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Abstract: It has been noticed that the efficiency of drug development has been decreasing in 
the past few decades. To overcome the situation, protein–protein interactions (PPIs) have 
been identified as new drug targets as early as 2000. PPIs are more abundant in human cells 
than single proteins and play numerous important roles in cellular processes including 
diseases. However, PPIs have very different physicochemical features from the conventional 
drug targets, which make targeting PPIs challenging. Therefore, as of now, only a small 
number of PPI inhibitors have been approved or progressed to a stage of clinical trial. In this 
article, we first overview previous works that analyzed differences between PPIs with PPI 
targeting ligands and conventional drugs with their binding pockets. Then, we constructed an 
up-to-date list of PPI targeting drugs that have been approved or are currently under clinical 
trial and have bound drug–target structures available. Using the dataset, we analyzed the PPIs 
and their ligands using several scores of druggability. Druggability scores showed that PPI 
sites and their drugs targeting PPIs are less druggable than conventional binding pockets and 
drugs, which also indicates that PPI drugs do not follow the conventional rules for drug 
design, such as Lipinski’s rule of five. Our analyses suggest that developing a new rule 
would be beneficial for guiding PPI-drug discovery. 
Keywords: protein–protein interaction, PPI, PPI drugs, drug discovery

Introduction
A core concept in modern drug discovery has been “one drug, one target”, which 
indicates that a drug will be designed to bind its specific target. Following this 
concept, a usual drug discovery process is initiated by identifying a proper target 
protein that has a well-defined binding pocket, so that a compound can be devel
oped that fits the binding pocket to modulate the function of the protein.

Although the conventional paradigm has led to many successful drug develop
ment projects,1 the efficiency of the process has been decreasing drastically in the 
last 60 years.2 One of the main reasons for this crisis is that the target space for the 
current paradigm is almost saturated. Therefore, from early 2000, researchers in 
drug discovery have been eagerly seeking new types of therapeutic targets, where 
protein–protein interactions (PPIs) have been identified as one of such new para
digms in the quest.3–7 PPIs play vital roles in various cellular processes, including 
many important diseases such as various cancers7 and Alzheimer’s disease.8

As a PPI is formed by two or more proteins, the total number of PPIs (inter
actome) is much larger than the individual human protein target space, which is 
estimated to be around 19,000.9 The Center for Cancer Systems Biology 
(CCSB) Interactome Database contains 13,993 human PPIs,10 and 3,787 viral 
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protein-human protein interactions,11 which were deter
mined by experiments. The Human Reference 
Interactome (HuRI),12 which contains 64,006 binary inter
actions. The STRING database13 contains 505,116 high- 
confidence experimentally determined or predicted human 
PPIs. Venkatesan et al14 estimated the size of human 
interactome as ~130,000 by comparing PPIs determined 
by them using yeast-two-hybrid method with known 
human PPIs. Stompf et al15 estimated the interactome 
size as 650,000 using a statistical approach that estimates 
the size of the entire network from sub-network data.

As experimental methods are known to have false 
positives, it is important to detect high-confidence interac
tions. Tyagi et al16 proposed to use homology against PPIs 
with experimentally solved structures to select high- 
confidence data. Karagoz et al17 developed a score for 
selecting high-confidence PPIs by integrating multiple dif
ferent types of information, such as the number of experi
mental methods performed, the number of publications, 
the number of data sources, and domain compositions of 
proteins in PPIs.

From 2004 to 2014, there were more than 40 PPIs that 
have been targeted, and several of them have further 
proceeded to clinical trials.18 Moreover, more than 800 
drug development projects related to PPIs were published 
in PubChem in 2012.19 The p53/Mdm2 complex is 
a typical example of a PPI target. P53 is a tumor suppres
sor protein that is strongly downregulated by MDM2 in 
cancerous cells. Therefore, re-activating p53 is considered 
as a promising anti-cancer drug design strategy.20 Since 
Mdm2 interacts with p53 to inhibit the protein, protein– 
protein interaction drugs (PPIDs) have been developed to 
modulate the p53/Mdm2 interaction.21 In ChEMBL,22 

