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Purpose: To explore the molecular mechanism and search for candidate biomarkers in the

gene expression profile of IBD patients associated with the response to anti-TNFα agents.

Methods: Differentially expressed genes (DEGs) of response vs non-response IBD patients

in datasets GSE12251, GSE16879, and GSE23597 were integrated using NetworkAnalyst.

We conducted functional enrichment analysis of Gene Ontology and Kyoto Encyclopedia of

Genes and Genomes (KEGG) pathway and extracted hub genes from the protein–protein

interaction network. The proportion of immune cell types was estimated via CIBERSORT.

ROC curve analysis and binomial Lasso regression were applied to assess the expression

level of hub genes in datasets GSE12251, GSE16879, and GSE23597, and another two

datasets GSE107865 and GSE42296.

Results: A total of 287 DEGs were obtained from the integrated dataset. They were enriched

in 14 Gene Ontology terms and 11 KEGG pathways. Polarization from M2 to M1 macro-

phages was relatively high in non-response individuals. We found nine hub genes (TLR4,

TLR1, TLR8, CCR1, CD86, CCL4, HCK, and FCGR2A), mainly related to the interaction

between Toll-like Receptor (TLR) pathway and FcγR signaling in non-response anti-TNFα

individuals. FCGR2A, HCK, TLR1, TLR4, TLR8, and CCL4 show great value for prediction

in intestinal tissue. Besides, FCGR2A, HCK, and TLR8 might be candidate blood biomar-

kers of anti-TNFα non-response IBD patients.

Conclusion: Over-activated interaction between FcγR-TLR axis in the innate immune cells

of IBD patients might be used to identify non-response individuals and increased our

understanding of resistance to anti-TNFα therapy.

Keywords: differentially expressed genes, inflammatory bowel disease, toll-like receptor

pathway, FcγR signaling, anti-TNFα therapy

Introduction
Crohn’s disease (CD) and ulcerative colitis (UC), the two common forms of

inflammatory bowel disease (IBD), are the chronic and relapsing inflammatory

disorder of the intestine.1 The diseases can be of great importance to the affected

persons, reducing the quality of life, as well as for the society, losing labor due to

sickness, treatment, and medicine.1 Millions of people in North American and

Europe are affected, as well as a rapid increase in newly industrialized countries.2

While classified as separate diseases, common driving disease mechanisms have

been highlighted, such as the shared genetics risk factors, chronic inappropriate

immune responses pathological features as well as joint involvement of various
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biological pathways.1,3,4 Thus, several similar attempts

have been made to treat this disease, monoclonal antibo-

dies to anti-tumor necrosis factor α (anti-TNFα) have been
one of the dominant strategies.5 However, patients must

often be treated for an extended period to determine if the

chosen drug is efficacious as a lack of accuracy in predict-

ing the response of anti-TNFα agents. Meanwhile,

approximately one-third of the patients benefit minimally

or not at all from the treatment.5,6

This arouses a question about the molecular events that

facilitate the differential response of anti-TNFα therapy.

Firstly, the Fab region of anti-TNFα agents neutralizes the

biological activity of soluble TNFα and induct the apoptosis of
the immune cell.7 Secondly, the Fc region of anti-TNFα
agents induces Antibody-dependent cellular cytotoxicity

(ADCC), complement-dependent cytotoxicity (CDC), and

FcγR-mediated induction of wound healing macrophages.7,8

Thirdly, the synthesis of anti-drug antibodies (ADAs) and

proteolytic degradation of matrix metalloproteinase (MMP)

against anti-TNFα agents may decrease drug concentration.6,9

Hence, Anti-TNFα agents may have one or more known or

unknown mechanisms of taking action as well as avoiding

clearance. Interestingly, some of its underlying mechanisms

are on a degree of overlapping or opposite to each other.8,10

Thus, a comprehensive comparison via genetics, gene expres-

sion data, and microbe provides an excellent to investigate the

molecular mechanisms of resistance to anti-TNFα agents and

predictive biomarkers.11–17

So far, published studies using gene expression data from

intestinal or blood samples of IBD patients collected before

anti-TNFα therapy have identified several signature patterns

of non-response patients.11–16 However, it is still difficult to

predict the response of anti-TNFα therapy.1,6We hypothesized

that shared baselinemolecular patternsmay be associatedwith

the clinical efficacy of anti-TNFα agents in IBD patients. The

shared patterns in anti-TNFα non-response patients may

enable its use as a predictive factor or even a novel target.

Method
Microarray Data Extraction and

Processing
Six transcription datasets under accession GSE12251,

GSE16879, GSE23597, GSE92415, GSE107865, and

GSE42296were downloaded from the Gene expression

omnibus (GEO) database (http://www.ncbi.nlm.nih.gov/

geo/). GSE12251, GSE16879, GSE23597, and GSE92415

discovered the gene expression profile of intestinal tissue

samples between responses and non-response IBD patients

before anti-TNFα therapy.11–13,15 GSE107865 and

GSE42296 explored the blood gene expression profile of

IBD patients.14,18 The raw expression data underwent back-

ground correction, normalization, and summarization using

the robust multi-array average (RMA) algorithm in

oligo.19,20

Integration of Microarray Datasets and

DEGs Screening
We integrated six cohorts of microarray datasets from three

independent studies using NetworkAnalyst, a web interface

for integrative statistical and visualizing tool.21 In the option

of “multiple gene expression data” for the web interface, all

processed expression data attaching with response status

were uploaded. Following the integrity check of all uploaded

data, the ComBat procedures implemented in the

NetworkAnalyst tool were used to reduce potential study-

specific batch effects.22 Principal component analysis (PCA)

was applied to visualize and compare the sample clustering

patterns before and after batch effect adjustment. Therefore,

the efficiency of batch effect removal is estimated effective

size (ES) is a well-established approach to integrate different

datasets for increased statistical power and cross-study vali-

dation. The fixed model was selected in the current study to

identify DEGs between response and non-response

patients.23 In this analysis, combined P-value <0.05 and

fold change >0.85 were used as the cutoff criteria.

