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Abstract: Nesfatin-1, a newly identified energy-regulating peptide, is widely expressed in 
the central and peripheral tissues, and has a variety of physiological activities. A large 
number of recent studies have shown that nesfatin-1 exhibits antioxidant, anti- 
inflammatory, and anti-apoptotic properties and is involved in the occurrence and progression 
of various diseases. This review summarizes current data focusing on the therapeutic effects 
of nesfatin-1 under different pathophysiological conditions and the mechanisms underlying 
its antioxidant, anti-inflammatory, and anti-apoptotic activities. 
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Introduction
Nesfatin-1 was first discovered in the hypothalamic nuclei and was initially 
reported to reduce food intake.1 Studies have shown that nesfatin-1 is widely 
expressed in central and peripheral tissues and has pleiotropic effects.2 More recent 
evidence indicates that nesfatin-1 exerts antioxidant, anti-inflammatory, and anti- 
apoptotic effects in different inflammation-related diseases.3,4 In this review, we 
provide a brief account of the structure, localization, and functions of nesfatin-1, 
and mainly focus on the experimental evidence for the antioxidant, anti- 
inflammatory, and anti-apoptotic effects of nesfatin-1 and its possible mechanism.

Structure and Localization of Nesfatin-1
Nesfatin-1, an 82-amino acid peptide discovered by Oh-I in 2006, is derived from 
the precursor protein nucleobindin-2 (NUCB2).5 The product of the NUCB2 gene is 
a peptide with 420 amino acid (AA), which is composed of a 396 AA long 
precursor peptide and a 24 AA long signal peptide (SP). The precursor peptide is 
cleaved into three different parts by prohormone/proprotein convertase (PC) 1/3 and 
PC 2: nesfatin-1 (AA 1–82), nesfatin-2 (AA 85–163), and nesfatin-3 (AA 
166–396).5 The structure of nesfatin-1 can also be divided into three segments, 
namely N23, M30, and C29,6 among which M30 is critical for its anorexigenic 
action.7,8 However, no obvious biological activity has been detected for nesfatin-2 
or nesfatin-3.9 Figure 1 shows a schematic representation of nesfatin-1 processing 
from its precursor, NUCB2.

Initially, the paraventricular nucleus (PVN), arcuate nucleus (ARC), supraoptic 
nucleus (SON), and lateral hypothalamic area (LHA) in the hypothalamus were 
thought to be the main sites of nesfatin-1 expression.5 Subsequent studies have 
shown that nesfatin-1 is widely expressed in other regions of the brain also, like 
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brainstem, including dorsal vagal complex (DVC), Edinger- 
Westphal nucleus, locus coeruleus (LC), lateral parabrachial 
nucleus, ventrolateral medulla (VLM),10,11 insular cortex, 
central amygdala, ventrolateral medulla, cerebellar 
Purkinje cell, pterygopalatine parasympathetic preganglionic 
neurons, and spinal cord at the lumbar and sacral region.11 In 
addition to being widely expressed in the central nervous 
system, nesfatin-1 is also expressed in peripheral tissues, 
like esophagus,12 stomach, small intestine,13 colon, 
pancreas,14 liver, adipocytes,15 cardiomyocytes,16 testes,17 

ovaries,18 uterus and epididymis.19

Functions of Nesfatin-1
As an energy-regulating peptide, nesfatin-1 is widely 
expressed in both central and peripheral tissues.20 This, 
along with the fact that nesfatin-1 can cross the blood-brain 
barrier,21,22 suggests that nesfatin-1 may have pleiotropic 
effects. In addition to maintaining the feeding balance, this 
peptide plays an important role in glucose homeostasis,23 

lipid metabolism,24 modulation of gastrointestinal 
functions,25 cardiovascular,9 and reproductive functions.26 

It may also be involved in epilepsy,27 psychological disor-
ders, including stress,28 sleep disorders,29 anxiety,30 and 
depression.30

Antioxidant, Anti-Inflammatory, 
and Anti-Apoptotic Activities of 
Nesfatin-1 in Multiple Diseases
Besides its anorexigenic and anti-hyperglycemic effects, 
nesfatin-1 has recently been reported to have potent 

anti-inflammatory, anti-apoptotic, and anti-oxidative 
capabilities, which can ameliorate the symptoms of sev-
eral diseases (Figure 2).