there are 1,854 molecules that inhibit p53/Mdm2 interac
tion. Among them, 304 molecules have affinities less than 
1 nM (IC50); and interestingly, 303 of them violate the 
Lipinski’s rule of 5 (RO5),23 which implies that PPIDs 
tend to have different physicochemical features from typi
cal drug targets reflecting the unique nature of PPIs. In 
recent years, drug repurposing (DR) (also known as drug 
repositioning) has become a popular strategy. DR will be 
useful for targeting PPIs, too. There are computational 
methods developed for PPI targeted drugs. These methods 
enable us to extract similar PPI surfaces and to understand 
physical/functional interactions of proteins.24–26

In this article, we will discuss the difference of physi
cochemical features of PPIDs and conventional drug mole
cules. First, we review existing articles that discuss 

different natures of PPIs and PPIDs from conventional 
small chemical compound drugs designed for binding 
pockets. Then, to understand the current status of the PPI 
drug developments, we discuss the current list of PPI- 
PPID pairs that have experimentally solved tertiary struc
tures, which we collected from databases and literature. 
Next, we investigate the differences and the similarities of 
the PPIDs and typical small chemical compound drugs and 
their binding interfaces by using SiteScore,27 Quantitative 
Estimate of Druglikeness (QED),28 and FTMap.29 From 
the SiteScore and FTMap results, we observed that PPI 
sites have lower scores and less binding compound frag
ments than typical binding pockets. Our analysis also 
showed that PPIDs have less druggability (QED) score 
than non-PPI, regular drugs. The analyses clearly showed 
that the PPI sites and their drugs are less druggable from 
the viewpoint of the conventional drug discovery. Finally, 
we discuss the challenges and potential future directions 
for developing PPIDs.

Comparison Between PPI Interfaces and 
Binding Pockets, PPIDs and Conventional 
Drugs
In this section, we review existing works that compare PPI 
interfaces relative to binding pockets as well as PPIDs 
against conventional small chemical compound drugs.

Earlier works focused on the geometrical properties of 
PPIs with an interest in the structural biology of PPIs 
before the era of PPIDs. Janin and co-workers30,31 studied 
structures of protein–protein complexes, which were col
lected from the Protein Data Bank (PDB).32 The interface 
area of PPIs they analyzed ranged from 1,000 Å2 to 4,000 
Å2 with an average of 1,600 Å2, which were larger than 
typical binding pockets (300 Å2 to 1,000 Å2). They also 
found that PPIs usually have a planar shape, whereas drug- 
binding pockets have a concave shape so that drug mole
cules can bind. From the chemistry point of view, typical 
PPIs have a hydrophobic region, which is often called the 
PPI core.33,34 Amino acids that make up the core regions 
are more conserved than the rest of the protein–protein 
complex surfaces, which govern hydrophobic interaction 
between the proteins.35 The core region is surrounded by 
a rim region, which has a similar amino acid composition 
to the rest of a protein surface, whereas the core region 
mostly consists of aromatic residues.36

From late 2000, works have started to appear that 
analyze PPIs and pockets in the context of PPIDs. Fuller 
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et al used Q-SiteFinder to analyze the structure of PPI sites 
bound with PPIDs in comparison with conventional drug- 
binding pockets.37 Q-SiteFinder is a software for predict
ing ligand-binding pockets by examining interactions 
between the methyl probe and the query protein surface. 
The program predicts binding pockets on protein surface 
by ranking pockets according to the van der Waals energy 
between the methyl probe and the input protein structure, 
based on the assumption that a putative ligand could bind 
the site which have favorable van der Waals energy. For 
comparison, the authors used four datasets: 134 protein- 
ligand complexes from their previous work,38 50 bound 
protein-marketed-drug complexes from DrugBank,39 97 
protein–protein complexes,40 and 24 crystal structures of 
PPI sites with bound PPIDs collected by Wells and 
McClendon.41 The most distinguished feature of PPIs 
was that the average volume of top-ranked pockets of 
PPIs (261 Å3) was only about half of typical binding 
pockets (524 Å3). The authors also found that PPIDs 
tend to occupy six small pockets of an average size of 
55 Å3, while typical drugs bind to the top- or second- 
ranked pockets with a larger volume (~260 Å3).37

