
R E V I EW

Pharmacogenetics of alcohol addiction: current

perspectives
This article was published in the following Dove Press journal:

The Application of Clinical Genetics

M S Zastrozhin1,2

V Yu Skryabin1

S S Miroshkin1,2

E A Bryun1,2

D A Sychev1,2

1Moscow Research and Practical Centre

on Addictions of the Moscow

Department of Healthcare, Moscow

109390, Russian Federation;
2Department of Addictology, Russian

Medical Academy of Continuous

Professional Education of the Ministry of

Health of the Russian Federation,

Moscow 123995, Russian Federation

Abstract: Genetics of alcohol addiction is currently a contradictive and complex field,

where data in the most studies reflect methods’ limitations rather than meaningful and

complementary results. In our review, we focus on the genetics of alcohol addiction,

leaving genetics of acute alcohol intoxication out of the scope. A review of the literature

on pharmacogenetic biomarkers development for the pharmacotherapy personalization

reveals that today the evidence base concerning these biomarkers is still insufficient. In

particular, now the researches with the design of randomized controlled trials and meta-

analysis investigating the effect of the SNPs as biomarkers on the therapy efficacy are

available for naltrexone only. For other medications, there are only a few studies in small

samples. It decreases the possibilities to implement the pharmacogenetic algorithms for

the pharmacotherapy personalization in patients with alcohol use disorders (AUD). In

view of the importance of the precision approaches development not in addiction

medicine only, but in other fields of medicine also to increase the efficacy and safety

of the therapy, studies on pharmacogenetic biomarkers development for the medications

used in patients with AUD (eg, naltrexone, disulfiram, nalmefene, acamprosate, etc.)

remain relevant to this day.

Keywords: pharmacogenetics, pharmacogenomics, alcohol use disorder, naltrexone,
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Introduction
According to the latest data, harmful alcohol use resulted in an estimated 3 million

deaths or 5.3% of all global deaths.1 Their leading causes are digestive diseases

(21.3%), unintentional injuries (20.9%), cardiovascular diseases and diabetes

(19.0%), infectious diseases (12.9%) and malignant neoplasms (12.6%).1

As with other addictive disorders, genetics influence alcohol use disorder

(AUD) to a considerable degree, with heritability estimates of more than 60%.2,3

Previous reviews on the subject4,5 demonstrated that the advances in the field of

pharmacogenetics in AUD are slow due to many difficulties and it is important to

advance the precision medicine approaches for the treatment of AUD. According to

available data of meta-analyses and systematic reviews, the following medications

showed their efficacy in comparison with placebo: disulfiram,6 naltrexone,7

extended-release injectable naltrexone,7 acamprosate,7 nalmefene,8 baclofen,9

gabapentin,10 and topiramate.11 We may now consider the available scientific

evidence bearing on the effects of single nucleotide polymorphisms (SNPs) on

pharmacokinetics, pharmacodynamics, as well as on clinical efficacy and safety of

the alcohol addiction treatment.
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Disulfiram
Disulfiram exhibits an antidipsotropic effect. It inhibits the

conversion of acetaldehyde, a toxic metabolite of alcohol,

in acetic acid by blocking the aldehyde dehydrogenase 2

(ALDH2) in the liver and the brain, resulting in an accu-

mulation of acetaldehyde.12 In addition, disulfiram inhibits

dopamine β-hydroxylase (DβH) converting dopamine to

norepinephrine.13 The DβH genetic polymorphism can

affect the level of protein of the same name. In particular,

1021C>T polymorphism lowers the expression of DβH
resulting in the reduced plasma DβH level.14 Thus, it

was assumed that patients carrying this polymorphic mar-

ker would have a reduced plasma DβH level, which is

likely to alter the efficacy of disulfiram in such patients: a

lower baseline DβH level should enhance the disulfiram

effect. Unfortunately, the only clinical trial enrolling 66

patients with alcohol addiction has not revealed any sta-

tistically significant difference neither in the efficacy level

nor in the risk of adverse effects across the patients carry-

ing T and C alleles.15 We also found another study con-

ducted in patients with cocaine addiction that demonstrates

a statistically significant effect of the polymorphism of the

ankyrin repeat and kinase domain-containing 1 (ANKK1)

genes and dopamine receptor D2 (DRD2) genes on dis-

ulfiram efficacy level.16 The investigation of these markers

would probably allow developing recommendations on the

personalized treatment of alcohol addiction with disulfiram

to increase its efficacy and safety.

