by increasing GABAergic neurons

to a normal level.

Aim: The authors aimed to study cognitive-enhancement- and neuroprotective-effects of

Brahmi on novel object recognition memory and GABAergic neuronal density, defined by

the presence of calcium binding proteins (CBPs; calbindin (CB), parvalbumin (PV), and

calretinin (CR)) in a sub-chronic (2 mg/kg, Bid, ip) phencyclidine (PCP) rat model of

schizophrenia.

Materials and methods: In the cognitive-enhancement-effect study rats were assigned to

three groups; Group-1: Control, Group-2: PCP-administration, and Group-3: PCP+Brahmi.

In the neuroprotective-effect study rats were assigned to three groups; Group-1: Control,

Group-2: PCP-administration, and Group-3: Brahmi+PCP. A discrimination ratio (DR)

representing cognitive ability was obtained from the novel object recognition task. CB, PV,

and CR immunodensity were measured in the prefrontal cortex, striatum, and cornuammonis

fields 1–3 (CA1–3) using immunohistochemistry.

Results: Reduced DR was found in the PCP group, which occurred alongside reduced CB,

PV, and CR in all brain regions except for CR in the striatum and CA1–3 in the cognitive-

enhancement-effect study. PCP+Brahmi showed a higher DR score with increased CB in the

prefrontal cortex and striatum, increased PV in the prefrontal cortex and CA1–3, and

increased CR in the prefrontal cortex. The Brahmi+PCP group showed higher DR score

with increased CB in all areas, increased PV in the striatum, and increased CR in the

prefrontal cortex and striatum.

Conclusion: The present study demonstrated the effects, both partial restoration of cogni-

tive deficit and neuroprotection, of Brahmi, and elucidated its underlying mechanism of

actions via increasing GABAergic neurons in a PCP-induced schizophrenic-like model.
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Introduction
Schizophrenia is a chronic neuropsychiatric disorder charac-

terized by positive symptoms (eg, hallucination, delusions,

thought disorder, perceptual disturbances, and increased

motor function), negative symptoms (eg, alogia, anhedonia,

flat affect, avolition, and social withdrawal), and deficits in

cognitive abilities.1,2 The cognitive deficits pose the greatest

restriction on the quality-of-life and functional performance

of schizophrenic individuals.3 Currently, the main manage-

ment of schizophrenia relies on antipsychotic medication.

Conventional antipsychotic treatments, mainly dopamine

receptor subtype 2 (D2) antagonists, have been proven to

be effective at diminishing positive and negative symptoms,

but often ineffective in relieving the cognitive deficits asso-

ciated with the disease.4,5 These antipsychotics also often

cause several serious adverse effects, especially extrapyra-

midal symptoms such as Parkinsonism. Atypical antipsycho-

tics, which were discovered more recently, have been shown

to be effective at attenuating and preventing the cognitive

deficits in schizophrenic-like animal models.6–9 However,

their efficacy for the improvement of the cognitive dysfunc-

tion in schizophrenic patients is still under question, and they

are associated with side-effects including weight gain and

metabolic dysfunction.4,10 Therefore, it is important to

develop a novel medication which is more effective at

improving the cognitive deficits and has fewer side-effects.