Since the PPI binding sites have different physico
chemical properties relative to conventional drug pockets, 
PPIDs also have contrasting features from the typical 
small compound drugs. For the typical ligands, a well- 
known rule called Lipinski’s RO5, describes drug- 
likeness of a small compound.23 It states that 
a compound is suitable for a drug if it has the molecular 
weight <500, logP <5, the number of hydrogen bond 
donors <10, and the number of hydrogen bond acceptors 
<5. Morelli et al analyzed ligands in the 2P2I database, 
a dataset of structures of PPI sites with bound PPIDs.42 

2P2I contains structures of protein–protein complexes and 
complexes of PPI sites and bound PPIDs that are stored in 
PDB.43 They found that properties of small-molecule 
PPIDs often substantially deviate from RO5. Instead of 
RO5, they proposed a new rule, the rule-of-four (RO4) for 
PPIDs: the molecular weight >400, logP >4, the number 
of rings >4, and the number of hydrogen bond acceptors 
>4. RO4 indicates that PPIDs are relatively heavier and 
more hydrophobic than traditional drug compounds. This 
is consistent with Sperandio et al, who analyzed the small 
compounds in the i-PPI database,44 which is a manually 
curated database of non-peptide PPI modulators. The 
database contains the target PPI information, the molecu
lar structure of compounds, physicochemical features, and 
the pharmacological data of PPIDs, which were extracted 

from literature.45 The authors compared 66 experimen
tally validated PPIDs from the i-PPI database and 557 
compounds from DrugBank. The average molecular 
weight, logP values, and topological polar surface area 
of PPIDs in the i-PPI database were, 421, 3.58, and 89 Å2, 
respectively, which were higher than compounds bound to 
typical pockets (341, 2.61, and 71 Å2, respectively) all 
with statistical significance (p-value < 0.001).

Morelli et al analyzed PPIDs using two ligand effi
ciency metrics, the binding efficiency index (BEI), which 
is computed as the pKi divided by the molecular weight, 
and the surface efficiency index (SEI), the binding free 
energy per unit of polar surface area.42 BEI and SEI are 
similar to the original concept of the ligand efficiency 
(LE), which is computed by dividing binding free energy 
of a compound with its number of heavy atoms.46 The 
affinity of a compound generally increases with the num
ber of heavy atoms and thus, it correlates with the mole
cular weight. However, for marketed drugs, reducing the 
molecular weight is important for lowering attrition rates. 
Thus, LE was introduced for selecting a good lead com
pound in high-throughput screening for developing com
mercial drug compounds. BEI and SEI, instead, introduced 
the molecular weight and the polar surface area as denomi
nators. To balance the molecular size and potency, both 
values should be optimized during the drug development 
process. The ideal values for BEI and SEI for idealized 
drug compounds are 27 and 18, respectively.47 Morelli 
et al compared 92 marketed drugs and 39 PPIDs in the 
2P2I database and showed that conventional drugs have 
mean BEI and SEI values of 25.8 and 14.5, respectively, 
while PPIDs have smaller values, 11.7 for BEI and 7.2 for 
SEI. The smaller value means that a compound has a large 
molecular weight (BEI) and polar surface area (SEI), thus 
not good for the general drug discovery process. The 
authors map the compounds to two-dimensional space of 
BEI and SEI. Most of the PPIDs fell to the region called 
“sub-optimal series that could not get optimized”.47

Turnbull and his colleagues analyzed PPIs and PPIDs 
from the viewpoint of fragment-based drug discovery 
(FBDD).48 FBDD can explore a larger chemical space as 
a compound is assembled from fragments.49 FBDD would 
be very suitable for developing PPIDs because PPIs have 
more subpockets, to each of which a binding fragment can 
be designed.37 It is known that bound fragments generally 
follow a rule-of-three (RO3) for conventional binding 
pockets: the molecular weight <300, the number of hydro
gen bond donors and acceptors ≤3, logP ≤3, the number of 
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rotatable bonds ≤3, and polar surface area ≤60 Å2.50 