Thus, although disulfiram is included in the guidelines

as a drug recommended for the alcohol addiction treat-

ment, today there is no data on the pharmacogenetics of

this medication. Further studies are required to develop the

pharmacogenetic biomarkers affecting the efficacy and

safety of disulfiram in patients suffering from alcohol

addiction.

Naltrexone
Synthesized in 1963 by Endo laboratories, naltrexone is a

nonspecific competitive opioid antagonist approved by

The US Food and Drug Administration (FDA) for the

treatment of alcohol addiction in 1994. It alters the sub-

jective effects of ethanol intoxication and attenuates

craving.17

Previous studies have suggested that genetic poly-

morphisms encoding μ-opioid receptors (OPRM1) may

moderate the effect of naltrexone in patients suffering

from alcohol addiction. Several works describe this gene

as a predictor of both alcohol addiction and the efficacy of

naltrexone treatment.18–23

There is the mixed evidence regarding the influence of

the 118A>G functional polymorphism in the OPRM1 gene

resulting in adenine (A) to guanine (G) substitution at the

gene sequence position 118.24 Several studies19,25–31

demonstrated greater efficacy of naltrexone among the

carriers of this polymorphism which has been associated

with the increased binding affinity of the endogenous

ligand β-endorphin for µ-opioid receptors.32 Meanwhile,

other randomized clinical trials33–35 revealed no such phar-

macogenetic effect. In addition, a recent systematic review

that meta-analyzed eight eligible clinical studies found no

significant difference between A allele homozygotes and

those with at least one G allele.36 Hence, the effect of the

118A>G functional polymorphism on naltrexone response

rates remains debatable.24

A study performed by Kranzler et al.37 showed that

patients carrying GG genotype who are prone to the use of

alcohol in the evenings and at night, against the background

of naltrexone treatment, experienced a more pronounced

reduction of craving at that time than the wild-type carriers

did. According to a research conducted by Chen,31 patients

carrying GG genotype who abuse alcohol and receive nal-

trexone, consume less alcohol after the treatment course in

comparison with the patients who receive placebo or homo-

zygous carriers of the wild-type allele A who also receive

naltrexone.

However, the randomized clinical trial conducted by

Schacht et al.24 demonstrated that the OPRM1 genotype

did not significantly moderate the effects of naltrexone on

drinking, but G-allele carriers who received naltrexone had

an accelerated return to heavy drinking after the medica-

tion was stopped.

Evidence demonstrating the naltrexone efficacy in

patients from various ethnic groups and of both genders

is essential for practice. Setiawan et al.38 investigated the

effect of 6-days treatment with naltrexone in 40 volunteers

(20 males and 20 females) who were social drinkers aged

18–50. At the end of each treatment period, all patients

received a single dose of their preferred alcoholic beverage

with the opportunity to work for the additional alcohol

units using a progressive ratio breakpoint paradigm. The

results showed that naltrexone use resulted in the reduced

stimulant and euphorigenic effects of the priming dose of

alcohol, especially in women and carriers of the A118G

polymorphism of the OPRM1 gene; the participants with

both of these traits were considered the most sensitive.
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Data on the frequency of genetic polymorphisms in dif-

ferent ethnic groups are of particular interest. Among whites,

Bond et al.32 revealed that the expected frequencies of homo-

zygous G118 and heterozygous subjects are 2% and 20%,

respectively, with the allelic frequency of theG118 variant of

11.5%, regardless of gender. In Asians, the frequency of the

G118 variant is higher and varies from 35 to 47%: 35% in

Chinese, 44% in Thais, 45% in Malays, 47% in Indians,39

and more than 49% in Japanese.40

Pharmacogenetic aspects of naltrexone use in patients

carrying the functional polymorphisms of OPRK1

(rs997917) and OPRD1 (rs4654327) genes, as well as the

combination of the A118G polymorphism of the OPRM1

gene and the VNTR polymorphism of the human dopamine

transporter (DAT1) gene, are not investigated sufficiently.

