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Purpose: The purpose of this study was to explore the difference and association between

intestinal microbiota and plasma metabolomics between type 2 diabetes mellitus (T2DM)

and normal group and to identify potential microbiota biomarkers that contribute the most to

the difference in metabolites.

Methods: Six male ZDF model (fa/fa) rats were fed by a Purina #5008 Lab Diet (crude

protein 23.5%, crude fat 6.5%) for 3 weeks and their age-matched 6 ZDF control (fa/+) rats

were fed by normal rodent diet. Their stool and blood samples were collected at 12 weeks.

To analyze the microbial populations in these samples, we used a 16S rRNA gene sequencing

approach. Liquid chromatography–mass spectrometry (LC-MS) followed by multivariate

statistical analysis was applied to the plasma metabolites profiling. Correlation analysis of

them was calculated by Pearson statistical method.

Results: Twelve potential biomarkers of intestinal microbial flora and 357 differential

metabolites were found in ZDF fa/fa rats, among which there are three flora that contributed

the most to the perturbation of metabolites, including genus Phocea, Pseudoflavonifractor

and species Lactobacillus intestinalis.

Conclusion: Our study demonstrates the alterations of the abundance and diversity of the

intestinal microbiota and the perturbation of metabolites in ZDF rats (fa/fa). We found three

potential biomarkers of intestinal microbiota that may lead to perturbation in plasma meta-

bolites. This may prompt new pathogenesis of obesity-related T2DM, but we also need to

study further about the causal relationship between intestinal microbe and T2DM, so as to

find the target of T2DM treatment or preventive measures.

Keywords: type 2 diabetes mellitus, Zucker diabetic fatty rats, 16S rRNA sequencing,

intestinal microbiota, plasma metabolomics

Introduction
Type 2 diabetes mellitus (T2DM) is the most common metabolic disease around the

world, which results in ineffective use of insulin and has accounted for 90% of

diabetes.1 The International Diabetes Federation reported that there would be

693 million people over the world with diabetes by 2045.2 The progression of

diabetes can lead to serious complications such as vascular disease and even death.3

With the worldwide prevalence of obesity, it is becoming more common to these

obesity-associated diseases of insulin resistance (IR).4 Except for many well-known
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contributing factors of T2DM such as obesity, sedentary

lifestyle, and aging, now the dysfunction of the gut micro-

biota is gaining more and more attention for its association

with energy harvest.5,6 Turnbaugh et al found the obesity

can raise phylum-level changes in gut microbiota, which

reflected in lower bacterial diversity, gene expression

changes and influences of metabolic in twins.7 Studies so

far have already proved that the difference between T2DM

patients and the normal group of gut microbiota plays

a vital role in IR and metabolic syndrome-developing

progress.8,9 And this may be due to the contribution of

gut microbiota to the metabolites and glucose metabolism

by regulating the composition of bile-acid pools and glu-

cose metabolism modulation signaling.10 As is well-

known, bile-acid plays an important role in regulating the

metabolism of lipids, which serve as major structural

components of biological membranes and participate in

energy storage and signal transduction.11 Lipid subclasses

such as phospholipids, sphingomyelins, and triglycerides,

have all been related to IR and T2DM in humans.12,13

Since lipidomics related mass spectrometry-based techni-

ques can conduct the qualitative and quantitative analysis

of the lipidome profiling from cells or biological fluids,

tissues and the whole organism, it naturally becomes prac-

tical tools to unravel pathological mechanisms and identify

biomarkers for metabolic diseases.14 We use the extracting

method of nonpolar substances, which can count in most

lipids and a few other metabolites of plasma samples.

Since compared with serum, metabolomics studies based

on mass spectrometry using plasma samples can perform

complete metabolic profiles and accurately detect meta-

bolic dysregulations.15

At present, though many studies have been done in the

IR field concerning about metabolism mechanism with

T2DM or profiling the function of gut microbiota,16 con-

currently combining gut microbial profile and plasma

metabolomics is supposed to be more intuitive to demon-

strate about the connection between gut microbial and the

host’s metabolic changes.