Bacopa monnieri or Brahmi is a medicinal plant

which has long been used in Ayurvedic medicines to

enhance cognitive ability, memory, learning skills, and

improve mental function.11 Several studies have also

revealed the cognitive and neuroprotective effects of

Brahmi. Long-term administration of bacosides, the

active saponins of Brahmi, was shown to prevent age-

associated neurodegeneration in female Wistar rats.12 In

a transgenic mouse model of Alzheimer’s disease, beta-

amyloid levels in the brain were also reduced after

Brahmi administration.13 This is consistent with the

result showing the enhancement of cognitive perfor-

mance in elderly with Alzheimer’s disease after receiv-

ing the Brahmi extract.14 Interestingly, a recent study

reported that 1-month administration of Brahmi extracts

(500 mg/day) in complement with antipsychotic drugs

could reduce psychopathology without causing addi-

tional side-effects in schizophrenic patients.15 By using

a rat model of schizophrenia, our previous studies also

demonstrated that Brahmi could improve cognitive abil-

ities and prevent cognitive deficits by increasing

vesicular glutamate transporters subtype 1–3

(VGLUT1-3) in the brain.16–18 This data is consistent

with the glutamate hypothesis of schizophrenia which

suggests that hypofunction of the glutamatergic signal

is one of the possible causes of schizophrenia.19

Gamma-aminobutyric acid (GABA) has also been known

as another neurotransmitter involved in schizophrenia. Post-

mortem studies have reported abnormalities of the

GABAergic neurotransmission, including a loss of presump-

tive interneurons in more superficial cortical layers in the

prefrontal cortex and a decrease in mRNA expression of the

GABA synthesizing enzyme, GAD 67, in this brain

region.20,21 A reduction of GABA was also found in the

posterior hippocampus and other temporal lobe structures

in schizophrenia.22–25 Interestingly, GABAergic neurons

are also involved in memory processes.26 A study in non-

human primates demonstrated the impairment of working

memory tasks in subjects that received a GABA receptor

antagonist.26 Alterations of GABA neurotransmission are

likely associated with impaired cognitive function in indivi-

duals with schizophrenia.27

Phencyclidine (PCP), a noncompetitive glutamate/

N-methyl-D-aspartate (NMDA) receptor antagonist, has

been acceptably used for inducing animals to become

schizophrenic.28 Animals receiving PCP exhibit several

schizophrenia-like behaviors, including reduced prepulse

inhibition (PPI).28,29 Low-dose PCP produces disinhibi-

tion and a state of euphoria, paranoia, and hallucina-

tions, while high-dose PCP can cause general

anesthesia, catalepsy, sedation, and seizures.30,31 Acute

administration of PCP to animals can increase locomo-

tor activity, which resembles schizophrenia, in a dose-

dependent manner.32,33

The main aim of the present study was to investigate

the cognitive enhancing effect and the neuroprotective

effect of Brahmi in the PCP-induced schizophrenic-like

rat model by using the novel object recognition task as

an assessment tool for testing the cognitive function. The

present study also aimed to elucidate the underlying

mechanism of Brahmi, focusing mainly on roles of

GABA. The GABAergic neurotransmission in the prefron-

tal cortex, striatum, and CA1–3 of the hippocampus was

evaluated using immunohistochemistry measuring the pre-

sence of the calcium-binding proteins (CBPs), including

calbindin (CB), parvalbumin (PV), and calretinin (CR),

which locate mainly at GABAergic neurons.
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Materials and methods
Plant extract
A standardized extract of 225 mg Bacopa monnieri con-

taining 20% of bacosides A+B as a dietary supplement in

a tablet formulation was purchased from PlanetaryTM

Herbals (Canada). The extract was produced by

Dr. Michael Tierra, East West School of Planetary

Herbology, Ben Lomond, Canada.

Animals
Male Wistar rats (n=54) from the National Animal Center,

Mahidol University, Thailand weighing 224–250 g at the

time of first drug administration were used. The animals

were single-housed, under a 12 hour/12 hour light/dark

cycle with food and water available ad libitum in the home

cage. Room temperature (21±2ºC) and humidity (45–55%)

were kept constant throughout. All animals were acclima-

tized for 7 days before experiment. The animal experiments

were performed in accordance with Mahidol University

Code of Practice and the National Institutes of Health

(USA) guidelines for treatment of laboratory animals. The

protocol of the present study was approved by the Animal

Research Ethical Committee of Thammasat University,

Thailand. The number of project license for animal experi-

ment in the present study is AE 015/2015.

Drugs and drug administration
Cognitive enhancement effect study

Animals were assigned to three groups (n=9/group).

Control group
Animals received vehicle solution (0.9% NaCl) ip, bi-daily

(08:00 and 16:00 h) for 7 days. Four weeks later, they then

orally received vehicle solution (distilled water) daily

(08:00 h) for further 14 days.

Sub-chronic PCP group
Animals received 2 mg/kg of PCP (Sigma, USA) ip, bi-

daily (08:00 and 16:00 h) for 7 days. Four weeks later,

they then orally received vehicle solution (distilled water)

daily (08:00 h) for a further 14 days.

PCP+Brahmi group
Animals received 2 mg/kg of PCP ip, bi-daily (08:00 and

16:00 h) for 7 days. Four weeks later, they then orally

received 40 mg/kg/day of Brahmi supplement

(PlanetaryTM Herbals) daily (08:00 h) for a further 14

days. PCP HCl and Brahmi were dissolved in 0.9% NaCl

and distilled water, respectively.

Neuroprotective effect study

Animals were assigned to three groups (n=9/group).

Control group
Animals orally received vehicle solution (distilled water)

daily (08:00 h) for 14 days. They then received vehicle

solution (0.9% NaCl) ip, bi-daily (08:00 and 16:00 h) for 7

days, beginning 7 days after the first oral administration of

vehicle.

Sub-chronic PCP group
Animals orally received vehicle solution (distilled water)

daily (08:00 h) for 14 days. They then received 2 mg/kg of

PCP ip, bi-daily (08:00 and 16:00 h) for 7 days, beginning

7 days after the first oral administration of vehicle.