Several studies indicate the potential of further research inves-

tigating the joint effect of these two systems on the intensity of

subjective feelings of alcohol intoxication.17,34,41,42

A correlation between the functional polymorphisms of

OPRK1 (rs997917) and OPRD1 (rs4654327) genes and the

efficacy of naltrexone treatment (versus placebo) was

revealed. The study conducted by Ashenhurst demonstrated

the changes in subjective response to alcohol and the rate of

alcohol craving.43 Of the two OPRK1 SNPs examined,

rs997917 demonstrated a significant effect on the alcohol-

induced sedation. The TT homozygous patients reported the

reduced feelings of alcohol sedation during the naltrexone use

as compared to the C allele-carriers. Moreover, pharmacoge-

netic effects were also observed for a SNP in theOPRD1 gene:

carriers of the A allele at this locus reported greater naltrexone-

induced blunting of alcohol stimulation and craving in com-

parison with the G-allele homozygous patients.

Krupitsky et al revealed that the efficacy of naltrexone

treatment in patients suffering from opioid addiction was

different across the patients carrying different allelic variants

of the opioid receptor genes and dopaminergic system

genes.44 Thus, patients carrying the combination of СС or

СТ genotypes of OPRK1 and TT genotype of DRD2 demon-

strated better response to treatment, whereas a combination

of the A118G polymorphism of the OPRM1 gene and the

VNTR polymorphism of theDAT1 gene showed a significant

effect on the subjective feelings of alcohol intoxication.

Although numerous studies demonstrate the efficacy of

the extended-release injectable naltrexone for the alcohol

addiction treatment (in comparison with placebo),45–48 at

the moment the effects of genetic factors on the extended-

release injectable naltrexone efficacy are not investigated

sufficiently.49

Due to the contradictory results of the studies investi-

gating the efficacy of naltrexone in patients suffering from

AUD,33,50 genetic testing is not commonly used in clinical

practice today. Hence, there is a need to strengthen the

evidence base.

Acamprosate
FDA has approved acamprosate for the alcohol addiction

treatment in 2004. Although the results of numerous stu-

dies confirm the efficacy of acamprosate in the treatment

of AUD,7 its exact mechanism of action is still uncertain.

It seems to modulate NMDA receptor transmission and

GABAA transmission.51

Adverse effects registered in clinical trials included

diarrhea, dizziness, and headaches.52

A double-blind, placebo-controlled trial conducted by

Kiefer53 demonstrated a statistically significant effect of

the GATA4 rs13273672 SNP on the duration of remission

in patients with alcohol addiction who receive acampro-

sate. It was found that patients with the mutant allele G

show the reduced time to relapse in comparison with those

carrying the AA genotype. No such effect was revealed in

the groups of patients who received naltrexone or placebo.

This effect probably results from the fact that GATA4

encodes a transcription factor of atrial natriuretic peptide

(ANP).54 It was confirmed in a study conducted by Kiefer

who investigated the plasma level of the ANP.53 Research

suggests that the reduced ANP levels contribute to the

dysregulation of the stress and anxiogenic systems of the

brain, which is commonly found in patients with alcohol

addiction.55 It was assumed that acamprosate has a more

pronounced effect on the duration of remission in patients

carrying the A allele due to the differences in the ANP

level across the patients with different genotypes.

Moreover, studies demonstrate the effect of GRIN2B

encoding the NMDA receptor GluN2B subunit on the

duration of remission in patients who receive

acamprosate.56 This study included 225 patients with alco-

hol addiction. It revealed that the minor allele A of the

rs2058878 polymorphism is associated with the longer

remission in comparison with the G allele. Unfortunately,

this study had a serious limitation due to the absence of a

placebo group. Therefore, the study results were inconclu-

sive regarding the effect of the GRIN2B polymorphism on

the efficacy of acamprosate.