Brain-Related Diseases
As cerebral ischemia/reperfusion (I/R) leads to neuroin-
flammation and neuronal apoptosis,31,32 prevention of 
these processes is recommended as a treatment to com-
pensate for the brain damage.33 Erfani et al34 showed that 
nesfatin-1 could significantly improve the memory impair-
ment caused by cerebral I/R by reducing the activity of 
caspase-3, an apoptosis-associated protein, in the pyrami-
dal cells in CA1 area of the hippocampus, and decreasing 
the number of Iba-1 positive cells;34 Iba-1 is an immuno-
histochemical marker for activated microglia.35 Consistent 
with these results, another study36 demonstrated the use-
fulness of nesfatin-1 in the treatment of cerebral I/R 
through inhibition lipid peroxidation, increase in the 
expression of anti-apoptotic protein Bcl-2, and reduction 
of the Bax-mediated neuronal apoptosis. The neuroprotec-
tive effects of nesfatin-1 through its anti-inflammatory and 
anti-apoptotic activities has also been reported in two other 
brain-related diseases; reduction of caspase-3-mediated 
nerve cell apoptosis and inhibition of release of mediators 
of inflammation in the brain damage through trauma37 and 
through subarachnoid hemorrhage.38

Parkinson’s disease (PD), a neurodegenerative disease, is 
characterized by the loss of dopaminergic neurons in the 
substantia nigra of the brain.39 Increasing evidence indicate 
that PD is related to mitochondrial dysfunction through mul-
tiple pathways, including free radical generation, inflamma-
tion, and apoptosis.40,41 Numerous studies have shown that 
apoptosis, induced by mitochondrial dysfunction, plays 
a vital role in the incidence and development of PD,42,43 

suggesting that inhibition of apoptosis may be one of the 
treatment strategies for PD. Recently, rotenone-treated 
MES23.5 dopaminergic cells, a cellular model of PD, were 
used to study the neuroprotective effect of nesfatin-1 in PD 
and to understand the underlying mechanisms. The results 
indicated that treatment with nesfatin-1 inhibited the produc-
tion of rotenone-induced reactive oxygen species (ROS), 
release of mitochondrial cytochrome C, and subsequent acti-
vation of caspase-3.44 This suggested that nesfatin-1 exerts 
a neuroprotective effect in PD through its antioxidant and 
anti-apoptotic properties. More recently, the neuroprotective 
effect of nesfatin-1 in PD was further confirmed through 
in vivo and in vitro experiments, which showed that the anti- 
apoptotic C-Raf-extracellular signal-regulated protein kinase 

Figure 1 Schematic representation of the production of nesfatin-1 from its pre-
cursor NUCB2. 
Abbreviations: AA, amino acid; NUCB2, nucleobindin-2; PC, prohormone/pro-
protein convertase; SP, signal peptide.
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1/2 (ERK1/2) signaling pathway mediates the protective 
effect of nesfatin-1 on dopaminergic neurons against 
1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)- 
induced neurotoxicity in C57BL/6 mice and 1-methyl-4-phe-
nylpyridillium ion (MPP+)-induced cytotoxicity in MES23.5 
cells.45

Diabetic neuropathy (DN), one of the most debilitating 
outcomes of diabetes mellitus, is thought to be the conse-
quence of oxidative stress,46 inflammation,47 and neural 
apoptosis.48 More specifically, increased glucose levels 
damage the mitochondrial membrane and respiratory 
chain, resulting in the production of large amounts of 
ROS,49 which accelerate the damage of lipids, proteins, 
and nucleic acids, and eventually lead to inflammation and 
neural apoptosis.50 Due to its antioxidant, anti- 
inflammatory, and anti-apoptotic activities, nesfatin-1 
may have an ameliorating effect on DN. It has been 
reported51 that nesfatin-1 inhibits intracellular ROS 

overproduction and reduces apoptotic cell death in PC12 
cells following high-glucose exposure, a widely used 
in vitro model for DN, which makes nesfatin-1 
a potential drug for the treatment of DN against high 
glucose-induced cell death.