Functional Enrichment DEGs
We performed the Gene Ontology (GO) analysis of BP,

MF, and CC enrichment analysis of DEGs through inte-

grated Discovery (DAVID).24,25 Then, the bubble chart

showing P-value, Fold Enrichment, and gene counts were

used to describe essential GO terms. Later, the Clue-go

plug-in app of Cytoscape was utilized to visualize KEGG

results, followed by enrichment analysis of KEGG path-

ways by DAVID.26 We set the criteria as gene counts>5

and P-value<0.05.

Verification and Supplement of DEGs

Enrichment Result
We used the Gene Set Enrichment Analysis (GSEA) to

verify and supplement the result acquired by DEG enrich-

ment analysis. GSEA is relative robustness to noise and

outliers in the data. GSEA was performed using the
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clusterProfiler package (version 3.10) within the

Bioconductor platform.27

Composition of Immune Cells
We estimated the proportion of immune cell types of

intestinal tissue from gene expression profile using

CIBERSORT, an accurate and robust algorithm web tool

for calculating the cell composition. We uploaded the gene

expression data with response status to the CIBERSORT

web (http://cibersort.stanford.edu/), choosing included

LM22 signature and 500 permutations.28 Cases with

a CIBERSORT output of p < 0.05, meaning that the

inferred fractions of immune cell populations produced

by CIBERSORT are accurate. For each sample, the calcu-

lated result of CIBERSORT output was normalized to 1

for further comparison.

PPI Network Analysis and Hub Gene

Searching
We applied Search Tool for the Retrieval of Interacting

Genes (STRING) to predict the functional protein interac-

tions of DEGs.29 Cytoscape was used to compute the proper-

ties of the PPI network and for visualization. We extract the

most highly connected cluster from the PPI network through

MCODE analysis.30 The genes with high Maximal Clique

Centrality (MCC) score calculated by CytoHubba in the

extracted network were considered to be hub genes.31

ROC Curve Analysis
The glmnet package (binomial Lasso) in R software was

used to calculate and compression of linear models and

preserve valuable variables.32 The expression level of hub

genes and the status of responsiveness from eight cohorts

(six cohorts form intestinal tissue and two cohorts from

serum samples) were obtained. ROC analysis in PRISM

8.0 was used to count the area under the curve (AUC) and

draw the ROC curves for each cohort separately. Thus, we

investigated the ability of hub genes in prediction though

the AUC value.

Result
Selection of Discovery and Verified

Cohort
A total of six microarray datasets (GEO) were retrieved from

Pubmed for anti-TNFα therapy IBD patients, followed by

RMA normalized.GSE12251 discovered the gene expression

profile of intestinal tissue samples between 12 responses to 10

non-response UC patients before the treatment of infliximab.

GSE16879 detected the gene expression profile of 28

responses to 33 non-response IBD patients. GSE23597 ana-

lyzed the gene expression profile of 24 responses to 5 non-

responseUCpatients.GSE92415 compare the gene expression

profile of 32 responses to 27 non-response golimumab treated

UC patient. GSE107865 and GSE42296 explored the blood

gene expression profile 14 responses to 6 non-response or 17

responses to 5 non-response CD patient. Patient samples of

GSE16879 were distinguished as three cohorts, including UC,

CDi, CDc.GSE23597 is excluded for some of its patients is

overlapped with GSE16879 in the process of data integration.

Collectively, five cohorts from intestinal tissue (GSE12251,

GSE16879UC, GSE16879CDi, GSE16879CDc, GSE92415)

were selected as discovery cohort,which as eligiblemicroarray

datasets from integration. Six cohorts (GSE12251,

GSE16879UC, GSE16879CDi, GSE16879CDc, GSE92415,

GSE23597) from intestinal tissue and two cohorts from blood

sample (GSE107865 and GSE42296) were chosen as verified

cohorts. Detailed information for each dataset, including

Cohort name, Sample source, IBD type, Definition time,

Definition method, Anti-TNFα therapy, Purpose in the current

study, andGEOaccession number, is present inTable 1 (also in

Table S1).

Screening of DEGs Between Response

and Non-Response Patients
To identify the shared transcriptional signatures between

response and non-response patients, we uploaded the data

from the discovery cohort in succession to NetworkAnalyst.