Thus, despite the lack of data on acamprosate pharma-

cogenetics, this medication is considered effective and safe

for the treatment of patients with alcohol addiction.
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Nalmefene
Nalmefene is a selective opioid receptor antagonist acting as

a μ- and δ- receptor antagonist and a partial κ receptor

agonist.57,58 Although structurally nalmefene is similar to

naltrexone, it exhibits a higher bioavailability rate and a

longer plasma half-life, with a lower risk of liver toxicity.59

FDA has approved nalmefene for opioid overdose only

(www.fda.org). Several clinical trials conducted in the US

have not demonstrated a higher efficacy of nalmefene in the

treatment of patients with AUD as an anticraving therapy in

comparison with placebo.60,61 At the same time, three multi-

site clinical trials conducted in Europe, where nalmefene was

approved for the treatment of patients with AUD by the

European Medicines Agency in February 2013,58,60 showed

its efficacy in alcohol consumption reduction across patients

suffering from alcohol addiction with high levels of con-

sumption (more than 60 grams/daily for men and more than

40 grams/daily for women).

Due to the structural similarity to naltrexone, the use of

nalmefene is associated with similar common adverse

effects. Similarly to naltrexone, nalmefene can induce

nausea and vomiting, when compared with placebo.7 At

present, studies to evaluate if gastrointestinal side effects

could lead to treatment interruption are lacking.62

Insomnia, dizziness, headache, decreased attention and

paresthesia have also been reported in association with

nalmefene use.63

Nalmefene is mostly metabolized in the liver to nalme-

phene 3-O-glucuronide by the UGT2B7 enzyme (mainly)

and by the UGT1A3 and UGT1A8 enzymes.64 CYP3A4

isoenzyme also partly converts nalmephene into 3-O-sul-

phate nalmefene and nornalmefene, which do not show

any pharmacological effect.

No relevant pharmacokinetic interactions have been

reported in clinical trials, but possible interactions with

the potent UGT2B7 inhibitors, such as diclofenac and

naproxene,65 ketoconazole,66 and low concentrations of

amitriptyline,67 cannot be excluded. Contrarily, the conco-

mitant use of the UGT2B7 inducer, such as different

chemotherapeutic agents68 or dihydroartethmisine,69 may

result in a decrease of plasma drug concentrations to the

sub-therapeutic ranges.