Zucker diabetic fatty (ZDF) rat is an animal model char-

acterized by leptin receptor deficiency that induces hyperpha-

gia leading to inchoate fat.17 Naturally occurring glucose

tolerance makes ZDF rats an ideal experimental subject to

simulate the progress of human T2DM.18 ZDF model (fa/fa)

group was induced to develop diabetes by a high-energy diet,

and ZDF control (fa/+) group had no diabetes symptoms, but

both groups were obese. In the present study, we used gene

sequencing technology, combined with the ultra-performance

liquid chromatography–mass spectrometry technology, to

explore differences of the intestinal microbial metagenomics

and plasmametabolites between groups.We found 12 potential

biomarkers of gut microbiota and some of them were highly

correlated with diverse perturbed metabolites, mostly lipids.

A detailed understanding of the pathophysiology of

T2DM is a prerequisite for the development of preventive

strategies. In particular, the identification of early metabolic

alterations is promising in the study of etiological pathways

and may further help to identify high-risk individuals. By

further detecting the intestinal microbial condition of T2DM,

and its impact on metabolites in blood, we have the chance to

use gut microbiota as a new breakthrough in the treatment of

diabetes and metabolic syndrome.

Materials and Methods
Animal
Six 8-week-old male ZDF model (fa/fa) rats fed by Purina

#5008 Lab Diet (crude protein 23.5%, crude fat 6.5%) for 3

weeks and 6 age-matched ZDF control (fa/+) rats fed by

normal rodent diet (Beijing Keao Xieli Feed Co., Ltd.) were

purchased from Charles River Laboratories (Beijing,

China). All the animals were housed at standard room

temperature, with a 12-h light/12-h dark cycle with free

access to food and water. Then, both groups received stan-

dard 1 week’s adaptive feeding with a basic rodent diet. The

animal protocols were approved by the Institutional Animal

Care and Use Committee of Shandong University.

Random Blood Glucose Test
We used Random blood glucose (RBG) to examine dia-

betes in the fa/fa group. Glucose levels in tail blood

samples were measured from weeks 8 to 9 using

a glucometer (Sinocare Inc, China). Body weight and the

result of RBG showed that we have successfully built the

model of ZDF rats (Supplement Figure 1).19,20

Sample Collection
Collection of both the feces and blood samples was taken at

12 weeks.21 The feces were stored in the sterile tube and then

immediately snap-frozen at −80°C for microbial community

analysis.22 And the blood taken from the abdominal aorta was

collected under inhalation anesthesia with isoflurane then

stored in the tube containing EDTAK2. The plasma separated

from collecting blood after centrifuging at 3000rpm for

20 mins and then frozen at −80°C.22–25 Rats were killed by

inhalational isoflurane for 60 seconds.
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16S rRNA Sequencing and Analysis of

Fecal Microbiota
Using the Sodium dodecyl Sulfate method, total genome

DNA from samples was extracted. 16S rRNA genes of

distinct regions were amplified, using specific primer

515F (5ʹ-GTGYCAGCMGCCGCGGTAA-3ʹ) and 806R

(5ʹ-GGACTACHVGGGTWTCTAAT-3ʹ) with barcode. All

PCR reactions were carried out in 30 µL reactions with 15

µL of Phusion® High-Fidelity PCR Master Mix (New

England Biolabs); 0.2 µM of forward and reverse primers,

and 10 ng template DNA. Mix the same volume of 1×load-

ing buffer (contained SYB green) with PCR products and

operate electrophoresis on 2% agarose gel for detection.

PCR products were mixed in equidensity ratios. Then,

mixture PCR products were purified with Gene JETTM

Gel Extraction Kit (Thermo Scientific). Sequencing

libraries were generated using Ion Plus Fragment Library

Kit 48 rxns (Thermo Scientific) following the manufac-

turer’s recommendations. The library quality was based on

the Qubit@ 2.0 Fluorometer (Thermo Scientific) and finally

sequenced on an Ion S5TM XL platform, ultimately gener-

ated 400 bp/600 bp single-end reads.

