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Abstract: Optogenetics combines the biological techniques of optics and genetics and uses 
light to control the activities of living tissues such as neurons and heart. Optogenetic actuators 
like channelrhodopsin (ChR), halorhodopsin (NpHR), and archaerhodopsin (bacterio-opsin) 
provide specificity for neuronal or cardiac controls, and the field has made much progress in 
heart research since its introduction almost a decade ago. This review will provide information 
about the history, research highlights and clinical applications of optical coherence tomography 
(OCT) technology. The clinical translation of cardiac optogenetics will be towards human and 
larger mammalian animal model applications and ultimately optogenetics may have the power to 
restore normal heart rhythm and greatly improve quality of life. 
Keywords: optical coherence tomography, channelrhodopsin, halorhodopsin, 
archaerhodopsin, Drosophila, heart

Introduction of Optogenetics
Optogenetics is a combined biological technique from both the optics and genetic 
fields that uses light to control the activities of living tissues such as neurons and 
heart.

Optical coherence tomography (OCT) provides novel three-dimensional (3D) 
imaging.1–3 Combined with OCT, optical coherence microscopy (OCM) provides 
high-resolution imaging.4–10 The image resolution of OCT (~5–10 µm in tissue) 
and OCM (~1–3 µm) is 50x–100x greater than conventional ultrasound, MRI, or 
CT. OCT and OCM have been used for medical imaging. Commercially, OCT 
systems provide a series of applications, such as in interventional cardiology for 
diagnosis,11 in ophthalmology and optometry for the retina12 and in dermatology to 
improve diagnosis.13

Specific neuronal or cardiac control are provided by optogenetic actuators such 
as channelrhodopsin (ChR),14 halorhodopsin (NpHR),15 and archaerhodopsin (bac
terio-opsin). ChRs are retinylidene proteins (rhodopsins) that are sensory photo
receptors responded to light.14 NpHR is a chloride ion-specific light-gated ion that 
responds to green/yellow light,15–18 that senses light in vertebrate retina 
rhodopsins.18 Bacterio-opsins are a family of receptor proteins in archaea that 
have light inhibiting action potential.19–22

The History of Optogenetics
In 2002 the American scientist Boris Zemelman and the British scientist Gero 
Miesenböck used fly rhodopsin photoreceptors to control neural activity23 and in 
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2005 Peter Hegemann expressed ChR2 in mammalian 
cells and oocytes, Zhuo-Hua Pan transfected neurons in 
a manner that allowed them to be electrically active 
responsive to light24 and Kramer and Isacoff developed 
organic photoswitches interacting with ion channels.25,26

Also in 2005, Lima and Miesenböck were the first to 
demonstrate the use of optogenetics control the animal 
behavior,27 Karl Deisseroth and Feng Zhang were the 
first to use channelrhodopsin28 and Georg Nagel first 
reported a single-component light-activated cation 
channel,28 while Lynn Landmesser and Stefan Herlitze 
controlled neuronal activity using ChR2 and were also 
the first to use vertebrate rhodopsin in neurons.29

Alexander Gottschalk and Georg Nagel first used 
Channelrhodopsin-2 (CHR2) for controlling neuronal 
activity in 200530 and in the same year they were also 
the first to make a ChR2 mutant (H134R) for modifying 
neuronal activity.31

In 2006 Atsushi Miyawaki et al and Roger Tsien et al 
developed optogenetic recordings called calcium indicators 
(GECIs)32,33 in flies and zebrafish,34,35 while Nakai et al 
developed the first GECI to be used in mammals,36 and in 
2007 Feng Zhang and Karl Deisseroth with Georg Nagel, 
Alexander Gottschalkn, Peter Hegemann and Ernst Bamberg 
were the first to publish optogenetic inhibition research in 
mammals.37

Awards in OCT field include the inaugural HFSP 
Nakasone Award to Karl Deisseroth in 2010, the InBev- 
Baillet Latour International Health Prize to Gero 
Miesenböck in 2012, the Brain Prize to Ernst Bamberg 
et al in 2013, and the Else Kröner Fresenius Research 
Prize to Karl Deisseroth for in 2017.