Brahmi+PCP group
Animals orally received 40 mg/kg of Brahmi supplement

daily (08:00 h) for 14 days. They then received 2 mg/kg of

PCP ip, bi-daily (08:00 and 16:00 h) for 7 days, beginning

7 days after the first oral administration of Brahmi. PCP

and Brahmi supplement were dissolved in 0.9% NaCl and

distilled water, respectively.

Novel object recognition test

The novel object recognition test began 6 weeks after the

last PCP or saline injection. The test was undertaken

following the protocol from Neill et al34 and Piyabhan

and colleagues18. In summary, after all animals received

drugs or vehicle, they were acclimatized for 1 week, then

they were tested in a novel object recognition paradigm.

Testing took place in a 360 lux lighting room. The material

used in the task was a 63×63×45 cm solid black plastic

box which was placed on the floor throughout the experi-

ment. Animal behavior was recorded by a video recorder

(Canon), which was located on a movable trolley above

the plastic box. The objects to be explored were made of

glass, plastic, or ceramic, and had approximately equal

heights. All these objects were fixed by adhesive tape at

the bottom in order to avoid displacing by the animals.

Familiar and novel objects were alternated between the left

and right position to prevent bias for a particular location.

Three days before starting the novel object recognition

test, all rats were initially habituated to the empty plastic

box for three sessions of 3 minutes daily. In the novel
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object recognition test, each rat was placed in the plastic

box and exposed for 3 minutes to two identical objects

placed approximately 10 cm apart in the center of the box.

The rat was then returned to its home cage for an hour.

The box and the objects were then thoroughly cleaned

with 70% ethanol in an attempt to remove any remaining

olfactory cues. Both objects in the box were replaced, one

with an identical object and another with a novel object.

Rats were then returned to the plastic box and allowed to

explore the objects for 3 minutes. All trials were recorded

by a video recorder located above the plastic box, and

behavioral analysis was carried out blind to treatment.

Object exploring was defined as the rat sniffing, licking,

or touching the objects with forepaws whilst sniffing, but

not by leaning against, standing on, turning around on, or

sitting on the objects. The data were expressed as the

discrimination ratio (DR) calculated from the following

equation; DR=[(time exploring novel object−time explor-

ing familiar object)/total exploration time)]. The data are

expressed as mean±SEM.

Kruskal-Wallis non-parametric test was performed to

determine the effect of treatment on DR value, followed

by multiple pair-wise comparison using Bonferroni-

corrected Mann-Whitney U-test. Statistical significances

were defined as P<0.05. All statistical analysis was per-

formed using SPSS V13 for windows (SPSS Inc.,

Chicago, IL, USA).

Immediately following the novel object recognition

test, all rats were sacrificed by deep anesthesia with pen-

tobarbital. Whole brains were removed and proceeded to

immunohistochemistry.

Analysis of CB, PV, and CR by immunohistochemistry

Brain tissues from the previous experiment were fixed in

4% paraformaldehyde and embedded in paraffin wax and

subsequently sectioned at a thickness of 5 µm, then

mounted onto 3-aminopropyltriethoxysilane (APES)

coated glass slides. The sections were determined using

a rat brain atlas.35 Prefrontal cortex sections were taken

between Bregma 2.7–2.2 mm, while those of striatum

were taken from Bregma 0.7 mm. Sections for hippocam-

pus were sectioned posterior to Bregma 3.3 mm. All sec-

tions were dewaxed in xylene then rehydrated in 100%,

90%, and 70% ethanol, consecutively, and washed for 5

minutes in distilled water. The sections were immersed in

antigen retrieval solution (1 mM EDTA in 0.1 M Tris-HCl,

pH 8.0) and heated in a microwave oven on full power

(850 W) for 3×5 minutes. The sections were left at room

temperature for 30 minutes to cool down before being

washed in Tris-HCl buffer for 2×5 minutes, then incubated

with endogenous peroxidase blocking solution (5% H2O2

in absolute methanol) for 30 minutes. The sections were

washed in Tris-HCl buffer for 2×5 minutes before incuba-

tion for 45 minutes with protein blocking solution (2%

normal goat serum in Tris-HCl buffer). For CB immunos-

taining, the sections were incubated at 4°C overnight with

monoclonal antibody against CB, raised in rabbit (Abcam,

UK) at a dilution of 1:2,500 in protein blocking solution.