According to Cutadapt, we performed Quality filtering.26

Then, we used UCHIME algorithm to compare reads with

the reference database (Silva),27 and Clean Reads was finally

obtained. Sequence analysis was performed by Uparse soft-

ware (Uparse v7.0.1001).28 We defined the sequences with

≥97% similarity as the same operational taxonomic units

(OTUs). We screened the representative sequence for each

OTU based on Mothur algorithm (Silva Database). OTUs

abundance information was normalized using a standard of

sequence number corresponding to the sample with the least

sequences on which subsequent analysis of alpha and beta

diversity was all performed. Alpha diversity and beta diver-

sity are calculated with QIIME (Version 1. 7. 0) and dis-

played with R software (Version 2.15.3). The difference of

beta diversity index was achieved by using parametric test

and non-parametric test between two groups, including T-test

and Wilcox test. Principal component analysis (PCA) was

applied to reduce the dimension of the original variables

using R software. Metastat analysis performed permutation

test among groups at various classification levels to obtain

the p-value and then corrected the p value by Benjamini and

Hochberg False Discovery Rate to obtain the q-value. The

filter value of Linear discriminant analysis Effect Size

(LEfSe) was set to 4 by default.

Plasma Metabolomics
Metabolites were prepared for LC-MS extracted with two

rounds of 3000 rpm, 4°C centrifugation by methanol and

dichloromethane. Chromatographic analysis was imple-

mented with Waters ACQUITY ultra-performance liquid

chromatography (UPLC) I-Class system. After separation

by UPLC, mass spectrometry was performed by using

a Xevo G2-S Q-TOF (Gentech™) with an electrospray

ionization (ESI) source (Waters, Manchester, UK). In posi-

tive ion-mode, MS parameters were as follows: 2.5 kV

capillary voltage; 24 V cone voltage; 100°C source tem-

perature; 400°C desolvation temperature; 800 L/h desolva-

tion gas flowing and 50L/h cone gas flowing. In negative

ion-mode, MS parameters were as follows: 2.5 kV capil-

lary; voltage; 25 V cone voltage; 100°C source tempera-

ture; 500°C desolvation temperature; 800 L/h desolvation

gas flowing and 50 L/h cone gas flowing. We inputted the

raw data into the Progenesis QI (Waters) for peak align-

ment, peak list containing the retention time, m/z, and

peak area of each sample. Lipidmaps (http://www.lipid

maps.org), HMDB (http://www.hmdb.ca), NIST (https://

chemdata.nist.gov) and an in-house lipid database were

used for metabolite identification. The mass error used

was 5 ppm. We completed the statistical with R software

(Version 2.15.3). The threshold was set as VIP (Variable

Importance in the Projection) >1.0, FC (Fold Change) >2.0

or FC<0.5, with p-value<0.05, so as to screen out the

difference metabolites that met the setting conditions.

Correlation Analysis of Fecal Microbiota

and Plasma Metabolites
P-value and rho of the correlation coefficients between the

different metabolites and significant gut flora were calcu-

lated by Pearson statistical method (P-value was taken to 6

decimal places). P-value <0.05 (*) and |rho| ≥0.8 was

considered to be statistically significant.

Results
OUTs Clustering and Diversity Analysis
A total of 925,442 clean reads with a mean length of 253

nt were obtained from all ZDF rats by Ion S5TMXL

sequencing analysis after removing chimera. OUTs

(Operational Taxonomic Units) were clustered based on

clean data with 97% identity. Finally, 801 OTUs were

found out and annotated from Class level to Species

level. Figure 1A1 and A2 showed the composition of gut

microbiota (top 10) at different levels based on relative
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proportions by each group. Alpha Diversity was used to

analyze the richness and diversity within the community.

The individual rarefaction curve tended to approach the

saturation plateau (Figure 1B), implying high sampling

coverage (beyond 99%) was accomplished in all samples.

For beta diversity, Principal Component Analysis (PCA)

showed that the OTUs composition within fa/fa group and

fa/+ group was similar, respectively (Figure 1C).