Topiramate
Topiramate is a derivative of D-fructose, a naturally occurring

monosaccharide.70 FDA has approved topiramate for the treat-

ment of seizure disorder, migraine prevention, and chronic

weight management (along with phentermine).61 Although

the FDA has not currently approved topiramate for the AUD

therapy, this medication is also a useful option for the AUD

treatment.71 A randomized, double-blind, placebo-controlled

trial revealed the anticraving properties of topiramate.72

Similar to other drugs used for the alcohol addiction treatment,

it is thought to reduce mesolimbic dopaminergic activity.73

The use of topiramate is associated with the common

adverse effects, such as paresthesia, dysgeusia, anorexia,

difficulty with concentration or attention, nervousness, dizzi-

ness, and pruritus.74 The detailed analysis demonstrated that

this medication causes the dose-related transient cognitive

impairment including mental slowing and modest reductions

in verbal fluency and working memory.75

Topiramate exerts effects through AMPA/kainate recep-

tors containing the GluK1 and GluK2 subunits, which are

encoded by genes GRIK1 and GRIK2, respectively.76

Kranzler et al revealed that the efficacy of topiramate is

modulated by the SNP rs2832407 inGRIK1, the gene encod-

ing the GluK1 receptor subunit.77,78 This provided the basis

for studies of rs2832407 as a moderator of the response to

topiramate. In addition, a previous pharmacogenetic analysis

of the human laboratory pilot study79 showed that rs2832407

was associated with the severity of topiramate-induced side

effects.80 The randomized clinical trial by Kranzler et al have

not found an effect of the SNP on adverse events, suggesting

that the kainate receptor does not play a unique role in

mediating topiramate-related adverse effects.81

Topiramate may be a potential substrate for cyto-

chrome P450 (CYP) 2C9, a CYP3A4 inducer and a

CYP2C19 weak inhibitor.70 According to the package

insert (Topina, Kyowa Hakko Kirin, Japan), this drug is

chiefly metabolized by CYP3A4. Stiripentol is a potent

inhibitor of CYP3A4, but interactions between topiramate

and stiripentol have not been studied.82

Ondansetron
Ondansetron is a competitive serotonin 5-HT3 receptor

antagonist.83 FDA has approved this medication for the

prevention of nausea and vomiting caused by cancer che-

motherapy, radiation therapy and surgery.84

The randomized controlled trial by Johnson et al demon-

strated the efficacy of ondansetron in self-reported drinking

reduction across the patients with the early-onset alcoholism.85

In this trial, patients who received ondansetron at low dosages

(1 and 4 μg) have been found to reduce alcohol consumption

and have increased abstinence.85 In the prospective, open-

label study conducted by Kranzler et al, ondansetron given at
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a dose of 4 μg twice per day decreased the number of drinks

per day, drinks per drinking day and alcohol-related problems

in the early-onset alcohol-dependent patients, but not in the

late-onset ones.86 However, according to the meta-analysis of

seven trials performed by Torrens et al, selective serotonin

reuptake inhibitors are not effective in the treatment of AUD in

patients without comorbid depression.87 Similarly, recent

American Psychiatric Association (APA) practice guideline

for the pharmacological treatment of patients with AUD do

not recommend the use of any antidepressants unless the

patient has a comorbid depression.88

Several studies demonstrated that genetic variations in

the 5-HT transporter gene (SLC6A4) may modulate the

severity of alcohol consumption and predict the treatment

response to ondansetron.89–91 Johnson et al identified three

genotypes in the HTR3A and HTR3B genes that were

significantly associated with the efficacy of ondansetron

treatment for AUD in European patients and showed that

polymorphisms in the HTR3A-rs1150226-AG, HTR3A-

rs1176713-GG, and/or HTR3B-rs17614942-AC genotypes,

along with the SLC6A4-LL/TT genotypes, are predictors of

the reduced drinking in response to ondansetron.90

Table 1 includes the data from all studies with statisti-

cally significant associations between the individual drug

response and genetic polymorphism.

Pharmacogenetics of alcohol
withdrawal syndrome
Current researches strongly suggest that alcohol affects mul-

tiple neurotransmitter systems in the brain. It is well known

that alcohol acts as a central nervous system (CNS) depres-

sant since it enhances the activity of the major CNS inhibi-

tory neurotransmitter, gamma-aminobutyric acid (GABA),

and antagonizes the activity of the major CNS excitatory

neurotransmitter, glutamate.92 When alcohol intake is

abruptly reduced or discontinued, an overt hyperexcited

state may follow. It manifests clinically by various symptoms

and alcohol withdrawal syndrome (AWS) complications,

ranging from mild tremor and anxiety to seizures, delirium

tremens, and even death.93 AWS symptoms occur in more

than 50% of patients with alcohol-related problems who

require pharmacological treatment.94

Benzodiazepines have been used for the AWS therapy

for more than 50 years.95 Benzodiazepines are effective

due to the inhibitory GABA-signaling pathways stimulat-

ing, which is similar to the action of alcohol.96,97 Hence,

these medications decrease the symptoms of AWS and T
ab
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shorten its course, along with the prevention of AWS-

related seizures, delirium tremens, and death.96–98

There are currently 16 benzodiazepines licensed by the

FDA. Diazepam was the second benzodiazepine to be used

clinically (after chlordiazepoxide), after being approved

for use in 1963.99 Diazepam and desmethyldiazepam, its

active metabolite, have the most extended elimination

half-lives, meaning that the levels of these substances

decrease in a gradual, self-tapering manner, resulting in a

reduced incidence and severity rates of the breakthrough

symptoms and rebound phenomena.100 In the acute AWS,

diazepam may provide symptomatic relief from agitation,

tremor, delirium tremens, and hallucinations.

Benzodiazepines taken in toxic doses without other

coingestants rarely cause a significant toxidrome.101 The

classic presentation of an isolated benzodiazepine over-

dose consists of CNS depression with normal vital signs.