All uploaded data passed the integrity check. We performed”

ComBat procedures” implemented in the NetworkAnalyst

tool to reduce batch effects among different datasets. No

apparent batch effects are found after this step, and the sample

clustering patterns with or without batch effect adjustment

were visualized by PCA plots (Figure 1A and B). All the

five cohorts from the verified cohort were then integrated

utilize ES statistical methods provided by NetworkAnalyst,

which is the difference between two group means divided by

standard deviation facilitate to reveal the DEGs between anti-

TNFα agent response and non-response patients across

different microarray datasets. Finally, a total of 288 DEGs

between non-response and response IBD patients were

obtained with the criteria of P-value <0.05 and log2|com-

bined-fold change|>0.85. The 274 up-regulated genes and

the 14 down-regulated genes were shown in the heat map as

well as the volcano plot (Figures 1C and 2A, and Table S2).
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Functional Annotation and Enrichment of

DEGs
Functional enrichment analyses were performed using

DAVID to have further insight into the biological functions

of DEGs. Considering the low count number of down-

regulated DEGs, we focused on the up-regulated DEGs.

For the GO analysis, “positive regulation of tumor necrosis

factor production”was themost significant BP termwith fold

enrichment. We show the top 14 BP terms according to the

P-value, gene counts, and fold enrichment (Figure 2B).

These terms indicated that the gene expression differences

of intestinal samples in non-response IBD patients were

associated with an abundance of inflammatory cytokines

and pathogen recognition. On the categories of Molecular

function (MF), IgG binding, lipopolysaccharide-binding, and

pattern recognition receptor activity were the prominent MF

term. Intrinsic to membrane and integral to membrane were

top 2 CC terms. We listed useful information of these GO

terms in (Table 2). KEGG pathway enrichment analysis dis-

covers 11 significantly enriched KEGG pathways with

P-value <0.05 (Table 3). Among these pathways, the Toll-

like receptor signaling pathway was the most important one

according to the P-value, gene counts, FDR, and fold enrich-

ment. The DEGs in the Toll-like receptor signaling pathway

were concentrated in TLR (Figure S1). There were 11 DEGs

genes that participated in this pathway (CD86, IL6, LY96,

TLR1, TLR2, IL1B, TLR4, CXCL11, CCL4, TLR8, CD14,

and SPP1). We visualize KEGG pathways by the ClueGO

plug-in of Cytoscape v.3.4.0 (Figure 2C)

Verification and Supplement of DEGs

Enrichment Result
IL6 was significant differentially expressed between respon-

ders and non-responders (up-regulated in non-responders,

adjusted P value<0.01), no significant difference was found

in TNF and NOD2 (Figure 3A). IL6 was involved in the

DEGs, while TNF and NOD2 were not included in the

DEGs. GSEAwas applied to verify the main result acquired

by DEG enrichment analysis. GSEA result suggested upregu-

lation of “inflammation response”, “Fc-gamma receptor

Table 1 Summary of Individual Studies Included

Cohort Sample

Source

IBD

Type

Response

Status

Definition

Time

Definition

Method

Anti-

TNFα

Therapy

Purpose in

the Current

Study

Associated

Publication

GEO

Dataset

R NR

GSE12251 Intestinal UC 12 10 8 week Endoscopic Infliximab Discovery

and Validation

15 GSE12252

GSE16869CDc Intestinal CD 12 7 4–6 week Endoscopic Infliximab Discovery

and Validation

11 GSE16869

GSE16879CDi Intestinal CD 8 10 4–6 week Endoscopic Infliximab Discovery

and Validation

11 GSE16870

GSE16879UC Intestinal UC 8 16 4–6 week Endoscopic Infliximab Discovery

and Validation

11 GSE16871

GSE92415 Intestinal UC 32 27 8 week Endoscopic Golimumab Discovery

and Validation

13 GSE92415

GSE23597 Intestinal UC 24 5 8 week Endoscopic Infliximab Validation 12 GSE23597

GSE42296

(Blood)

PBMC CD 14 6 6 week CDAI Infliximab Validation 14 GSE42296

GSE107865

(Blood)

PBMC CD 17 5 14 week CRP,

Calprotectin,

Endoscopic

Infliximab Validation 18 GSE107865

Notes: A total of six microarray datasets retrieved from Gene Expression Omnibus (GEO) were included in this study. Five cohorts from intestinal tissue (GSE12251,

GSE16879UC, GSE16879CDi, GSE16879CDc, GSE92415) were selected as discovery cohorts. Eight cohorts (GSE12251, GSE16879UC, GSE16879CDi, GSE16879CDc,

GSE92415, GSE23597, GSE107865, and GSE42296) were chosen as validation cohort.

Abbreviations: UC, ulcerative colitis; CD, Crohn’s disease; CDi, Crohn’s ileitis; CDc,Crohn’s colon; PBMC,peripheral blood mononuclear cell; CRP,C reactive protein;

Definition time, Time to definite response status; Definition method, Method to definite response status; CDAI,Crohns Disease Activity Index.
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signaling” and “Toll-like signing pathway” of on-response

individuals in CD, UC, and IBD separately (p<0.01), which

means the stable of DEGs enrichment analysis (Figure 3B–D).

Also, whole down-regulated genes were applied to GSEA for

search down-regulated function, oxidative phosphorylation

was found.

Composition of Immune Cells Between

Response and Non-Response Patients
Cases with a CIBERSORT output of p>0.05 means the esti-

mated result is not accurate, which is not eligible for further

analysis. Collectively, a total of 59 (100%), 24 ( 100%), 21

(87.5%) and 12 (63.2%) samples fromGSE92415,GSE12251,

GSE16869UC and GSE16869CDc were included, respec-

tively. The dataset of GSE16869CDi was excluded, as more

than 40%of the sample is not accurate (CIBERSORToutput of

p>0.05). The composition of immune cells in response and

non-response from intestinal tissues was analyzed, and the

fraction of 22 immune cells was shown in the violin plot

(Figure 4A, also in Table S3). As shown in Figure 4B, the

fractions M2 Macrophage is relatively low in the intestinal

tissue from non-response patients than those from response

patients. The proportions of M1 Macrophage in M1 and M2

Macrophage are also high in non-response individuals (FC

0.19–0.78).