Gastric Diseases
Expression of nesfatin-1 in the stomach is reported to be 
20 times higher than that in the brain tissues in rats.52 

Lipopolysaccharide (LPS) administration is known to 
increase the production and release of gastric NUCB2/ 
nesfatin-1.53 Due to its anti-inflammatory properties, nes-
fatin-1 may have a protective effect against gastric injury.

Non-steroidal anti-inflammatory drugs (NSAIDs) are 
commonly used to treat various ailments. However, ser-
ious side effects of these drugs, such as bleeding, acute 
injury, and gastric ulcers, have been widely reported.54 

Recently, potential anti-ulcer and anti-inflammatory effects 

Figure 2 Nesfatin-1 exerts antioxidant, anti-inflammatory and anti-apoptotic effects in various diseases. 
Abbreviations: ISO, isoproterenol; LPS, lipopolysaccharide; PD, Parkinson’s disease.
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of nesfatin-1 in a model of gastric ulcer induced by indo-
methacin, an NSAID with analgesic, antipyretic, and anti- 
inflammatory effects, were studied.55 The results showed 
thatnesfatin-1 alleviated the indomethacin-induced gastric 
injury, by supporting the balance of oxidant and 
antioxidant systems and inhibiting the production of proin-
flammatory mediators.55 Gastro-protective effect of nesfa-
tin-1was confirmed using acetic acid-induced gastric ulcer 
model. Nesfatin-1 promoted the healing of chronic gastric 
ulcers induced by acetic acid by accelerating the gastric 
blood flow and mucosal repair, and partially reversing the 
downregulation of superoxide dismutase (SOD) mRNA.56 

Moreover, nesfatin-1 treatment healed the acetic acid- 
induced gastric injury by inhibiting neutrophil infiltration 
and proinflammatory cytokine release, and promoting the 
antioxidant activity.57

Intraperitoneal injection of nesfatin-1 is shown to 
decrease the gastric lesions induced by water immersion 
and restraint stress (WRS), probably byinhibitingthe secre-
tion of gastric acid and attenuation of the expression and 
release of proinflammatory cytokines, including interleu-
kin-1β (IL-1β), and tumor necrosis factor-α (TNF-α).58

Cardiac Diseases
Detection of nesfatin-1 protein and mRNA in rat cardiac 
extracts by Western blotting and qRT-PCR59 suggests 
a physiological role for nesfatin-1 in cardiac myocytes. 
Myocardial I/R injury often causes oxidative stress and 
inflammation, which in turn, leads to apoptosis and necro-
sis of cardiomyocytes.60,61 Nesfatin-1 can prevent this 
injury by reducing the infarct size and post-ischemic con-
tracture, and by inhibiting the release of lactate 
dehydrogenase59 through its antioxidant properties. 
Myocardial infarction (MI) is one of the most common 
life-threatening diseases, which may lead to other diseases 
through oxidative stress and inflammation.62 Previous stu-
dies have suggested that the plasma level of nesfatin-1 in 
patients of acute myocardial infarction (AMI) was signifi-
cantly lower than that in healthy controls.63 Moreover, 
a negative correlation was reported between the levels of 
plasma nesfatin-1, and high-sensitivity C-reactive protein 
and neutrophils in AMI patients,63 indicating that reduced 
nesfatin-1 levels may abet the pathogenesis of AMI 
through inflammatory mechanisms. In vivostudiesalso 
confirmed the cardioprotective effect of nesfatin-1. 
Isoproterenol (ISO)-induced MI in rats is a commonly 
used experimental model to evaluate the protective effect 
of various cardioprotective agents against human MI.64,65 

Intraperitoneal administration of nesfatin-1 (10 μg/kg/day) 
conferred significant cardioprotection against the induced 
MI in this model by lowering the levels of proinflamma-
tory cytokines and reducing the number of apoptotic and 
necrotic cells in the myocardium.3