Comparing 100 fragments that inhibit PPIs and 100 active 
fragments for non-PPI targets, the authors found that the 
properties of the two datasets generally follow RO3 but 
they have distinct value ranges. PPI fragments had 
a higher molecular weight on average, 278, than non-PPI 
targeting fragments (221), a higher hydrophobicity (2.48 
versus 1.77 for typical fragments), and more flexible, ie 
rotatable bonds (4.01 in contrast to 2.50 for typical frag
ments). PPIDs are generally heavier and more hydropho
bic than conventional drugs, which is consistent with the 
observation by Morelli et al.42

To summarize, PPIs have distinguished features from 
traditional binding pockets. PPIs have larger, flatter, and 
more hydrophobic surface respect to the traditional bind
ing pockets, and PPIs consist of a larger number of sub
pockets. To interact with PPIs, PPIDs also have different 
physicochemical characteristics from conventional drugs. 
PPIDs and their fragments have larger molecular weight, 
higher logP (more hydrophobic), and a larger number of 
hydrogen bond donors/acceptors than the typical drugs. 
The findings in the earlier works discussed above are 
summarized in Table 1.

PPI Drugs That are Approved or in 
Clinical Trials
To understand the progress and the current status of PPI 
drug developments, we collected PPIDs that are approved 
by the US Food and Drug Administration (FDA) and those 
currently in clinical trials from two databases, 2P2I,43 

TIMBAL,51 and two recent review articles52,53 (Table 2). 
In the table, we focused on modality (types of molecules 
used as drugs),54 clinical phase, the mode of action, and 
the target structure availability. Particularly, we confirmed 
that the drugs/drug candidates act on PPI interfaces but not 
at a distant site from the PPI interfaces. Table 2 is likely 
the most comprehensive list of PPIDs and drug candidates 
that have the tertiary structure information of their binding 
pose.

In constructing Table 2, we selected known PPIDs and 
drug candidates as follows: (i) we first extracted UniProt 
ID or target names from 2P2I, TIMBAL, and the recent 
review articles.52,53 This process yielded 30 UniProt IDs 
from 2P2I, 105 UniProt IDs from TIMBAL, and 40 targets 
from the review articles including duplicates from differ
ent sources. (ii) Next, we searched ChEMBL2622 with the 
identified UniProt ID and target names, and then obtained 

additional information of drugs/drug candidates from 
ChEMBL26 such as modality, clinical phase, mode of 
action from “APPROVED DRUG/PESTICIDE DATA” 
and the structure availability of the target proteins and 
PPI complexes from “TARGET INFORMATION”. After 
removing duplicated drugs/drug candidates, we obtained 
146 drugs/drug candidates for 57 PPI targets; 61 small- 
molecule drugs, 59 antibody drugs, 24 other protein drugs 
like peptide, one oligosaccharide drug, and one RNA 
aptamer. (iii) Finally, we checked whether the drugs/drug 
candidates act on PPI surfaces or not by visually checking 
available complex structures. From the list of drugs/drug 
candidates constructed in the previous step, we removed 
entries if they do not have available structures or if the 
complex structures show that they do not act on PPI 
surfaces. This remained the list in Table 2, which has 24 
drugs/drug candidates for 14 PPI targets. The 24 

Table 1 Summary of Earlier Works That Analyzed PPIs and PPI 
Drugs

Authors What They Found

Janin and 

coworkers30,31

● The interface area of PPIs range from 1000 Å2 

to 4000 Å2

● PPIs have a planar shape, whereas drug-binding 
pockets have a concave shape

Fuller et al37 ● The average volume of top-ranked pockets of 

PPIs (261 Å3) was about half of typical binding 
pockets (524 Å3)

● PPIDs tend to occupy six small pockets (~55 

Å3), while the typical drugs bind to the top- 
or second-ranked pockets with a larger volume 

(~260 Å3)

Morelli et al42 ● PPIDs often violates RO5
● Proposing RO4: molecular weight >400, logP 