Taxonomic Composition of Gut

Microbiota
The dominant phyla in both the fa/+ group and fa/fa group are

Firmicutes (58.8% and 69.9%, respectively, mean) and

Bacteroides (39.1% and 28.2%, respectively, mean)

(Supplementary Table 1). Candidate bacteria belonging to the

class Clostridia (25.8–42.5%), Bacilli (6.3–51.0%), and

Erysipelotrichia (1.0–10.1%) were detected as major bacteria

from within the phylum Firmicutes (Figure 1A1). Candidate

bacteria belonging to the familyMuribaculaceae (5.1–22.8%),

Bacteroidaceae (1.0–18.3%), and Prevotellaceae (0.2–14.2%)

were detected as major bacteria from within the phylum

Bacteroidetes (Figure 1A2). At phylum level, the average

percentage of Firmicutes and Proteobacteria was lower in fa/

+ group (58.8%,0.27%) compared to fa/fa group (69.9% and

1.07%) while Bacteroidetes, Verrucomicrobia and

Actinobacteria ratios were higher in the fa/+ group (39.1%,

0.95%, 0.146%, compared with 28.2%, 0.12%, 0.0996%)

(Supplementary Table 1).

Intestinal Flora Biomarker of the fa/fa

Group and fa/+ Group
Metastat analysis suggests that three genera of Phocea,

Pseudoflavonifractor, and Flavonifractor from within the

family Ruminococcaceae have significant differences

Figure 1 (A) Relative Abundance. Relative gut microbiota abundance at class (A1) and family (A2) level in fa/fa group and fa/+ group. Sample Name gN.1 to gN.6 belonged to fa/+

group, gP.1 to gP.6 belonged to fa/fa group. (B) Rarefaction curve of each sample with 97% identity. (C) PCA Plot. The abscissa represents the first principal component (PC1). The

ordinate represents the second principal component (PC2). The percentage represents the contribution value of PC1 or PC2 to the sample difference.
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between groups (Figure 2). LEfSe (LDA Effect Size)

analysis showed statistically different biomarkers, includ-

ing class Erysipelotrichia, order Erysipelotrichales, family

Erysipelotrichaceae, Lactobacillaceae, Peptostreptococca-

ceae, genus Blautia, Turicibacter and species Lactobacill-

us intestinalis, Romboutsia (Figure 3A). Biomarkers only

belonging to the fa/+ group include Peptostreptococcaceae,

Romboutsia, Turicibacter (Supplementary Figure 2A). And

Lactobacillus intestinalis and Blautia are only present in fa/

fa group (Supplementary Figure 2B). Cladogram (Figure 3B)

suggested that characteristic biomarkers from each group are

homologous, respectively.

Figure 2 Metastat analysis uses the hypothesis test of species abundance data between groups to obtain the p-value, which was then corrected to obtain the q-value, then

filtered species had significant differences according to it. *q < 0.05.

Abbreviations: f, family; g, genus; s, species.
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Plasma Metabolites Profiling of ZDF Rats
The detection methods were used to extract substances

with less polarity or non-polarity. Except for a small

number of other metabolites, most of the substances

identified were lipids. According to the results of plasma

metabolites analysis, fa/+ and fa/fa groups could be dif-

ferentiated readily using Principal Component Analysis

(PCA), the first two components of which (i.e., PC1 and

PC2) were finest separated, as performed by positive or

negative EPI spectra in Figure 4A. Figure 4B illustrates

that T2DM unbalanced the lipidic profiles of the gut

microbiome, with 292 increased and 65 decreased meta-

bolites. The structures of these metabolites were diverse,

including lipids mostly, bile acids, fatty acids, amino acid

Figure 3 LEfSe (LDA Effect Size) can discover and interpret high-dimensional biomarkers, and emphasize statistical significance and biological correlation between groups.

(A) Distribution histogram of LDA values shows the species only with LDA Score larger than 4, the length of which represents the impact size of different species (LDA

Score). (B) Cladogram represents the taxonomic levels from phylum to species. The diameter of each small circle is proportional to the relative abundance.