Intestinal Diseases
Necrotizing enterocolitis (NEC), a leading cause of gastro-
intestinal morbidity in premature infants, is an inflamma-
tory disease with systemic repercussion.66 It is 
characterized by excessive inflammatory infiltration of 
intestinal mucosa, resulting in the destruction of the intest-
inal barrier.67 Therefore, drugs with anti-inflammatory 
effects are likely to contribute to healing and prevent the 
development and progression of the disease. Nesfatin-1 
ameliorated the survival rate and oxidative damage of 
NEC-induced neonatal intestine by supporting the balance 
of the oxidative/antioxidant system, inhibiting the NF- 
κB-65 pathway, and reversing NEC-induced dysbiosis.68

Ulcerative colitis (UC), an idiopathic inflammatory 
bowel disease, leads to bloody diarrhea and inflammatory 
alterations mostly in the large intestine, and affecting the 
colon and rectum.69 Overproduction of ROS and conse-
quent inflammation of the mucosa are the important causes 
of tissue injury in UC.70 Recent studies have found that 
some peptide hormones may have a healing effect on UC. 
For instance, the anti-inflammatory effect of ghrelin is 
demonstrated in various types of chronic inflammation, 
including UC.71 Similarly, intracerebroventricular injec-
tion of nesfatin-1can restore the oxidative damage in the 
model of UC, probably through its anti-inflammatory 
action, by preventing neutrophil infiltration into the tissue, 
and its antioxidant activity, by suppressing free radical 
formation.72

Other Diseases
Testicular torsion is a urological emergency that may 
cause an ischemia-reperfusion injury to the testes.73 

Testicular ischemia leads to over-generation of ROS,74 

while the exhaustion of antioxidants, activation of neutro-
phils, increased production of pro-inflammatory cytokines 
and adhesion molecules, lead to testicular lipid peroxida-
tion and apoptosis,75,76 eventually damaging germ cells 
and sperm. Tamer et al77 recently demonstrated the anti-
oxidant, anti-inflammatory, and anti-apoptotic effects of 
nesfatin-1 on impaired testicular function induced by testis 
torsion. Treatment with nesfatin-1 reduced the pro- 
inflammatory cytokine expression, depressed apoptosis, 
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degeneration of seminiferous tubules, and ameliorated the 
oxidative damage and preserved spermatogenic cells in 
torsioned rat testes.77 Moreover, nesfatin-1 promotes pub-
erty, spermatogenesis and steroid production in 
pre-pubertal male mice by directly acting on the testes, 
accompanied by reduced oxidative stress.78 Similarly, the 
stimulatory effects of nesfatin-1 on spermatogenesis and 
steroidogenesis may be related to its antioxidant and anti- 
apoptotic activities.79 Further, it ameliorates the type-2 
diabetes mellitus (T2DM)-associated testicular dysfunc-
tion and decreases the production of antioxidative 
enzymes in mice with T2DM.80 In addition, nesfatin-1 is 
also expressed in the reproductive organs of female mice 
and has been reported to be indispensable for the onset of 
normal puberty in female rats.81 Expression level of nes-
fatin-1 decreased significantly in pregnant rats, indicating 
the important role of nesfatin-1 in pregnancy and fetal 
development.82 Detailed study showed that serum levels 
of nesfatin-1 were negatively correlated with levels of 
IL-17A in both normal pregnancy and abortion model 
mice.83 IL-17A is a landmark cytokine secreted by the 
helper T cell subset Th17 cells, which plays an important 
role in the pathogenesis of inflammation, autoimmune 
diseases, and allogeneic organ rejection. Further studies 
have confirmed that compared to normal pregnant mice, in 
abortion model mice serum levels of anti-inflammatory 
cytokines, such as IL-4, IL-13, and IL-1ra were reduced, 
and the expression levels of nesfatin-1/NUCB2 in the 
implantation sites in the uterus were significantly 
increased.84 These results suggest a close relationship 
between nesfatin-1 and inflammatory cytokines in female 
reproductive physiology and pathology, but more studies 
are needed to support the anti-oxidative, antiapoptotic, and 
anti-inflammatory roles of nesfatin-1 in female reproduc-
tive function.