Analyzing the PPI Network and Finding of

Hub Genes
We constructed the PPI network involving 140 nodes

(DEGs) and 975 edges through Cytoscape. The proteins

expressed by DEGs are represented by the nodes and the

physical interactions between two nodes means the edges,

Non-response

Response

GSE12251

GSE16869CDc

GSE16879CDi

GSE16879UC

GSE92415

Non-response

Response

B

C

A

Figure 1 PCA plot for sample clustering and the heat map of differentially expressed genes of five cohort microarray datasets. (A) PCA plot for sample clustering of

microarray datasets without batch effect adjustment. (B) PCA plot for sample clustering of microarray datasets with batch effect adjustment. (C) The heat map of the top 30

differentially expressed genes in response vs non-response IBD patient. The vertical axis represents the top 30 regulated genes (26 down-regulated genes and 4 down-

regulated genes), and the horizontal represents a total of 142 samples.

Abbreviations: PCA, principal component analysis; DEG, differentially expressed genes.
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which is obtained from string v11.0. The most highly con-

nected cluster in the PPI network is extracted by MCODE

plug-in in Cytoscape. The Maximal Clique Centrality is an

important parameter, and the high score demonstrates the

protein act as the center of the network and plays a critical

role. The nodes with a higher score were shown as red or

orange color, and the node size is related to the fold of change

between non-response and response IBD patients

(Figure 5A). The most prominent genes in this cluster were

at the core of the whole PPI network, including TLR1, TLR2,

TLR4, TLR8, FCGR2A, HCK, CD36, CCR1, CCL4, and

they were all regulated as inflammation and chemotaxis

(Table S4). Therefore, the night genes were considered as

the hub gene. Subsequently, we analyzed Hub genes and their

neighboring nodes for better visualization (Figure 5B).

Exploring Candidate Biomarkers by ROC

Curves and Lasso Regression
Firstly, the Lasso regression model for GSE92415 (having the

largest number of samples) was conducted to find an optimum

linear combination of hub genes in predicting responsiveness

(Figure 6A). Then, the ROC curve analysis of each hub gene

and LASSO regression model (0.4795 and 0.2864 for CCL4

and FCGR2A) predicting the responsiveness of anti-TNFα
agents in IBD patients from six cohorts (GSE12251,

GSE16879, GSE23597, GSE92415, all form intestinal tissue)

Figure 2 The volcano plot of differentially expressed genes, bubble map of GO BP terms and network of KEGG analysis. (A) The volcano plot of the differentially expressed

genes. Blue dots on the left indicate up-regulated genes in non-response individuals, and red dots on the right indicate down-regulated. Gray dots indicate genes with no

statistical difference. (B) The bubble map of BP GO BP terms. The horizontal axis represents the fold enrichment rate of BP GO terms, and the vertical represents pathway

names. The color depends on the P-value, and the size of bubbles represents the number of enriched genes. (C) The network view of pathway KEGG enrichment results.

Each node represents the enriched pathway. The connection of nodes indicates the number of genes shared between the pathways. The color represents the classification of

the node.

Abbreviations: DEG, differentially expressed genes; FC, fold-change; GO, Gene Ontology; BP, biological process; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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is conducted successfully by PRISM 8.0 (Figure 6B); none of

them were less than 0.500. The AUC of LASSO model is

0.7–1.0. Among these hub genes, FCGR2, TLR1, TLR2, and

HCK was the distinguish one in intestine with the single gene

AUC beyond 0.9 in at least one of study, which suggest it

might have outstanding value for predicting the responsive-

ness in IBDpatients. Besides, ROC curve analysis also applied

in two cohorts (GSE107865 and GSE42296), FCGR2A

(AUC: 0.669–0.706), HCK (AUC: 0.738–0.765), and TLR8

(AUC: 0.643–0.694) might be blood biomarkers (Figure 6C).

Discussion
Predicting the responsiveness of anti-TNFα treatment and

understanding its molecular mechanism is becoming more

and more apparent and urgent. Our finding through integrated

analysis of several independently public available datasets of

IBD patients before the treatment of anti-TNFα agents sug-

gests that excessive interaction of FcγR signaling and Toll-

Like Receptor (TLR) pathway may account for the different

response to anti-TNFα agents in IBD patients. Beyond this,

the lasso regression model containing FCGR2A and CCL4

can be used as predictive biomarkers.