Abbreviations: c, class; o, order; f, family; g, genus; s, species.
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derivatives and so on. Among these metabolites, as

illustrated in Figure 5, the variation of several specific

phosphatidylcholine (PC) and phosphatidylethanolamine

(PE) is consistent with previous reports.29,30 Deoxycholic

acid (DCA), which is a secondary bile acid, downturned

in T2DM.

Correlation Between Gut Microbiome

and Plasma Metabolites
Clear correlations could be identified between the biomar-

kers of gut microbiota and metabolism unbalance in

plasma by the correlation matrix generated by counting

the Pearson’s correlation coefficient (Figure 6). The

Figure 4 (A) Controls were separated from model rats in metabolite profiles by PCA. (B) The plasma metabolic profile of model group changed with 357 molecular

features being significantly changed compared with control group (p < 0.05).
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microflora that affects most metabolites was genus

Phocea, Pseudoflavonifractor and species Lactobacillu-s

intestinalis, especially Phocea (Table 1). But there are still

some metabolites that have a correlation with other flora.

For example, DCA, which decreased 1.1-fold in fa/fa

group, positively correlates with class Erysipelotrichia,

including order Erysipelotrichales, family Erysipelotri-

chaceae, and genus Turicibacte, family peptostrepto-coc-

caceae and genus Romboutsia. In summary, T2DM

induces a significant taxonomic perturbation in the intest-

inal flora, which substantially alters the metabolomic pro-

file in blood.

Discussion
Obesity is one of the main causes of T2DM and associates

with IR.31,32 Intestinal microorganisms can affect the

energy homeostasis and metabolic level of the host

through the transformation of food.33 In ZDF rats, T2DM

was induced by excessive consumption of a high-energy

diet. Here, we took advantage of this rodent model to

investigate the influence of intestinal microorganisms on

the host in the process of obesity-induced T2DM.

Our study demonstrates that intestinal microbiome

composition and plasma metabolites of ZDF rats in the

fa/fa group displayed different patterns compared to the
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Abbreviations: p, phylum; c, class; o, order; f, family; g, genus; s, species.
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Table 1 Results of Association Analysis of Differential Metabolites and Biomarkers of Bacterial Flora. The Results in the

Table Only Contain the Metabolite with p Value Less Than 0.05 and Rho Was Greater Than 0.8, as Well as Their