Osteoarthritis (OA) is a painful joint condition, char-
acterized by the breakdown of the cartilage matrix, pro-
gressive degeneration of the articular cartilage, 
inflammation of the synovial membrane, and osteophyte 
formation in the joints.85 Increasing evidence suggest that 
apoptosis of chondrocytes, the cellular component of the 
cartilage, plays a crucial role in the pathogenesis and 
development of OA,86–88 making apoptosis a potential 
target for OA treatment. A previous study has shown that 
the levels of nesfatin-1 in articular cartilage and serum of 
patients with OA were significantly higher than in healthy 
controls.89 Moreover, serum nesfatin-1 levels were posi-
tively correlated with high-sensitivity C-reactive protein 

levels, and synovial nesfatin-1 levels were also positively 
correlated with IL-18 levels.89 These results indicate 
a potentially pivotal role of nesfatin-1 in the pathophysiol-
ogy of OA. More recently, Jiang et al investigated the 
potential effect of nesfatin-1 on the rat OA model and 
IL-1β-stimulated chondrocytes, a useful model of OA 
chondrocytes.90 The results revealed that nesfatin-1 not 
only inhibits matrix metalloproteinase (MMP) expression 
and chondrocyte inflammation but also reduces apoptosis 
in rat chondrocytes,90 indicating a protective effect of 
nesfatin-1 in OA through its anti-inflammatory and anti- 
apoptotic activities.

Renal I/R causes severe oxidative damage to tissues 
and organs, the mechanisms of which may be related to 
oxidative stress, necrosis, apoptosis, adenosine tripho-
sphate depletion, and calcium dyshomeostasis.91,92 

An in vivo study conducted by Jiang et al93 showed that 
intraperitoneal administration of nesfatin-1 can signifi-
cantly improve the renal function and mitigate the cellular 
damage caused by I/R injury in murine model. Moreover, 
after nesfatin-1 treatment, the malondialdehyde (MDA) 
level decreased, while SOD and catalase (CAT) activities 
increased in the experimental rats, compared to untreated 
rats,93 suggesting that nesfatin-1 ameliorated renal I/R 
injury by inhibiting oxidative stress. Furthermore, the anti- 
apoptotic activity ofnesfatin-1 was also thought to be 
involved in the kidney protection it provides, as indicated 
by a significant decrease in apoptotic tubular cells, as well 
as a decrease in caspase-3 activity and an increase in the 
Bcl-2/Bax ratio.93 Therefore, nesfatin-1 has a therapeutic 
potential to prevent renal IR injury.

Acute lung injury (ALI), a major cause of morbidity 
and mortality in both humans and animals, is characterized 
by strong pulmonary inflammation, resulting in inflamma-
tory cell infiltration, alveolar capillary injury, abnormal 
release of ROS characterized by excessive oxidative stress, 
and apoptosis of alveolar epithelial cells.94 Inhibition of 
these processes is considered to be the key to relieve 
ALI.95,96 In an animal experiment, recombinant nesfatin- 
1 significantly ameliorated the symptoms of ALI and 
reduced the level of inflammation and oxidative stress in 
lung tissue of mice treated with LPS.4 Similartherapeutic 
effects of nesfatin-1 were observed in the human alveolar 
epithelial cell line BEAS-2B incubated with LPS, an ALI 
cell model.4

Hyperglycemia affects and delays wound healing, 
but the specific underlying mechanism is still 
unclear.97 It has been suggested that prolonged 
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inflammation, delayed re-epithelialization, and consis-
tent oxidative stress may correlate the high blood glu-
cose levels with impaired wound healing.98 Treatment 
for three consecutive days with nesfatin-1 (2 μg/kg/day) 
inhibited apoptosis and oxidative stress in the skin, 
decreased the plasma levels of inflammatory factors 
IL-1β and interleukin-6 (IL-6), and improved surgical 
wound healing in both normoglycemic and hyperglyce-
mic rats.99 This indicates that nesfatin-1 may play 
a potent role in promoting wound healing through its 
antioxidant, anti-inflammatory, and anti-apoptotic 
potential.