Optogenetics was chosen as the Method of the Year 
2010 and the Breakthroughs of the Decade by the promi
nent research journals Nature Methods and Science, 
respectively (https://www.medinc.co.uk/optogenetics- 
breakthrough-of-the-decade-by-dr-zulfiquar/). The appli
cation of the first Drosophila heart study using OCT in 
2015 was featured on the Discovery channel and in the 
Boston Globe (Light - powered hearts? https://www.bos 
tonglobe.com/lifestyle/2015/10/25/light-powered-hearts 
/ETWV7DZU6pwMNm1P59TLGL/story.html).

Drosophila Heart Has Alterations in 
Development
The Drosophila heart has marked morphological and func
tional changes during development as seen through 

a longitudinal study of various development stages. The 
heart beat is reduced dramatically when the fly is in the 
pupal stage and stops beating during pupae 2 (Figure 1). 
These data show that a circadian clock gene dCry affected 
heart38 in heart development and functioning.38

Blue Light Optogenetic Pacing in 
Drosophila Melanogaster
An integrated ultrahigh resolution OCM imaging and optoge
netic pacing system used to non-invasively monitor 
Drosophila heart in response to optical stimulations have 
clearly shown mCherry fluorescence signal in the heart of 
a ChR2-mCherry transgenic fly compared to a wild-type con
trol fly (Figure 2) 39 and using these transgenic Drosophila 
models, the fly heart showed successfully pacing.39

Red Light Optogenetic Pacing in 
Drosophila Melanogaster
Optogenetic fly models are sensitive to the fact that red 
light is absorbed less strongly than blue light to increase 
the excitability of the heart tissue and flies expressing 
ReaChR were able to be tachypaced under red light sti
mulation (Figure 3).40,41

Optogenetic Control of Cardiac 
Arrhythmia
Optogenetics has the capability to treat the cardiac conduction 
system, restore pacemaking ability and terminate cardiac 
arrhythmias.42 Cardiac tissue exposed to optogenetic tools 
can provide mechanistic insights into arrhythmia.43 Shift 
light tuned behavior through photosensitive ion channels and 
pumps (opsins) by optogenetic methods and pacing of cardiac 
preparations have now been successful in several experimental 
models.44 The opsins induce reliable, precise stimulation or 
silencing of electrophysiological activity in the cardiac cells.45 

ChR2 expressed in cardiomyocytes can sensitively activate 
Ca2+ signaling properties45 and ChR2 expression in transgenic 
mice controlled heart muscles in vivo.42 Stimulation of Gs- 
signaling in cardiomyocytes and the whole heart by optoge
netics was documented in the light-sensitive Gs-protein 
coupled receptor in mice cardiac tissue.46 Self-sustained spiral 
waves in heart can be manipulated precisely to influence 
cardiac function and overall dynamics in cardiac excitable 
media.47 Studies have demonstrated that near-infrared (NIR) 
light has the ability for tissue-penetration and NIR had the 
potential to manipulate cardiovascular diseases non- 
invasively.48 The red-shifted opsins achieved greater tissue 
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depths than conventional blue-sensitive channel-rhodopsins.45 

These studies have increased our understanding of cardiac 
physiology.

Rapid antitachycardia pacing produced by an electric 
shock can resynchronize the heart and terminate arrhythmias 

such as atrial fibrillation (AF).49 Electric shock functions in 
electrical defibrillation in mice cardiomyocytes50–52 and 
atrial neonatal rat cardiomyocytes.53 Aging may significantly 
reduce heart rate via electrical pacing in Drosophila, similar 
to that seen in elderly humans. Age was also associated with 

Figure 1 (A) Heart remodeling during Drosophila lifecycle were by OCM sections. (B) Heart variations at different developmental stages were by M-mode images. 
Reproduced from Alex A, Li AR, Zeng XX, et al. A circadian clock gene, cry, affects heart morphogenesis and function in drosophila as revealed by optical coherence 
microscopy. PLoS One. 2015;10(9):e013723. Creative Commons license and disclaimer available from: http://creativecommons.org/licenses/by/4.0/legalcode.38 Scale bars 
represent 500 µm.