Associated Flora

Taxonomy Flora Metabolites Rho

Name Change

Class Erysipelotrichia Deoxycholic acid ↓ 0.8454

Order Erysipelotrichales Deoxycholic acid ↓ 0.8454

Family Erysipelotrichaceae Deoxycholic acid ↓ 0.8454

Peptostreptococcaceae Deoxycholic acid ↓ 0.9073

Genus Phocea PE(20:3(8Z,11Z,14Z)/21:0) ↑ 0.8062

PE-NMe2 (36:4) ↑ 0.8471

PE(18:0/18:2(9Z,12Z)) ↑ 0.8870

PG(21:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z)) ↑ 0.8346

PC(17:0/20:3(8Z,11Z,14Z)) ↑ 0.8452

Galabiosylceramide (d18:1/18:0) ↑ 0.8569

DG(18:2n6/0:0/22:6n3) ↑ 0.8520

PC(15:0/18:1(11Z)) ↑ 0.8807

PI(18:0/22:4(10Z,13Z,16Z,19Z)) ↑ 0.8023

PI(18:0/20:3(5Z,8Z,11Z)) ↑ 0.8697

PS (20:5(5Z,8Z,11Z,14Z,17Z)/22:0) ↑ 0.8381

PE(34:2) ↑ 0.8394

PE-NMe2 (34:4) ↑ 0.8351

4Z,8Z-Heptadecadiene ↑ 0.8415

DG(18:2n6/0:0/22:5n6) ↑ 0.8575

PG(21:0/22:4(7Z,10Z,13Z,16Z)) ↑ 0.8359

N-Oleoylglycine ↑ 0.8796

(Z)-13-Octadecenoic acid ↑ 0.8582

DG(18:0/0:0/18:2n6) ↑ 0.8873

Pseudoflavonifractor PE-NMe2 (36:4) ↑ 0.8110

N-Oleoylglycine ↑ 0.8043

DG(18:0/0:0/18:2n6) ↑ 0.8090

Romboutsia Deoxycholic acid ↑ 0.9042

Turicibacter Deoxycholic acid ↑ 0.8935

Blautia Monoolein ↑ 0.8037

Phocea Monoolein ↑ 0.8139

CE (20:4(5Z,8Z,11Z,14Z) ↓ 0.8255

LysoPC(20:3(5Z,8Z,11Z)) ↑ 0.8581

(Continued)
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Table 1 (Continued).

Taxonomy Flora Metabolites Rho

Name Change

PC(14:0/20:4(5Z,8Z,11Z,14Z)) ↑ 0.8641

PE(16:0/22:6) ↑ 0.8584

PI(18:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z)) ↑ 0.8735

PC(20:3(5Z,8Z,11Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)) ↑ 0.8670

PE-NMe2 (34:1) ↑ 0.8147

PE(18:0/18:1(9Z)) ↑ 0.8108

PE-NMe2 (34:2) ↑ 0.8369

PC(18:0/20:3(5Z,8Z,11Z)) ↑ 0.8654

20-oxo-heneicosanoic acid ↑ 0.8995

Ala-Gln-Lys ↓ 0.8377

Zymosteryl oleate ↓ 0.8191

C25:4 Highly branched isoprenoid B ↓ 0.8143

PE-NMe2 (36:2) ↑ 0.8148

SM(d18:1/14:0) ↑ 0.8063

LysoPC(20:3(5Z,8Z,11Z)) ↑ 0.8678

Linalyl anthranilate ↑ 0.8676

Pseudoflavonifractor PE(16:0/22:6) ↑ 0.8056

PE (18:0/18:1(9Z)) ↑ 0.8185

20-oxo-heneicosanoic acid ↑ 0.8279

Ala-Gln-Lys ↓ 0.8089

1,6Z,9Z-Heptadecatriene ↓ 0.8020

Species Lactobacillus_intestinalis PE(20:3(8Z,11Z,14Z)/21:0) ↑ 0.8012

PG(21:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z)) ↑ 0.8585

DG(18:2n6/0:0/22:6n3) ↑ 0.8075

PC(15:0/18:1(11Z)) ↑ 0.8071

PI(18:0/22:4(10Z,13Z,16Z,19Z)) ↑ 0.8006

PI(18:0/20:3(5Z,8Z,11Z)) ↑ 0.8017

4Z,8Z-Heptadecadiene ↑ 0.8158

PA(20:3(8Z,11Z,14Z)/19:1(9Z)) ↑ 0.8070

DG(18:2n6/0:0/22:5n6) ↑ 0.8191

N-Oleoylglycine ↑ 0.8204

(Z)-13-Octadecenoic acid ↑ 0.8053

DG(18:0/0:0/18:2n6) ↑ 0.8101

(Continued)
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control group. Specifically, some of these differential

metabolites are functional correlative with the perturbation

of intestinal flora. As indicated in the results, not only the

occurrence of T2DM would interfere with the growth of

the intestinal microbial community, but might in turn

further aggravate the disturbance of host metabolite home-

ostasis. These findings may provide novel insights into

exploring the etiology and development mechanism of

T2DM.

Our results first demonstrated significant alterations in

proportion and abundance in the gut microbial community.