Several publications have reported gene expression of

IBD patients’ intestine biopsies with responsiveness to

anti-TNFα agents.11–13,15 Ingrid Timmer et al found that

unlike non-responders, the dysregulation of anti-microbial

peptides (AMPs) in intestine mucosa almost normalized

after Infiximab compared to their baseline samples in

responders.11 Others have shown that Infiximab affects

TH1, TH2, and TH17-cell differentiation pathways in

Table 2 GO Terms Enrichment Results of DEGs

GO Terms Count P value Enriched Genes Fold

Enrichment

Enriched from Up-Regulated Genes in BP

GO:0032760~positive regulation of tumor

necrosis factor production

6 3.79E-06 TLR2, FCER1G, RIPK2, TLR4, CLEC7A, CD14 23.12478632

GO:0042116~macrophage activation 5 1.01E-04 SLC11A1, CD93, TLR1, TLR2, TLR4 19.27065527

GO:0002221~pattern recognition receptor

signaling pathway

5 1.71E-04 IRAK3, TLR2, RIPK2, TLR4, CLEC7A 17.00351936

GO:0032680~regulation of tumor necrosis

factor production

9 3.85E-08 IRAK3, TLR1, TLR2, FCER1G, RIPK2, TLR4, CLEC7A, IL10, CD14 16.78411911

GO:0009595~detection of biotic stimulus 5 2.17E-04 LY96, TLR4, CLEC7A, NLRP3, TLR8 16.05887939

GO:0002218~activation of innate immune

response

5 2.71E-04 IRAK3, TLR2, RIPK2, TLR4, CLEC7A 15.21367521

GO:0032755~positive regulation of

interleukin-6 production

5 2.71E-04 IL6, TLR2, IL1B, RIPK2, TLR4 15.21367521

GO:0002758~innate immune response-

activating signal transduction

5 2.71E-04 IRAK3, TLR2, RIPK2, TLR4, CLEC7A 15.21367521

GO:0032675~regulation of interleukin-6

production

9 1.37E-07 IRAK3, IL6, CEBPB, TLR1, TLR2, IL1B, RIPK2, TLR4, IL10 14.45299145

GO:0007159~leukocyte adhesion 7 6.71E-06 ICAM1, SELP, OLR1, ITGA5, MSN, SELE, ITGAM 14.45299145

GO:0009620~response to fungus 5 6.95E-04 TLR2, TLR4, CLEC7A, PTX3, S100A12 12.04415954

GO:0002237~response to molecule of

bacterial origin

17 1.19E-12 SELP, IL6, PTGS2, SOCS3, LY96, TLR2, TLR4, IL10, IRAK3, SLC11A1, THBD,

RIPK2, IL1B, IRG1, SELE, CD14, PTAFR

11.42794673

GO:0050818~regulation of coagulation 8 5.61E-06 SELP, CAV1, PLEK, PDPN, SERPINE1, TLR4, ANXA5, PLAU 11.28038357

GO:0032496~response to lipopolysaccharide 15 4.39E-11 SELP, PTGS2, SOCS3, LY96, TLR4, IL10, IRAK3, SLC11A1, THBD, RIPK2,

IL1B, IRG1, SELE, PTAFR, CD14

11.26207126

Enriched from up-regulated genes in MF

GO:0019864~IgG binding 5 4.86E-06 FCGR2B, FCGR2C, FCGR1B, FCER1G, FCGR2A, FCGR3B 37.56655093

GO:0001530~lipopolysaccharide binding 6 8.57E-07 SELP, LY96, TLR2, TLR4, PTAFR, CD14 30.05324074

GO:0008329~pattern recognition receptor

activity

6 2.11E-06 LY96, TLR2, TLR4, CLEC7A, PTAFR, CD14 25.75992063

GO:0019865~immunoglobulin binding 5 8.65E-05 FCGR2B, FCGR2C, FCGR1B, FCER1G, FCGR2A, FCGR3B 20.03549383

GO:0004896~cytokine receptor activity 9 3.10E-06 IL18R1, IL1R1, OSMR, IL1RAP, CSF2RB, CSF3R, CXCR2, IL7R, IL13RA2 9.835606061

Notes: Significantly enriched GO terms with P-value <0.05 count ≥14 and were screened out. Fourteen BP terms were associated with an abundance of inflammatory

cytokines and pathogen recognition.

Abbreviations: GO, Gene Ontology; DEGs, differentially expressed genes; BP, biological process; MF, molecular function
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responders and that non-responders fail to regulate these

three pathways.12 Nevertheless, no baseline gene panel to

predict responsiveness was determined in the previous two

studies. On the other hand, Ingrid Arijs et al also found

that 5 top signature genes from a predictive panel of 109

probe sets in UC patients, which contains TNFRSF11B,

STC1, PTGS2, IL11 and IL13α2.15 Then, the panel of 109

probe sets was refined in further study to a smaller set of

13 genes signature (CMTM2, C5AR1, FGF2, GK, HGF,

L1RN, LILRA2, NAMPT, PAPPA, SNCA, SOD2,

STEAP4, ZBED3). However, its accuracy of the 13

genes signature in an external validation was no better

than chance, which limits its clinic use.13 The previous

signature genes are not robust enough, which may arise

from the relatively small sample size. We think it appro-

priate to reveal more robust and reproducible biological

processes and hub genes through merging homogenizes

studies. Therefore, 142 moderate-to-severity IBD patients

refractory to conventional treatment were involved in our

study for in-depth data re-mining.11,13,15

The Gene Ontology (GO) terms of Biological Process

(BP) revealed changes in the pathogenesis of non-response

patients. IL-6 and TNF are the two most prominent BP terms,

indicating that the abundance of inflammatory cytokines in

non-response profile.12,18 The GSEA result of inflammation

response confirms the involvement of IL-6 and TNF in UC,

CD, and whole IBD patients. Noteworthy, because of the lack

of random allocation, it has been challenging to determine if

the excessive activation of inflammation response in non-

response patients is independent of the severity of the disease.