Obstructive jaundice is a medical condition caused by 
blockage of the body’s biliary system.100 The main causes 
of the obstructive jaundice and the consequent liver 
damage are persistent inflammation and oxidative 
stress.101 Because of this, various antioxidants have been 
tested in experimental obstructive jaundice models.102–104 

Solmaz et al105 found that nesfatin-1 reduced the oxidative 
damage of the liver through its anti-inflammatory and 
antioxidant effects,105 and may become a potential drug 
for the treatment of obstructive jaundice.

Mechanisms and Pathways That 
Mediate the Antioxidant, 
Anti-Inflammatory, and 
Anti-Apoptotic Effects of Nesfatin-1
Increasing evidence indicate the role of ROS as second-
ary messengers in the initiation and amplification of cell 
signaling, which have key roles in cell proliferation, 
apoptosis, oxidative damage of cells, and 
inflammation.106,107 More specifically, imbalances in 
ROS homeostasis may lead to oxidation-anti-oxidation 
imbalance, increase oxidative stress, and result in oxida-
tive damage to biological macromolecules such as lipids, 

Figure 3 Mechanisms and intracellular processes through which nesfatin-1 exerts its antioxidant, anti-inflammatory and anti-apoptotic effects. 
Abbreviations: CAT, catalase; GSH, glutathione; IL-1β, interleukin-1β; IL-6, interleukin-6; MDA, malondialdehyde; MPO, myeloperoxidase; ROS, reactive oxygen species; 
SOD, superoxide dismutase; TNF-α, tumor necrosis factor-α.
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DNA, and proteins.108 ROS have also been reported as 
key mediators of inflammation.109 By activating the NF- 
κB pathway and enhancing the sensitivity of IL-1β, 
TNF-α, and IL-6, ROS can induce cellular 

inflammation.110 Promotion of apoptosis is another cru-
cial feature of ROS.111 ROS promote apoptosis by 
increasing mitochondrial membrane permeability, med-
iating cytochrome C release, and enhancing caspase 9 

Table 1 Mechanisms of Nesfatin-1 Exerting Antioxidant, Anti-Inflammatory and Anti-Apoptotic Effects

Diseases Mechanisms Effects Literature

cerebral I/R decrease the number of Iba-1-positive cells anti-inflammatory 34,36
maintain the balance of oxidant/antioxidant systems antioxidant

decrease Caspase-3 activity and increase Bcl-2/Bax ratio anti-apoptotic

subarachnoid hemorrhage inhibit neutrophil infiltration and subsequent release of 

inflammatory mediators

anti-inflammatory/anti-apoptotic 38

traumatic brain inhibit NF-κB pathway anti-inflammatory 37
lessen Caspase-3 activity anti-apoptotic

diabetic neuropathy inhibit intracellular ROS overproduction and reduce the 
apoptotic cell death

antioxidant/anti-apoptotic 51

PD (MPP+/MPTP-induced) activate c-Raf-ERK1/2 pathway anti-apoptotic 45

PD (rotenone-induced) inhibit the release of cytochrome C from mitochondria, ROS 

production and Caspase-3 activation

antioxidant/anti-apoptotic 44

acetic acid-induced gastric 

ulcer

modulation of oxidant-antioxidant balance, inhibit neutrophil 

infiltration and proinflammatory cytokine release by a COX- 
dependent mechanism

antioxidant/anti-inflammatory 57

indomethacin-induced gastric 
ulcer

support the balance in oxidant and antioxidant systems antioxidant 55
inhibit the generation of pro-inflammatory mediators anti-inflammatory

chronic gastric ulcers downregulation of SOD mRNA antioxidant 56

stress-induced acute gastric 

injury

inhibit expression and release of proinflammatory cytokines anti-inflammatory 58

myocardial infarction activate Akt/GSK-3β pathway anti-inflammatory/anti-apoptotic 3

cardiac I/R inhibit the release of lactate dehydrogenase antioxidant 59

necrotizing enterocolitis inhibit NF-κB-65 pathway and maintain the balance of 

oxidant/antioxidant systems

antioxidant/anti-inflammatory 68

ulcerative colitis suppress the free radical formation antioxidant 72
prevent neutrophil infiltration anti-inflammatory

testis torsion the AKT and CREB signaling pathways anti-inflammatory/anti-apoptotic 77

osteoarthritis inhibit NF-κB, MAPK, and the Bax/Bcl-2 signal pathway antioxidant/anti-inflammatory 