>4, number of rings >4, number of hydrogen 

bond acceptors >4

Sperandio et al44 ● Molecular weight, logP, topological surface area 

of PPIDs are larger than those of typical drugs

Morelli et al42 ● Average BEI (11.7) and SEI (7.2) of PPIDs are 
lower than conventional drugs (BEI: 25.8, SEI: 

14.5)
● BEIs and SEIs of PPIDs fell to the region called 

“sub-optimal series that could not get 

optimized”

Turnbull et al48 ● Fragments from PPIDs have higher molecular 

weight, hydrophobicity, and larger number of 

flexible bonds than those from typical drugs
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Table 2 PPI Drugs/Candidates with Structure Information in PDB

Drug Name Target PPI Mode of Action* Action 
Type*

Highest 
Phase 
Reached*

Modality* Drug PDB 
ID**

Drug- 
Protein 
PDB 
ID*

Target PPI 
PDB ID**

Navitoclax BCL2/BAX Apoptosis regulator 
Bcl-2 inhibitor

Inhibitor 2 Small 
molecule

1XJ 4LVT 2XA0 (BCL2/ 
BAX)

Venetoclax BCL2/BAX Apoptosis regulator 
Bcl-2 inhibitor

Inhibitor Approved 
(2016)

Small 
molecule

LBM 6O0K 2XA0 (BCL2/ 
BAX)

ABT-737 BCLXL/BAK Apoptosis regulator 

Bcl-X inhibitor

Inhibitor 1 Small 

molecule

N3C 2YXJ 5FMK (BCLXL/ 

BAK)

Maraviroc CCR5/gp120 C-C chemokine 

receptor type 5 

antagonist

Antagonist Approved 

(2007)

Small 

molecule

MRV 4MBS 6MET (CCR5/ 

gp160/CD4) 

(not gp120)

Ipilimumab CTLA4/ 

CD86, 
CTLA4/ 

CD80

Cytotoxic 

T-lymphocyte 
protein 4 inhibitor

Inhibitor Approved 

(2011)

Antibody 5XJ3_A 

5XJ3_B

5XJ3 1I85 (CTLA4/ 

CD86) 
1I8L (CTLA4/ 

CD80)

Tremelimumab CTLA4/ 

CD86, 

CTLA4/ 
CD80

Cytotoxic 

T-lymphocyte 

protein 4 inhibitor

Inhibitor 3 Antibody 5GGV_L 

5GGV_H

5GGV 1I85 (CTLA4/ 

CD86) 

1I8L (CTLA4/ 
CD80)

Cyclosporine CYPA/CNA/ 
CNB

Cyclophilin 
A modulator

Modulator Approved 
(1983)

Protein PRD_000142 2X2C 1MF8 (CYPA/ 
CNA/CNB)

Abciximab FGG/ 
ITGA2B/ 

ITGB3

Integrin αIIb-β3 
inhibitor

Inhibitor Approved 
(1993)

Antibody 6V4P_C 
6V4P_D

6V4P 2VDQ 
(FGG/ITGA2B/ 

ITGB3)

Eptifibatide FGG/ 

ITGA2B/ 

ITGB3

Integrin αIIb-β3 

inhibitor

Inhibitor Approved 

(1998)

Protein 2VDN_C 2VDN 2VDQ 

(FGG/ITGA2B/ 

ITGB3)

Tirofiban FGG/ 

ITGA2B/ 
ITGB3

Integrin αIIb-β3 

inhibitor

Inhibitor Approved 

(1998)

Small 

molecule

AGG 2VDM 2VDQ 

(FGG/ITGA2B/ 
ITGB3)

Tacrolimus FKBP12/ 
CNA/CNB

FK506-binding 
protein 1A inhibitor

Inhibitor Approved 
(1994)

Small 
molecule

FK5 1BKF 6TZ8 (FKBP12/ 
CNA/CNB) 

(C. neoformans)

Sirolimus FKBP12/ 

MTOR

FK506-binding 

protein 1A inhibitor

Inhibitor Approved 

(1999)

Small 

molecule

RAP 1FAP 1FAP (FKBP12/ 

MTOR)

Pevonedistat NEDD8/ 

APPBP1/ 

UBA3

NEDD8 activating 

enzyme inhibitor

Inhibitor 3 Small 

molecule

B39 3GZN 3GZN 

(NEDD8/ 

APPBP1/UBA3)

AMG-232 P53/MDM2 E3 ubiquitin-protein 

ligase Mdm2 
inhibitor

Inhibitor 1 Small 

molecule

2SW 4OAS 1YCR (p53/ 

MDM2)

(Continued)
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compounds include 14 approved drugs for 10 PPI targets 
and ten drug candidates for seven PPI targets that are 
currently in clinical trials. Additionally, we also provide 
Supplementary Table S1, which lists all the 146 entries 
found in the step (ii).