For PV immunostaining, the sections were incubated at

4°C overnight with polyclonal antibody against PV, raised

in rabbit (Abcam) at a dilution of 1:15,000 in protein

blocking solution. For CR immunostaining, the sections

were incubated at 4°C overnight with polyclonal antibody

against CR, raised in rabbit (Abcam) at a dilution of 1:500

in protein blocking solution. After the antibody incubation,

the sections were washed for 2×5 minutes in Tris-HCl

buffer before incubation for 1 hour with biotinylated sec-

ondary antibody (anti-rabbit IgG) at a dilution of 1:200.

Sections were processed by the avidin-biotin method using

a Vectastain ABC kit (Vector Laboratories, Burlingame,

CA, USA) and peroxidase was visualized using the chro-

mogen diaminobenzidine, intensified with nickel chloride

(DAB) (Vector Laboratories). The sections were dehy-

drated in 70%, 90%, 100% ethanol and xylene, then

cover slipped with DPX mounting medium for micro-

scopy. No immunoreactivity could be detected in control

sections, in which the primary antibody was omitted from

the staining protocol. All slides were coded and analyzed

blind to treatment.

Following CB, PV, and CR staining, the sections were

scanned and their images were captured by a Nikon (DS-

Fi2) microscope. CB, PV, and CR optical density of the

regions of interest were measured using NIS-Elements

microscope imaging software. The analysis of CB, PV,

and CR optical density was performed following the meth-

ods of Piyabhan et al18 and made blind to the diagnostic

category of the cases. Briefly, five regions of interest were

measured in each of the subfields of prefrontal cortex,

striatum, and CA1-3 of the hippocampus of all sections.

Each region of interest was 500×500 µm. The distance

between each region of interest was approximately

500 µm. Three brain-sectioned slides were used for optical

density measurement of CB, PV, and CR of each animal.

The value measured is the sum of the optical densities of

all pixels in the region divided by the number of pixels.

The average values from five regions of interest in each
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brain subfield of each subject was used for statistical

analysis. Kruskal-Wallis non-parametric test was per-

formed to determine the difference of cerebral CB, PV,

and CR optical density among all groups, followed by

multiple pair-wise comparison using Bonferroni-corrected

Mann-Whitney U-test. Statistical significances were

defined as P<0.05. All statistical analysis was performed

using SPSS V13 for windows (SPSS Inc.).

Results
Cognitive enhancement effect study
Novel object recognition test

In the novel object recognition test, rats receiving sub-

chronic administration of PCP and rats receiving PCP

+Brahmi had a significant decrease of DR score compared

with control (P<0.001 and P<0.05, respectively).

Interestingly, there was a significant increase of DR score

among rats receiving PCP+Brahmi compared with PCP

alone (P<0.05). DR score of PCP+Brahmi was significantly

decreased compared with control (P<0.05) (Table 1).

CB immunohistochemistry

As shown in Figure 1, CB immunoreactivity in the

prefrontal cortex, striatum, and CA1–3 of rats with sub-

chronic PCP administration were significantly decreased

compared with the control group (P<0.001). In the PCP

+Brahmi treatment group, there were significant

increases of CB immunoreactivity in the prefrontal cor-

tex (P<0.001) and in the striatum (P<0.05) compared

with rats receiving PCP alone. However, there was no

significant difference of CB immunoreactivity in CA1–3

between rats receiving PCP+Brahmi and rats receiving

PCP alone. CB immunoreactivity of the prefrontal cor-

tex was not significantly different between PCP+Brahmi

and control. However, there were significant decreases

of CB immunoreactivity in the striatum and CA1–3 of

PCP+Brahmi compared with control (P<0.001).

PV immunohistochemistry

Similar to CB, PV immunoreactivity was also found to

diminish in the prefrontal cortex, striatum, and CA1–3

among rats receiving PCP administration when compared

with the control group (P<0.001) (Figure 2). When treated

with PCP+Brahmi, the PV immunoreactivity was signifi-

cantly increased in the prefrontal cortex (P<0.05) and in

CA1–3 (P<0.01), but not in the striatum, compared with

rats treated with PCP alone. However, it should be noted

that the PV immunoreactivity of rats treated with PCP

+Brahmi remained significantly lower in all three brain

regions than the control group (P<0.001) (Figure 2).

CR immunohistochemistry

Unlike CB and PV, CR immunoreactivity was significantly

reduced only in the prefrontal cortex of rats treated with

PCP compared with the control group (P<0.001) (Figure 3).

When treated with PCP+Brahmi, the CR immunoreactivity

in the prefrontal cortex was significantly higher than rats

treated with PCP only (P<0.01). CR immunoreactivity in

the striatum and in CA1–3 was not significantly different

between the PCP administration group and the control

group. Interestingly, it was found that rats in the PCP

+Brahmi group had significantly lower CR immunoreactiv-

ity in the striatum than both the control group and PCP

alone group (P<0.001).