However, the underlying biological process driving

positive regulation of pro-inflammation cytokines is more

Table 3 KEGG Pathway Enrichment Results of DEGs

KEGG Pathway Count P value Enriched Genes Fold

Enrichment

hsa04640:Hematopoietic cell

lineage

11 5.74E-05 CSF3, IL1R1, IL6, CD44, ITGA5, IL1B, CSF3R, IL7R, ITGAM, CD14,

IL11

4.964938754

hsa04620:Toll-like receptor

signaling pathway

12 4.48E-05 CD86, IL6, LY96, TLR1, TLR2, IL1B, TLR4, CXCL11, CCL4, TLR8,

CD14, SPP1

4.611896304

hsa04610:Complement and

coagulation cascades

8 0.0017529 C3AR1, C5AR1, THBD, F5, SERPINE1, TFPI, C1S, PLAU 4.500497843

hsa04060:Cytokine-cytokine

receptor interaction

29 4.21E-11 CSF3, IL1R1, CXCL5, OSMR, CCR1, CXCR2, CXCL6, IL7R,

CXCL11, CCL4, IL10, IL11, TNFRSF11B, TNFRSF1B, IL1RAP, IL1B,

CSF2RB, CSF3R, IL18R1, IL6, FLT1, IL18RAP, IL24, HGF, OSM,

INHBA, VEGFC, TNFRSF10C, PDGFRA

4.296515355

hsa04512:ECM-receptor

interaction

7 0.0198722 COL4A2, COL4A1, CD44, ITGA5, TNC, LAMC1, SPP1 3.234732824

hsa04630:Jak-STAT signaling

pathway

12 0.0018871 OSM, CSF3, IL6, OSMR, SOCS3, CSF2RB, CSF3R, IL24, IL7R, IL10,

IL11, IL13RA2

3.00517114

hsa04210:Apoptosis 6 0.0709049 IRAK3, IL1R1, TNFRSF10C, IL1RAP, CSF2RB, IL1B 2.677020268

hsa04514:Cell adhesion

molecules (CAMs)

9 0.0191196 ICAM1, SELP, CD86, SELL, PECAM1, VCAN, SELE, CDH5, ITGAM 2.646599584

hsa04510:Focal adhesion 11 0.0321302 VEGFC, CAV1, COL4A2, FLT1, COL4A1, ITGA5, TNC, PDGFRA,

HGF, LAMC1, SPP1

2.124302153

hsa04062:Chemokine signaling

pathway

10 0.0490143 ARRB2, FGR, CXCL5, PREX1, CCR1, HCK, CXCR2, CXCL6,

CXCL11, CCL4

2.075764379

hsa04010:MAPK signaling

pathway

12 0.0783446 MAP4K4, DUSP4, IL1R1, DUSP2, ARRB2, DUSP14, PDGFRA,

HSPA6, IL1B, GADD45B, FGF2, CD14

1.744575006

Notes: KEGG biological pathway enrichment analysis found that Toll-like receptor signaling pathway (P-value <0.0001, count =12, and fold enrichment =4.61) was the most

important one among the eleven significantly enriched pathways.

Abbreviation: KEGG, Kyoto Encyclopedia of Genes and Genomes.
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critical. Four terms were directly relevant to pathogen

recognition in the top six terms of BP, which is consistent

with the previous finding that several genetic variations in

pattern recognition receptors (PRRs) loci were associated

with anti-TNFα response in autoimmune disease.33 Hence,

we reasoned that the changes might contribute to a link

between the innate immune cell and intestinal microbial.34

Host PRRs modulate microbial recognition and could

thereby alert gut microbe community function and struc-

ture broadly. Modulated microbial, in turn, induces abnor-

mal signal, cytokine secretion, and bacterial clearance in

innate immune cells, thus highlighting the critical role of

balance in the regulation of PRR-initiated outcomes in

intestinal tissues.35,36

The Molecular function (MF) terms further bring insight

into the relation between PRRs signal and microbial
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Figure 3 Baseline biopsy gene expression and GSEA result between response and non-response in Discovery Cohorts. (A) Box plot indicates intestine tissue IL6, NOD2

and TNF expression. (B) GSEA result of Inflammation response, Fc-gamma receptor signaling and Toll-like signing pathway in CD (GSE16879CDi, GSE16879CDc) patients.

(C) GSEA result of Inflammation response, Fc-gamma receptor signaling and Toll-like signing pathway in UC (GSE12251, GSE16879UC, GSE92415) patients. (D) GSEA result

of Inflammation response, Fc-gamma receptor signaling and Toll-like signing pathway in IBD (GSE12251, GSE16879UC, GSE16879CDi, GSE16879CDc, GSE92415,

GSE23597) patients.

Abbreviation: GSEA, Gene Set Enrichment Analysis.
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interactions in non-response patients. On the one hand, the

“Lipopolysaccharide receptor” acting as one of the significant

PRR in detecting gram-negative microbe is the most signifi-

cant GO terms of MF for up-regulated genes with the highest

fold enrichment rate.37 Similarly, “Peptidoglycan” binding

both gram-negative and gram-positive microbe is also

enrichment.37,38 NOD2, the receptor of muramyl dipeptide

(MDP), a fragment of bacterial peptidoglycan, is the first

studied susceptibility factor to IBD.3 Although NOD2 muta-

tions show the value of determining the risk of disease devel-

opment, it is controversial whether NOD2 is related to the

efficacy of anti-TNFα therapy.39,40 In our study, no significant

differences in baseline NOD2 expression between the

response and non-response patients neither in UC nor CD

patients, which might be due to the gap between genetic

variants and expression. On the other hand, MF terms of

“Lgg binding” and “Opsonin binding” have been found.