Figure 2 Optogenetic pacing in Drosophila. (A) mCherry fluorescence signal was clearly observed in the heart of an adult 24B-GAL4; UAS-H134R-ChR2 fly specimen. No 
fluorescence signal was observed from the wild-type control fly (24B-GAL4/+). (B) M-mode OCM image and measurements of heart chamber size showing successful pacing 
of a pupa heart using blue light pulses. Alex A, Li A, Tanzi RE, Zhou C. Optogenetic pacing in Drosophila melanogaster. Sci Advan. 2015;1:e1500639. Reprinted with 
permission from Alex et al. Optogenetic pacing in Drosophila melanogaster.Sci. Adv. 2015;1:e1500639. Distributed under CC BY-NC.39
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an increase in rhythm disturbances.54 In Drosophila, NpHR 
stops the heart rate from beating in relation to light 
intensity.55

During Drosophila metamorphosis glutamatergic neu
rons provide extensive innervation to the adult heart. 
Muscles of the first abdominal cardiac chamber showed 
pacemaker action potentials.56

Optogenetic pacing of adult hearts may characterize 
the effects in flies.57 KCNQ1 in humans is related to 

myocardial repolarization and KCNQ1 mutant Drosophila 
showed abnormal contractions and fibrillations.57

Of the genes identified in Drosophila genetic screens, 
mutants in a fly orthologue of epidermal growth factor 
(EGF) rhomboid 3 enlarged cardiac chambers.58 Proper 
EGFR signaling maintains adult cardiac function.58 

A mutation in the Notch ortholog weary (wry) results in 
dilated cardiomyopathy.59 Insulin-IGF receptor signaling 
regulates the age-dependent changes in cardiac function60.

Figure 3 Flies are optogenetically cardiac paced by the ReaChR-expressing Drosophila using red light. ReaChR and WT flies of M-mode images were acquired during pacing 
at the larval (A), early pupal (B), late pupal (C), and adult (D) stages. Reproduced from Men J, Li A, Jerwick J, Li Z, Tanzi RE, Zhou C. Non-invasive red-light optogenetic 
control of Drosophila cardiac function. Comm Biol. 2020;3:336.  Creative Commons license and disclaimer available from: http://creativecommons.org/licenses/by/4.0/ 
legalcode. 40 Methods was used from reference41 to create this image.
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Multimodal and multisite pacing studies showed chronic 
stability and excellent biocompatibility in small animals.61

Clinical Applications of OCT in Heart
Coronary vasculature and coronary graft assessment are pri
mary applications of OCT in cardiovascular medicine. 
Clinically, several systems have become commercially 
available.

OCT can assist patients who have stable coronary 
artery disease for a more detailed lumen segmentation. 
On the other hand, in patients with acute coronary syn
drome, intraluminal thrombus can be detected at 100% 
with OCT in comparison to coronary angioscopy62–65 

which detected plaques in 79% and stenosis in 24% of 
patients.66

The Future of Optogenetics
Optogenetics can control and monitor the biological func
tion of cells, tissues or organs. The field has made sig
nificant progress in heart research from its inception 
almost a decade ago. This review has provided informa
tion on the introduction, history, research highlights and 
clinical applications of OCT technology.

The direction of clinical translation of cardiac optoge
netics in human application appears to be towards larger 
mammalian animal models and tools such as safe and 
stable opsin expression in heart.43 Because optogenetics 
may restore normal heart rhythm to increase the overall 
quality of life67–69 and action potential duration of ChR2- 
or NpHR can be modulated in opsin-expressing rat 
cardiomyocytes,70 optogenetics may potentially play an 
important therapeutic role in treating heart diseases.

OCT will likely be of great assistance in Drosophila 
genetic screens that can be designed to identify additional 
cardiovascular-related genes and may also be valuable in 
assessing pre-clinical drug development cardiotoxicity, 
which account for approximately 20% of withdrawal of 
drug development.71,72 Electrophysiology measures used 
to detect cardiotoxicity are often low throughput67,73 and 
efficient high throughput screening tools that significantly 
reduce cost are needed.71,72 Overall, it is clear that opto
genetics has the potential for use in evaluating cardiotoxi
city through high throughput and automation.
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