Consistent with our findings, previous studies also have

suggested the variations in the gut microbiota composition

existed in the development of metabolic syndrome and obe-

sity. For example, Hildebrandt et al reported that rapid

changes, reducing Bacteroidetes and increasing Firmicutes,

was observed in the high-fat-fed mice.34 These changes were

supposed to be associated with accelerating calorie absorp-

tion and gain weight by helping the host to digest polysac-

charides or activate AMP-activated protein kinase

(AMPK).35,36 At phylum level, the abundance of

Firmicutes is the most, Bacteroidetes is the second, and

other phyla are few in both groups. At other levels, 12 gut

flora biomarkers are obtained by statistical analysis of great

significance. A previous study suggested that low abundance

Erysipelotrichia can be used to predict the occurrence of

T1D, with 69% prediction accuracy in NOD (no obesity

diabetes) mice.37 In this study, we found that class

Erysipelotrichia and order Erysipelotrichales, family

Erysipelotrichaceae, which belong to the offshoots of the

same evolutionary line, all decreased in fa/fa group. Thus,

these results supported the association with the low abun-

dance of this evolutionary line and T2DM. At family level,

besides Erysipelotrichaceae, we also noticed that

Peptostreptococcaceae also decreased in fa/fa group, while

Lachnospiraceae showed the opposite trend. Plenty of mem-

bers of family Lachnospiraceae have been linked to obesity

in human38 and mice studies. They could accelerate the

course of diabetes39 and positively correlates with the degree

of atherosclerotic lesions in apoE (apolipoprotein E) KO

(knockout) mice,40 which also suggested that high abun-

dance of Lachnospiracea might potentially predict serious

complications like cardiovascular disease. A population

research suggested Peptostreptococcacea enriched in

a normal group compared to T2DM group,41 which was

consistent with our study. At genus level, Phocea,

Pseudoflavonifractor, and Flavonifractor that all belonged

to family Ruminococcaceae had higher abundance in fa/fa

group. Many previous studies indicated that the variation

trends of Ruminococcaceae and Lachnospiraceae, both of

which belong to energy metabolic advantage families, were

often the same, and their high abundance was related to

metabolic disorders.40,42,43 On the other hand, the relative

abundance of Flavonifractor has a positive correlation with

inflammation cytokines, like interleukin, cholesterol and

LDL levels in plasma.44,45 Flavonifractor may cleave the

flavonoid C-ring and degenerate quercetin to increase

oxidative stress and trigger inflammatory markers such as

Table 1 (Continued).

Taxonomy Flora Metabolites Rho

Name Change

Monoolein ↑ 0.8676

LysoPC(20:3(5Z,8Z,11Z)) ↑ 0.8732

PC(14:0/20:4(5Z,8Z,11Z,14Z)) ↑ 0.8303

PI(18:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z)) ↑ 0.8182

PC(20:3(5Z,8Z,11Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)) ↑ 0.9610

20-oxo-heneicosanoic acid ↑ 0.8198

PE-NMe2 (36:2) ↑ 0.8078

LysoPC(20:3(5Z,8Z,11Z)) ↑ 0.8556

Linalyl anthranilate ↑ 0.8550

Abbreviations: PE, phosphatidylethanolamines; PG, phosphatidylglycerols; PC, phosphatidylcholines; DG, diacylglycerols; PI, phosphatidylinositols; PS,

phosphatidylserines; PE-NMe, phosphatidyl-N-dimethylethanolamine; CE, cholesteryl ester; SM, sphingomyelin.
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C5a, IL-6, IL-7, IL-8, IL-1β and IL-21.46 Notably, by

obstructing the insulin signal transduction, IL-6 can induce

insulin resistance.47Moreover, IL-1β, IL-6, and IL-8 can lead
to β-cell deterioration in pancreatic islets.48 So an increase in
Flavonifractor may be associated with the development of

T2DM.

Some studies suggested that Phocea and

Pseudoflavonifractor are probiotic,49 but an increase of

them in fa/fa group may be due to a decrease of else

profitable strain. Other differential bacteria at genus level

included Blauita, Turicibacter, and Romboutsia. The for-

mer increased, but the latter two declined. According to

the previous reports, rich abundance Blauita is highly

related to glucose disorders, low levels of insulin and

arterial hypertension.50,51 So in this case abundant

Blautia and Lachnospiraceae were possibly related to

cardiovascular and cerebrovascular complications. The

abundance of Turicibacter significantly increases in the

early stage of diabetes.21 The genus Romboutsia was iso-

lated from the digestive samples of ileum for the first time

in 2014.52 For the past few years, studies have shown that

Romboutsia is negatively correlated with fasting glucose,

insulin, and HDL-C, and positively correlated with serum

TC, TG, and LDL-C.53–56 A recent study found

Romboutsia increased in T2DM mice model.57 Our experi-

ment firstly illustrated a clear correlation between

Romboutsia and T2DM in a diabetes rat model. But we

need further evidence to see if this strain is also compar-

ably sensitive in human T2DM prediction. The augment of

species Lactobacillus intestinalis is higher in fecal samples

of diabetic patients than in those of control subjects.58

Therefore, our study validated these biomarkers’ funda-

mental roles in predicting T2DM progression and asso-

ciated complications.