PRRs acting as sensors of microbial stimulation contribute to

immunoglobin generation.41,42 Though intestine is a lgA

dominant organ, lgG antibodies, critical effectors of anti-

microbial, exhibit wide broad microbial reactivity in IBD

patients.43,44 Besides, “extracellular space” and “plasmamem-

branes” are the most significant GO Cellular Component (CC)

terms for the up-regulated gene, which reveals that pathogen-

esis may occur in membranes depend on extracellular

microbial.

From a cell physiology perspective, Fc gamma receptor

(FcγR) signaling, which is downstream of Immunoglobulin

G (IgG), appears to be up-regulated and a key effector in non-

response individuals.45 Supported by “IgG-mediated activa-

tion signaling” is the most significant GO term ofMF.Within

the colonic mucosa, monocytes, and macrophages (MMP) as

GSE92415

GSE12251

GSE16879-UC

GSE16879-CDc

BA

Figure 4 Violin and Box plot of immune cell composition between response and non-response individual. (A) The violin plot indicates the composition of 22 immune cells

between response and non-response individuals in 4 cohorts with CIBERSORT p < 0.05 for all eligible samples. The blue violin plot indicates non-response individual, and the

red violin plot represents response patients. (B) The box plot indicates the composition of M1 macrophage, M2 macrophage, ration of M1/(M1+M2) macrophage, and its

fold-change between response and non-response individuals.
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the major FcγR-expressing cell types mediate effector func-

tions of immunoglobulin G (IgG) antibodies.46,47

Considering the polarization of M1 macrophages are rela-

tively high in non-response individuals, the verse cycle is

likely to occur between polarization and activation of MMP

between gut microbe. Overproduction of anti-flagellin IgG,

as well as voluminous IgG-opsonized microbes, are believed

to lead to pathological IgG-FcγR-dependent immune

response.46,48 Also, within the persisting chronic pathologi-

cal inflammatory states, the balance of MMPActivating and

inhibitory FcγR (the A: I ratio) can be destroyed, which

reduces the activation threshold of cells upon encounter of

immune-complex or opsonized targets.44 As IgG widely

emerged and the intrinsic A: I ratio skewed, over-Activated

MMP, driven by FcγR signal, determines the magnitude of

intestinal inflammation, which might be an essential cause of

non-response to the anti-TNFα agents.49

The KEGG analysis further shows changes in the signal-

ing pathways in non-response patients.We prompt that “Toll-

like receptor signaling pathway” as the hub KEGG pathway.

Almost all DEGs involved in the Toll-like signaling pathway

were up-regulated, which was consistent with the recent

study found that polymorphisms of TLR pathway are valu-

able significant predictors for the response to anti-TNFα

therapy among patients with autoimmune disease.50,51

Firstly, as motioned above, TLR pathway facility the produc-

tion of lgG and thereby stimulate the FcγR signal. Secondly,

FcγR stimulates phagocytosis.52 Consequently, more antigen

is provided for the Toll-like pathway to recognize. Thirdly,

the FcγR signaling could cross-link to the Toll-like pathway

greatly up-regulates pro-inflammatory chemokines transcrip-

tional, and Toll-like pathway agonist could partially rescue

lgG/FcγR induction of inflammation in the setting of defi-

cient chemokines expression.53,54 Furthermore, several

studies have highlighted a link between TLR and FcγR co-

stimulation and the induction of a Th17 polarizing and

pathogenic macrophage phenotype, which is constant to the

characteristic of IBD.53–55 Taken together, FcγR stimulated

by anti-commensal IgG signaling synergistic cooperating

with toll-like pathway derives inappropriate inflammation

in the gut, which might be crucial in the pathogenesis of non-

response of anti-TNFα agents. These results suggest that the

FcγR-TLR axis is responsible for the magnify reciprocal

signaling, which ultimately impacts response status.

We constructed the PPI network with up-regulated DEGs

lists the top-degree hub genes: TLR4, TLR1, TLR8, CCR1,

CD86, CCL4, HCK, and FCGR2A. Unlike the previous way

of selecting signature genes through the statistical method of

BA

Low Middle High

MCC

Figure 5 The PPI network and the most highly connected cluster. (A) The PPI network consists of 93 nodes and 1163 edges. Color represents the MCC of nodes. And size

is related to the FC between non-response and response IBD patients. (B) The most highly MCC connected cluster is composed of nine hub genes and their first

neighboring nodes: TLR1, TLR2, TLR4, TLR8, HCK, FCGR2A, CCL4, CCR1, and CD86.