We note that drug candidates under preclinical stages are 
not included the list even though those candidates often target 
typical PPIs in the field of drug discovery. For example, β- 
catenin/BCL9 complex is one of the such PPIs, which are not 
included in Table 2. It is currently considered as a key PPI in 
the Wnt/β-catenin signaling pathway, which is highly activated 
in several human cancers such as colorectal cancer, colon 
cancer, and breast cancer.55,56 For inhibiting the β-catenin 

/BCL9 PPI, a few stapled peptide inhibitors have been 
designed.57,58 Sang et al recently designed a series of novel α- 
helical sulfono-γ-AApeptide inhibitors mimicking binding 
mode of the α-helical HD2 domain of BCL9.59 Also, several 
small-molecule inhibitors have been designed based on struc
ture-based approaches as well by mimicking the binding mode 
of side chains of hot spots of the α-helical HD2 domain.60–62

In Table 2, there are six small-molecule drugs (four 
inhibitors, one antagonist, and one stabilizer), six antibody 
drugs (six inhibitors), and two protein drugs (one inhibitor 
and one modulator), which were already approved by FDA. 
Drugs in clinical trials are eight small-molecule inhibitors 
and two antibody drugs (one inhibitor and one agonist).

Table 2 (Continued). 

Drug Name Target PPI Mode of Action* Action 
Type*

Highest 
Phase 
Reached*

Modality* Drug PDB 
ID**

Drug- 
Protein 
PDB 
ID*

Target PPI 
PDB ID**

CGM097 P53/MDM2 E3 ubiquitin-protein 

ligase Mdm2 

inhibitor

Inhibitor 1 Small 

molecule

4T4 4ZYF 1YCR (p53/ 

MDM2)

Nutlin-2 P53/MDM2 E3 ubiquitin-protein 

ligase Mdm2 
inhibitor

Inhibitor 0 Small 

molecule

IMZ 1RV1 1YCR (p53/ 

MDM2)

RO-5045337 P53/MDM2 E3 ubiquitin-protein 
ligase Mdm2 

inhibitor

Inhibitor 1 Small 
molecule

1F0 4IPF(X. 
laevis)

1YCR (p53/ 
MDM2)

SAR-405838 P53/MDM2 E3 ubiquitin-protein 

ligase Mdm2 

inhibitor

Inhibitor 1 Small 

molecule

7HC 5TRF 1YCR (p53/ 

MDM2)

Adalimumab TNFR/TNFA TNF-α inhibitor Inhibitor Approved 

(2002)

Antibody 3WD5_L 

3WD5_H

3WD5 3ALQ (TNFR2/ 

TNFA)

Certolizumab 

pegol

TNFR/TNFA TNF-α inhibitor Inhibitor Approved 

(2008)

Antibody 5WUX_A 

5WUX_B

5WUX 3ALQ (TNFR2/ 

TNFA)

Golimumab TNFR/TNFA TNF-α inhibitor Inhibitor Approved 

(2009)

Antibody 5YOY_D 

5YOY_G

5YOY 3ALQ (TNFR2/ 

TNFA)

Infliximab TNFR/TNFA TNF-α inhibitor Inhibitor Approved 

(1998)

Antibody 4G3Y_L 

4G3Y_H

4G3Y 3ALQ (TNFR2/ 

TNFA)

Drozitumab TNFRSF10B/ 

TNFSF10

Tumor necrosis 

factor receptor 
superfamily member 

10B agonist

Agonist 2 Antibody 4OD2_A 

4OD2_B

4OD2_A 4N90 

(TRAILR2/ 
TRAIL)