Neuroprotective effect study
Novel object recognition test

The novel object recognition test was also applied to

evaluate the neuroprotective effect of Brahmi. Rats with

sub-chronic administration of PCP had significantly

decreased DR score compared with controls (P<0.001)

(Table 2). Rats treated with Brahmi+PCP had

a significantly higher DR score than rats treated with

PCP alone (P<0.05); however, this DR score was still

lower than the control group (P<0.01) (Table 2).

CB immunohistochemistry

To study the neuroprotective effect of Brahmi, experimental

rats were given Brahmi prior to the administration of PCP. As

expected, rats receiving PCP alone had significant reduction

of CB immunoreactivity in the prefrontal cortex, striatum,

and CA1–3 when compared to the control group (P<0.001).

It was interesting to find that rats receiving Brahmi+PCP had

significantly higher CB immunoreactivity in all three brain

Table 1 DR obtained from a novel object recognition task in rats

treated with sub-chronic PCP, their vehicle (control), and Brahmi

treatment after PCP administration (PCP+Brahmi). Data are

mean±SEM (n=9/group). This table represents the cognitive

enhancement effect of Brahmi

Group DR

Control 0.1701±0.006

PCP 0.0689±0.018***

PCP+Brahmi 0.1178±0.009*,ϯ

Abbreviations: DR, discrimination ratio; PCP, phencyclidine.

Notes: *p<0.05; ***p<0.001 vs control; †p<0.05 vs PCP.
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sections than rats treated with PCP alone (P<0.001 for the

prefrontal cortex and CA1–3 and P<0.05 for the striatum)

(Figure 4). Nevertheless, the CB immunoreactivity in the

striatum and in CA1–3 among rats treated with Brahmi

+PCP remained significantly lower than the control rats

(P<0.001) (Figure 4).

PV immunohistochemistry

Similar with CB, PV immunoreactivity was significantly

lower in the prefrontal cortex, striatum, and CA1–3 in rats

with PCP administration than the control rats (P<0.001)

(Figure 5). Only in the striatum and in CA1–3 did the PV

immunoreactivity appear significantly increased in the rats

treated with Brahmi+PCP group when compared with PCP

alone (P<0.01, P<0.001, respectively) (Figure 5). There

was no significant difference of PV immunoreactivity in

the prefrontal cortex between the PCP group and the

Brahmi+PCP group. Compared to control, PV immunor-

eactivity of Brahmi+PCP was significantly decreased in

the prefrontal cortex (P<0.001), striatum (P<0.001), and

CA1–3 (P<0.01).

CR immunohistochemistry

Figure 6 reveals a significant decrease of CR immunor-

eactivity in the prefrontal cortex, striatum, and CA1–3 of

PCP-administration rats compared with control (P<0.001).

The CR immunoreactivity of the Brahmi+PCP group was

found to be significantly higher in the prefrontal cortex

and striatum when compared with the PCP-only group

(P<0.001). However, there was no significant difference

of CR immunoreactivity in CA1–3 of Brahmi+PCP rats

and PCP-alone rats. CR immunoreactivity of Brahmi+PCP
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rats was not significantly different from control in the

areas of the prefrontal cortex and striatum. However, it

was significantly reduced in CA1–3 compared with control

(P<0.001).

Discussion
Schizophrenia is a debilitating mental disorder that limits

a patient’s ability to perform ordinary daily life.

Individuals with schizophrenia usually experience symp-

toms such as hallucinations or delusions (also described as

positive symptoms), lack of motivation or social engage-

ment (known as negative symptoms), and impaired cogni-

tive function. Although the pharmaceutical treatments are

continuously developed, they usually tackle the positive

and negative symptoms. The cognitive dysfunction is often

neglected. Brahmi has been previously shown to restore

cognitive deficit and to protect the brain from memory

impairment. The present study again demonstrated the

partial restoration of cognitive deficit and neuroprotective

effects of Brahmi in a rat model of schizophrenia. The

underlying mechanism of Brahmi was also elucidated.

Administration of PCP to the rats has been accepta-

bly used to generate a schizophrenic-like animal

model.6–9,16–18,36–38 In the present study, sub- chronic

administration of PCP resulted in significant deficits in

object recognition memory in all rats. This finding is

consistent with several previous studies.9,16–18,36–38

Remarkably, the rats receiving Brahmi either after or
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control, †P<0.05, ††P<0.01 vs PCP. (B) Photomicrographs showing PV immunoreactivity in one area of interest (500 μm×500 μm) in the prefrontal cortex of control, (C)

PCP administration, and (D) PCP+Brahmi groups, (E) in striatum of control, (F) PCP administration, and (G) PCP+Brahmi groups, (H) in CA1–3 of control, (I) PCP
administration, and (J) PCP+Brahmi groups. (20× magnification, scale bar: 50 μm.) PV immunoreactivity of each rat was measured in five areas of interest, and the distance

between each area of interest was 500 μm.