Abbreviations: PPI, protein–protein interaction network; MCC, Maximal Clique Centrality, FC, fold-change.
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cross-validation, biological behavior has also been considered

in the process of PPI construction.15 Thus, we detected nine

diverse and non-overlapping hub genes. Importantly, all of the

nine hub genes show distinct features that excessive interac-

tion of the FcγR-TLR pathway axis in non-response indivi-

duals. FCGR2A, an active FcγR signal receptor, is a good

example. One on hand, previous work has suggested that

FCGR2A co-stimulate with Toll-Like pathway might mas-

sively induce pro-inflammatory cytokines and IgG.55 On the

other hand, without the activation of the Toll-like pathway,

FCGR2A also mediates beneficial functions via its ability to

affinity to anti-TNFα monoclonal antibodies, which is one of

the crucial ways for anti-TNFα agent taking effect.56,57

Therefore, given the versatility of FCGR2A and the critical

role of the Fc region of anti-TNFαmonoclonal antibodies, we

speculate the dual role effect of FCGR2A in anti-TNFα treat-

ment IBD patients. Additional studies are needed to confirm

the dual role of FCGR2A. Besides, CCR1 is critical

for the recruitment of effector immune cells to the site of

inflammation. Meanwhile, it involved in IL-6 release of

CCL4 0.4795096

FCGR2A
0.2863872

CB

A

GSE23597

Figure 6 Construction of LASSO regression model and ROC curves of hub genes in eight cohorts. (A) The left plot indicates binomial deviance of different numbers of

variables revealed by the LASSO regression model for GSE92415. The red dots represent the value of binomial deviance; the grey lines represent the SE; the vertical dotted

lines represent optimal values by the minimum criteria and 1-SE criteria. “Lambda” is the tuning parameter. The right plot determines the Coefficient of LASSO regression

model 0.4795 and 0.2864 for CCL4 and FCGR2A, respectively. (B) The ROC curves of LASSO regression model (0.4795 and 0.2864 for CCL4 and FCGR2A) and top 3 hub

genes in 5 discovery cohorts (GSE12251, GSE16879 and GSE92415) and one external validation cohort (GSE23597). (C) The ROC curves of top 3 hub genes in two cohorts

(GSE107865 and GSE42296).

Abbreviations: AUC, area under the curve; ROC, receiver operating characteristic; SE, Standard error.
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macrophage.58,59 CCL4, also known as macrophage inflam-

matory protein-1β (MIP-1β), plays a vital role in the migration

of macrophage in the gut and can be active by TLR4.60,61 Our

data differ from a previous study found that overexpression of

CCR2-CCL7 is associatedwith non-response patients.18 In the

future work, the chemokines and its receptor should be exam-

ined in terms of the specific type of cell recruited to the gut.

Interestingly, expression HCK, FCGR2A, and TLR8

also show predictive value in peripheral blood mononuc-

lear cells (PBMCs). In particular, HCK might be an essen-

tial molecule that has not been thoroughly studied but is of

great value to the prediction biomarker. Acting down-

stream of receptors that bind the Fc region of immunoglo-

bulins, such as FCGR1A and FCGR2A, plays a vital role

in the regulation of innate immune responses, phagocyto-

sis, cell survival and proliferation, cell adhesion and

migration. Numerous studies showed that active HCK

exhibited increased susceptibility to TLR signaling inflam-

mation and elevated innate immune response. Although

the expression of HCK was proven to correlate with the

development of inflammation positively, the recent inves-

tigation of HCK associated with autoimmune disease is

that Behçet’s disease (BD) due to the broad regulation of

LPS-Induced pathway, many results are contradictory.62,63

From a clinical perspective, one implication of the

current study finds biomarkers of anti-TNFα treatment.

We have demonstrated a ROC analysis for predicting

therapy response with a single hub gene or Lasso linear

models. Thus, the model consists of FCGR2A and CCL4

shows great value of prediction in intestinal tissue.

Another clinical implication of the present study is that

non-response to anti-TNFα treatment patients may elect an

alternative therapy. Our findings suggest that no responders

may represent a vicious circle of, including an up-regulated

TLR pathway, skewed FcγR signaling, and distribute micro-

bial, which hamper the resolution of inflammation via anti-

TNFα agent treatments. Blocking the mechanism that

restores the gut microbe community would be helpful, sup-

port by the finding that the functional links intestinal micro-

bial ecosystem and therapeutic manipulation.17 Indeed,

antibiotic showed that restoring the gut microbe prevent

recurrence after surgery.1 Another way of blocking the patho-

genic mechanism is to develop new agents with a higher

affinity to FCGR2A.

In summary, our study has the merit of assessing transcrip-

tional analysis from several independent cohorts though re-

analyzed six publicly available microarray gene expression

profiling (origin of samples varies from blood to intestinal)

via different methods and gain different conclusions.

Importantly, we found polarization from M2 to M1 macro-

phages in non-response individuals and nine hub genes. Thus,

we propose our insight that the cross-talk between FcγR
signaling and the TLR axis may be responsible for the differ-

ent response to anti-TNFα agents in IBD patients. Besides,

some hub genes have high predictive value.

Conclusion
The current study aims to explore the molecular mechanism

and search for candidate biomarkers in the gene expression

profile of IBD patients associated with the response to anti-

TNFα agents. Totally 286 DEGs and nine hub genes were

screened via bioinformatic approaches. Our prominent find-

ing is that the interaction of the FcγR signaling and TLR axis

may be responsible for the different responses to anti-TNFα
agents in IBD patients, and the dual role effect of FCGR2A

may be the underlying mechanism. However, there were

some limitations. It should be noted that none of the cohorts

involved in this study reported anti-TNFα agent trough levels
of each patient, so it is difficult to figure out whether the non-

response was caused by pharmacokinetic or pharmacody-

namic. Further studies with therapeutic drug monitoring

and dose optimization are needed. Besides, additional studies

with a large sample size as well as direct evidence of

microbes are useful to validate our results.
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