Meanwhile, the plasma metabolite profile also shows

variation between groups. PC(32:1) and PC(38:3) were

increased in diabetes in a prospective investigation in

European populations, which is consistent with our

results.30 In our analysis, PC(32:1) is accurate to PC

(16:0/16:1(9Z)) and PC(38:3) is accurate to PC(18:0/20:3

(5Z,8Z,11Z)). And a study found that some lipids, includ-

ing PE(16:0/22:6), were potential biomarkers for T2DM

patients.59

Changes in the bile acid pool can cause a shift in some

parameters of the metabolic syndrome (such as insulin resis-

tance, hyperglycemia, hepatic steatosis, lowHDL cholesterol

levels, and cardiovascular risk).60 DCA, a secondary bile

acid, is positively correlated with GLP-1, which has

a hypoglycemic effect.61 Although no study yet has con-

firmed that bile acid can be used as an early predictor and

diagnostic marker for T2DM, the results of our study sup-

ported that DCA should be further studied. DCA was also

proved to be one of the endogenous ligands of Farnesoid

X Receptor (FXR) that improved various dysfunctions of

glucose, cholesterol, lipid, triglyceride and cholesterol

metabolism.62–64 We already know that FXR-deficient mice

have lower serum leptin concentrations, increased plasma-

free fatty acid levels, and insulin resistance.65,66

Mechanistically, the decrease of DCA is related to the

reduced absolute abundance of Bacteroidetes, the bacteria

involved in DCA generation.67 Our research indicates

reduced DCA also positively correlates with some members

in Firmicutes, inclusive of the evolutionary branching of

class Erysipelotrichia, family Peptostreptococcaceae and

genus Turicibacter, Romboutsia. So it is reasonable to take

DCA as a potential plasma metabolites biomarker in T2DM

according to the correlation between gut microbiota

abundance.

Except forDCA, the top 20metabolites selected by p-value

are most influenced by genus Phocea, Pseudoflavonifractor

and species Lactobacillus intestinalis. The relative abundance

of these three strains all decreased in the fa/fa group.

Furthermore, genusPhocea, Pseudoflavonifractor both belong

to family Ruminococcaceae which is related to energy meta-

bolism and insulin sensitivity.68 It may reflect that some mem-

bers of familyRuminococcaceae disrupt themetabolic balance

then aggravate the metabolic disorders of T2DM patients.

However, we cannot draw a definite conclusion on

whether T2DM changes the intestinal microflora, which

in turn accentuates further disease, or pathogenic factors,

such as unhealthy diet and obesity, changes gut microbiota

first, thus speed up the development of sub-health leading

to T2DM, or both of these situations exist.

Our study makes the influential pathway of intestinal

microbe on T2DM clearer, but we also need to study

further about the causal relationship between intestinal

microbe and T2DM, so as to find the target of T2DM

treatment or preventive measures.

Conclusion
The results showed that compared with the control group,

the intestinal microbiome and plasma metabolomics of

ZDF fa/fa rats were changed. There are 12 potential bio-

markers of gut microbes associated with T2DM complica-

tions and hundreds of different metabolites, including

DCA, were identified. In addition, correlation analysis
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showed that some intestinal bacteria were highly corre-

lated with changes in plasma metabolites. In summary,

these data indicated that perturbation in the intestinal

microbial community in T2DM hosts is related to disor-

ders of metabolic level. Thus, these florae may be crucial

biomarkers for future studies on the pathogenesis of

T2DM and its complications.
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