Abbreviations: PCP, phencyclidine; PV, parvalbumin.
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before the PCP administration demonstrated a significant

improvement in the novel object recognition task, indi-

cating the partial restoration of cognitive deficit and the

neuroprotective effects of Brahmi.

We further attempted to elucidate the possible mechan-

ism of action of Brahmi that underlined the memory

effects in the schizophrenic-like model. GABA is one of

the neurotransmitters that is involved in the memory path-

way. Decreased GABA level has been shown to be asso-

ciated with cognitive impairment, both in normal and in

schizophrenic individuals.22–27 We, thus, investigated the

presence of GABAergic neurons in the prefrontal cortex

and hippocampus (CA1–3), and also GABAergic inter-

neurons in the striatum. Calcium-binding proteins (CBPs)

which localize mainly in GABAergic neurons include

calbindin (CB), parvalbumin (PV), and calretinin (CR),

and these proteins express in non-overlapping

populations.39 By measuring CBPs-immunoreactive neu-

rons, virtually all GABAergic neurons in the cortex were

explored.
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Figure 3 (A) CR optical density in the prefrontal cortex, striatum, and CA1–3 of control, PCP, and PCP+Brahmi groups (n=9/group). Data are mean±SEM. ***P<0.001 vs

control, ††P<0.01, †††P<0.001 vs PCP. (B) Photomicrographs showing CR immunoreactivity in one area of interest (500 μm×500 μm) in the prefrontal cortex of control, (C)

PCP administration, and (D) PCP+Brahmi groups, (E) in striatum of control, (F) PCP administration, and (G) PCP+Brahmi groups, (H) in CA1–3 of control, (I) PCP
administration, and (J) PCP+Brahmi groups. (40× magnification, scale bar: 50 μm.) CR immunoreactivity of each rat was measured in five areas of interest, and the distance

between each area of interest was 500 μm.

Abbreviations: CR, calretinin; PCP, phencyclidine.

Table 2 DR obtained from a novel object recognition task in rats

treated with sub-chronic PCP, their vehicle (control), and Brahmi

treatment before PCP administration (Brahmi+PCP). Data are

mean±SEM (n=9/group). This table represents the neuroprotec-

tive effect of Brahmi

Group DR

Control 0.1411±0.006

PCP 0.0789±0.008***

Brahmi+PCP 0.1067±0.007**,ϯ

Abbreviations: DR, discrimination ratio; PCP, phencyclidine.

Notes: **p<0.01;***p<0.001 vs control; †p<0.05 vs PCP.
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It was found that the schizophrenic-like model in the

neuroprotective effect study and in the cognitive

enhancement effect study had decreases in CB and PV

immunoreactivity neurons in the prefrontal cortex, stria-

tum, and CA1–3. Deficits of both CB and PV immunor-

eactivity were previously reported in the frontal cortex

from the schizophrenic-like model.40–42 Deficits in PV

immunoreactivity were also investigated in the hippo-

campus of both schizophrenic-like models and

patients.42–44 However, the study in the striatum has

not been reported previously. Interestingly, CR immu-

noreactivity was reduced in all brain areas in the schi-

zophrenic-like model from the neuroprotective effect

study, but it was found to be reduced only in the pre-

frontal cortex among rats from the cognitive enhance-

ment effect study. Overall, these CBPs immunoreactivity

indicated regional differences of GABAergic neuronal

density in the studied areas. While diminishing numbers

of CB and PV were found throughout the prefrontal

cortex, striatum, and CA1–3, the selective depletion of

CR found in the prefrontal cortex suggested that the

vulnerability of this CBP was probably more prominent

in that region. This finding was consistent with the

previous study using a Methamphetamine-induced schi-

zophrenic-like model which reported that cortical CR

immunoreactivity was more vulnerable than those in

hippocampal regions.42 It was suggested that

GABAergic neurons expressing CR were not changed

in schizophrenia.45 Our present study at least showed

that CBPs-containing GABAergic neurons are likely to

be one mechanism implicated in cognitive deficits in

schizophrenia.
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Figure 4 (A) CB optical density in the prefrontal cortex, striatum, and CA1–3 of control, PCP, and Brahmi+PCP groups (n=9/group). Data are mean±SEM. ***P<0.001 vs

control, †P<0.05, †††P<0.001 vs PCP. (B) Photomicrographs showing CB immunoreactivity in one area of interest (500 μm×500 μm) in the prefrontal cortex of control, (C)

PCP administration, and (D) Brahmi+PCP groups, (E) in striatum of control, (F) PCP administration, and (G) Brahmi+PCP groups, (H) in CA1–3 of control, (I) PCP
administration, and (J) Brahmi+PCP groups. (40× magnification, scale bar: 50 μm.) CB immunoreactivity of each rat was measured in five areas of interest, and the distance

between each area of interest was 500 μm.