At the same time, severe and fatal adverse events due to

diazepam use are sporadic and are usually associated with

interaction with other substances (such as opiates or

alcohol).102 Chronic use of diazepam may result in toler-

ance, addiction and withdrawal syndrome.103

Diazepam is metabolized via CYP2C19 and CYP3A4 to

desmethyldiazepam, which is found in the plasma at concen-

trations equivalent to diazepam. CYP2C9, CYP2B, and

CYP3A5 are other isoenzymes involved in diazepam

metabolism.104 It is thought that the variability in the clear-

ance of many benzodiazepines, including diazepam, is due to

the variability in CYP2C19 and CYP3A4 genotypes.104,105

The CYP2C19 gene is highly polymorphic, as 35 variant

star (*) alleles are currently catalogued at the Human

Cytochrome P450 (CYP) Allele Nomenclature Database.99

The CYP2C19*1 wild-type allele is associated with normal

enzyme activity and the “normal metabolizer” phenotype,

whereas the CYP2C19*17 allele is associated with

increased enzyme activity and the “ultrarapid metabolizer”

phenotype, respectively.106 CYP2C19*2 is the most com-

mon loss-of-function variant, containing a c.681G>A var-

iant in exon 5. It results in an aberrant splice site and the

production of a truncated, non-functioning protein. It is

reported that the CYP2C19*2 allele frequencies are approxi-

mately 15% in Caucasians and Africans, and about 29–35%

in Asians.106,107 CYP2C19*3 is another commonly tested

loss-of-function variant, containing a c.636G>A variant in

exon 4, which causes a premature stop codon. The

CYP2C19*3 allele frequencies are about 2–9% in Asian

populations, but rare in other racial groups. Other loss-of-

function variants include CYP2C19*4-*8 and occur in less

than 1% of the general population.106,107 “Intermediate

CYP2C19 metabolizers” carry one copy of an allele encod-

ing the reduced or absent function (eg, *1/*2), while “poor

metabolizers” are homozygous or compound heterozygous

for two loss-of-function alleles (eg, *2/*2, *2/*3).99 Studies

have found that “poor metabolizers” have a lower plasma

clearance of diazepam compared to “normal metabolizers”,

and that diazepam had a longer plasma half-life in those

individuals.108–110 One study found that CYP2C19 “poor

metabolizers” took a longer period to emerge from general

anesthesia than “normal” ones. This study also found that

the “slow emergers” had lower levels of CYP3A4

mRNA.111 Despite the fact that CYP3A4 isoenzyme is

also involved in the metabolism of diazepam, clinical stu-

dies investigating the effect of CYP3A4 and CYP3A5 var-

iants on benzodiazepine metabolism show the conflicting

results.112–115

Conclusion
A review of the literature on pharmacogenetic biomarkers

development for the pharmacotherapy personalization

reveals that today the evidence base concerning these

biomarkers is still insufficient. In particular, now the

researches with the design of randomized controlled trials

and meta-analysis investigating the effect of the SNPs as

biomarkers on the therapy efficacy are available for nal-

trexone only. For other medications, there are only a few

studies. These studies are conducted on small cohorts of

patients; sometime the placebo and/or control arms are

missing; the design of the pharmacological study is not

properly described, or the dose of the medication is not

specific; different genetic variants can impact the treatment

response. It strongly reduces the possibilities to implement

the pharmacogenetic algorithms for the pharmacotherapy

personalization in patients with AUD.

Thus, we believe that the low interest in the results of

research in the field of pharmacogenetics of addictions

could be increased by the following ways:

● Improve a research design according to higher levels

of evidence by the Oxford CEBM Levels of

Evidence so that it’ll be prospective, include the

main group and the comparison group, and include

blinding and randomization;
● Use the advanced research methods: next-generation

sequencing, including Roche/454 Life Sciences,

Illumina/Solexa, SOLiD and others;
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● Develop meta-analyzes and systematic reviews, but

this requires the results of more evidence-based

research;
● Conducting pharmacoeconomic studies in the field of

pharmacogenetics of addictions.

We would like to emphasize the importance of devel-

oping the pharmacogenetic decision support systems,

which will allow implementing the results of research in

the field of pharmacogenetics into clinical practice, result-

ing in the risk reduction of the adverse drug reactions and

pharmacoresistance.
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