/anti-apoptotic

90

renal I/R decrease Caspase-3 activity and increase Bcl-2/Bax ratio anti-apoptotic 93
maintain the balance of oxidant/antioxidant systems antioxidant

LPS-induced AMI inhibit HMGB1/p38MAPK/NF-κB-65 pathway antioxidant/anti-inflammatory 4

skin injury maintain the intracellular antioxidant pools antioxidant/anti-inflammatory 99

obstructive jaundice decrease malondialdehyde levels antioxidant 105

prevent neutrophil infiltration anti-inflammatory

Abbreviations: AMI, acute myocardial infarction; COX, cyclooxygenase; I/R, ischemia/reperfusion; LPS, lipopolysaccharide; MPP+, 1-methyl-4-phenylpyridillium ion; MPTP, 
1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine; PD, Parkinson’s disease; ROS, reactive oxygen species; SOD, superoxide dismutase.
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activation and formation of apoptosis complex.112 The 
intracellular processes of ROS-induced oxidative stress, 
inflammation, and apoptosis are summarized in Figure 3.

Some therapeutic agents can target an interconnected 
network of signaling pathways to treat diseases. For exam-
ple, selenium nanoparticles contribute to neuronal survival 
by targeting different cellular signaling pathways that reg-
ulate cellular metabolism, oxidative defense system, 
inflammatory reactions, autophagy, and apoptotic cell 
death.113 Nesfatin-1 plays a protective role in a variety of 
diseases by regulating ROS-induced oxidative stress, 
inflammation, and apoptosis (Figure 3). Nesfatin-1 treat-
ment exerts its antioxidant effect by inhibiting intracellular 
ROS overproduction and maintaining the balance of oxi-
dant/antioxidant systems, by decreasing the levels of lac-
tate dehydrogenase, MPA, and MDA, and increasing the 
levels of SOD, CAT, and glutathione (GSH), as well as 
suppressing the free radical formation. Nesfatin-1 exerts 
its anti-inflammatory effects through several mechanisms. 
(1) Regulation of inflammatory cells. Nesfatin-1 inhibits 
inflammation by inhibiting neutrophil infiltration, decreas-
ing the number of Iba-1-positive cells, and inhibiting 
astrocyte activation. (2) Decreasing the subsequent release 
of inflammatory mediators. (3) Modulation of various 
inflammation-related signaling pathways, including the 
NF-κB pathway, Akt/GSK-3β pathway, and CREB signal-
ing pathway.

The anti-apoptotic effect of nesfatin-1 is relevant to the 
inhibition of mitochondria-associated apoptotic signaling via 
caspase-dependent pathways by decreasing the loss of mito-
chondrial membrane potential, increasing the Bcl-2/Bax 
ratio, inhibiting the release of cytochrome C from mitochon-
dria, and decreasing caspase-3 activity. Additionally, activa-
tion of the C-Raf-ERK1/2 pathway is reported to be involved 
in the protective effects of nesfatin-1 against apoptosis.Table 
1 shows the cellular, molecular, and biochemical mechan-
isms of nesfatin-1 exerting antioxidant, anti-inflammatory, 
and anti-apoptotic effects in multiple diseases.

Conclusion
The reviewed data suggest that nesfatin-1 plays an ameli-
orative role in different pathophysiological conditions 
through its antioxidant, anti-inflammatory, and anti- 
apoptotic properties. Because the receptor of nesfatin-1 
has not yet been identified, the exact mechanisms involved 
in the biological effects of nesfatin-1 are still unclear. 
Detailed understanding of the biological processes under-
lying the antioxidant, anti-inflammatory, and anti- 

apoptotic effects of nesfatin-1 may pave the way for the 
design of new promising drugs.
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