Abbreviations: CB, calbindin; PCP, phencyclidine.
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In the present study, the cognitive enhancement effect

of Brahmi was tested in rats receiving PCP administration

followed by Brahmi. After treatment, CB immunoreactiv-

ity was significantly increased in the prefrontal cortex and

striatum, while increased PV immunoreactivity was

observed in the refrontal cortex and CA1–3. CR immunor-

eactivity was significantly increased only in the prefrontal

cortex compared to the rats receiving only PCP adminis-

tration. Overall, the increases of all three CBPs immunor-

eactivity in the prefrontal cortex, especially the CB and

CR in which their immunoreactivity nearly returned to the

similar densities found in the control rats, indicate the

almost complete restoration of GABAergic neurons in

this brain region after treating with Brahmi.

The neuroprotective effect of Brahmi was also investi-

gated using the rats receiving Brahmi before PCP

administration. An increased CB immunoreactivity was

found in all brain areas. PV immunoreactivity was signifi-

cantly increased in the striatum and CA1–3, while CR

immunoreactivity was significantly increased in the pre-

frontal cortex and striatum when compared to the rats

receiving only PCP. Findings suggest that CB neurons in

all three brain regions are likely to be protected from PCP

by Brahmi. The striatum was also the only area that all

CBPs immunoreactivity demonstrated the significant neu-

roprotective effect in the rats receiving Brahmi prior to

PCP administration.

Several studies have demonstrated the connection of

GABA and the cognitive function and memory.46,47

GABA plays important roles in encoding and maintaining

information in working memory.48 According to the pro-

tein synthesis theory, the memory formation is the result of
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Figure 5 (A) PV optical density in the prefrontal cortex, striatum, and CA1–3 of control, PCP, and Brahmi+PCP groups (n=9/group). Data are mean±SEM. **P<0.01,
***P<0.001 vs control, ††P<0.01, †††P<0.001 vs PCP. (B) Photomicrographs showing PV immunoreactivity in one area of interest (500 μm×500 μm) in the prefrontal cortex

of control, (C) PCP administration, and (D) Brahmi+PCP groups, (E) in striatum of control, (F) PCP administration, and (G) Brahmi+PCP groups, (H) in CA1–3 of control,

(I) PCP administration, and (J) Brahmi+PCP groups. (20× magnification, scale bar: 50 μm.) PV immunoreactivity of each rat was measured in five areas of interest, and the

distance between each area of interest was 500 μm.

Abbreviations: PCP, phencyclidine; PV, parvalbumin.
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various proteins in the neuronal synaptic networks.49–51

GABA was found to be involved in this de novo protein

synthetic process by stimulating growth hormone release,

which subsequently increases the brain protein

synthesis.52–54 Reduced GABAergic neurons in the pre-

frontal cortex led to delayed-task performance in

monkeys.47 Even though the mechanism underlying the

reduction of GABAergic neurons is yet to be investigated,

it has been shown that administration of GABA to male

rats could increase their novel object recognition task.55

Brahmi is known for its reputation of memory boosting

and cognitive facilitating effects.56 A study showed that

Brahmi could recover spatial recognition memory

deficits in epileptic rats by increasing GABA receptors in

the striatum close to normal level.57 Our study also

showed the increased numbers of GABAergic neurons in

the rats receiving Brahmi both before and after the PCP

administration. This histological finding was correlated

with the final outcomes – the improvement of cognitive

function – in the rats treated with Brahmi. Overall, the

present study demonstrated the effects of Brahmi on par-

tial restoration of object recognition memory loss and

neuroprotection. This study also elucidated Brahmi’s pos-

sible underlying mechanism of actions via the GABAergic

neurons.

The nootropic activity of Brahmi has been attributed to

the presence of two saponins, namely bacoside A and

B.58,59 Besides the function on the cognition, these active

compounds have been shown to possess an anxiolytic

effect, antidepressant activity, anticonvulsive action, and

antioxidant activity.60 Brahmi can inhibit in vitro free

radical formation and DNA damage in a dose-dependent

0

0.05

0.1

0.15

0.2

0.25

0.3

Prefrontal cortex Striatum CA1-3

C
R

 O
pt

ic
al

 d
en

si
ty

Control
PCP
Brahmi+PCP

†††

***

†††

***
******

B 

A

C 

D G 

F 

E H 

I 

J 

50µm 50µm 50µm

50µm 50µm 50µm

50µm 50µm 50µm

Figure 6 (A) CR optical density in the prefrontal cortex, striatum, and CA1–3 of control, PCP, and Brahmi+PCP groups (n=9/group). Data are mean±SEM. ***P<0.001 vs

control, †††P<0.001 vs PCP. (B) Photomicrographs showing CR immunoreactivity in one area of interest (500 μm×500 μm) in the prefrontal cortex of control, (C) PCP

administration, and (D) Brahmi+PCP groups, (E) in striatum of control, (F) PCP administration, and (G) Brahmi+PCP groups, (H) in CA1–3 of control, (I) PCP

administration, and (J) Brahmi+PCP groups. (40× magnification, scale bar: 50 μm.) CR immunoreactivity of each rat was measured in five areas of interest, and the distance

between each area of interest was 500 μm.

Abbreviations: CR, calretinin; PCP, phencyclidine.
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manner.61 Moreover, Brahmi has also been recognized as

being effective in the treatment of mental illness and

epilepsy.61 Interestingly, its action was mediated via an

increase of GABA receptors in the cerebral cortex.62

More studies also demonstrated the actions of Brahmi

that improved behavioral deficits in epileptic rats by

increasing GABA receptors in the hippocampus and

cerebellum.63,64 Moghaddam et al65 suggested that keta-

mine, as well as other NMDA receptor antagonists, may

produce disinhibition of GABAergic or other inhibitory

inputs.65 Additionally, there is evidence to support the

suggestion that a PCP/ketamine model of schizophrenia

may incorporate GABAergic dysfunction. Yonezawa et al66

found that an acute PCP administration may reduce corti-

cal GABAergic function in rats, suggesting that the

NMDA receptor antagonists selectively reduce

GABAergic transmission.66 Abdul-Monim et al67 found

significant deficits of PV in CA2/3 and DG of the hippo-

campus following sub-chronic PCP (2 mg/kg) administra-

tion to rats.67 Therefore, the partial cognitive restoration

and neuroprotection observed in the present study might

be due to Brahmi affecting on increase in GABAergic

transmission.

As we discussed earlier, animals receiving PCP exhi-

bits schizophrenic-like symptoms including memory loss

(poorer object recognition), attention deficit, and increased

locomotor activity.32–34 It is possible that the poorer object

recognition in schizophrenic-like rats observed in our pre-

sent study was due to impaired attention to the objects,

possibly induced by increased animals’ locomotor activity.

However, there are no reports on the direct effect of

Brahmi on this locomotor function, and we did not use

any task to observe this activity and the consequent atten-

tion ability of rats in our present study. However, Brahmi

has been reported as the herbal medicine to directly ame-

liorate attention deficit through the reduction of Acetyl

choline esterase (AChE) activity.68 The memory improve-

ment (as seen in our present study) and the attention

improvement (as seen in the study by Peth-Nui et al68)

could be mediated through an increased GABAergic func-

tion and through an increased cholinergic function,

respectively.68 It is likely that the decreased locomotor

function could be another possible underlying mechanism

of both memory and attention improvement, and it should

be the subject of further exploration.

In order to know the Brahmi effect differs on

a schizophrenia model compared to that on controls,

a Control+Brahmi group should be investigated; how-

ever, this was not undertaken in our present study.

Prabhakar et al69 found that Brahmi has no effects on

memory in normal animals, which was different when

compared to human studies, which have been reported

by Stough et al70 and Roodenrys et al71. Therefore, the

findings from our present study may suggest the ther-

apeutic and neuroprotective effects of Brahmi in schi-

zophrenic-like rats. However, a study in a Control

+Brahmi group is needed for this to be confirmed in

future study.

Conclusion
In conclusion, our results suggested that decreased

GABAergic neurons, assessed by reduced CB, PV,

and CR immunoreactivity, in the brain were responsible

for the cognitive deficit in schizophrenic subjects,

which are consistent with reports from several studies.

The present study also showed that Brahmi potentiated

a partial cognitive enhancement and neuroprotective

effects against cognitive deficit in schizophrenia by

reversing the alterations in cerebral CB, PV, and CR.

Overall, it is suggested that Brahmi could be a valuable

alternative medicine for partial treatment of cognitive

deficit developed in patients with schizophrenia. The

mechanisms of its actions would be via glutamatergic

neurotransmission from Piyabhan and colleagues16–18

studies and via GABAergic neurotransmission from

the present study.
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