Tafamidis TTR 

tetramer

Transthyretin 

stabiliser

Stabilizer Approved 

(2019)

Small 

molecule

3MI 3TCT 3TCT (TTR 

4-mer)

Notes: *Data based on ChEMBL_26; **Representative.

submit your manuscript | www.dovepress.com                                                                                                                                                                                                                    

DovePress                                                                                                    

Advances and Applications in Bioinformatics and Chemistry 2020:13 16

Shin et al                                                                                                                                                              Dovepress

Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com/get_supplementary_file.php?f=235542.zip
http://www.dovepress.com
http://www.dovepress.com


The platelet integrin receptor, αIIb-β3 (ITGA2B), is 
an interesting target because it is modulated by three 
different modalities types of drugs and, moreover, the 
mechanisms of the actions are well studied with the 
tertiary structure information. The three drugs developed 
for αIIb-β3 are Abciximab (antibody), Eptifibatide (pro
tein), and Tirofiban (small molecule). αIIb-β3 is acti
vated and binds to its ligand fibrinogen. αIIb-β3 binds 
specifically to the C-terminal intrinsically disordered 
region of the γ subunit of fibrinogen (γC peptide), 
which contains the sequence Lys-Gln-Ala-Gly-Asp-Val. 
There are some other physiologic ligands that have 
a similar motif, Arg-Gly-Asp (RGD), and interact with 
αIIb-β3 at the binding site of fibrinogen. Taking advan
tage of this interaction mechanism, a small molecule, 
Tirofiban, and a cyclic peptide, Eptifibatide, were devel
oped, which mimic the RGD sequence63,64 to prevent 
the ligand binding. In addition, recently, the structure of 
the αIIb-β3-Abciximab complex was determined at 2.8 
Å resolution by cryo-electron microscopy (cryo-EM).65 

The cryo-EM structure revealed a novel mode of action 
for inhibition, which shows that Abciximab binds pri
marily to the specificity-determining loop (SDL) of β3 
but lacks the effect on the fibrinogen-binding pocket. 
The cryo-EM model, molecular-dynamics simulations, 
and mutagenesis suggested Abciximab compresses and 
reduces the flexibility of the SDL.65

While constructing Table 2, we noticed that the target 
PPIs are still very limited. Considering that the estimated 
number of PPIs in the human cell is very large, ranging 
from 130,000 to 650,000 PPIs,14,15 the vast majority of 
PPIs are still not explored. A primary reason for this is that 
structural information of most PPIs is still lacking. It is 
expected that such remarkable advances in cryo-EM will 
lead to a further increase of available structures of target 
PPI complexes. Indeed, submissions to the Electron 
Microscopy Data Bank (EMDB) have increased exponen
tially in recent years, and the resolution of the density 
maps is also improving with the highest resolution maps 
reaching sub 2 Å resolution.66

Characterization of PPI Drugs from the 
Perspective of Druggability
To understand the characteristic features of PPIDs, we 
examined the PPIDs in Table 2 in terms of the druggabil
ity. Typically, druggability indicates the possibility of 
obtaining a small-molecule drug for a target.67 Here, we 

used the QED score28 for evaluating the ligand druggabil
ity and SiteScore27,68 for considering the protein pocket 
druggability. QED considers the molecular weight, AlogP, 
and the number of hydrogen bond acceptors and donors. 
Those descriptors are individually scored and weighted by 
their relative significance of druglikeness based on the 
distribution of approved drugs. The score ranges from 0 
to 1 with 1 being the most druggable. SiteScore gauges the 
propensity of a protein local site, which will contribute to 
a tight binding of ligands. It is computed based on proper
ties such as the exposure of the site to solvent, the degree 
of the enclosure by the protein, and the degree of hydro
philicity/hydrophobicity. SiteScore is computed as 
a weighted sum of those properties. The SiteScore above 
1 indicates that a protein pocket is highly druggable and 
0.8 distinguishes between drug-binding and non-drug- 
binding sites. Note that these two scores were originally 
developed for typical binding pockets and drugs. 
Currently, there are no scoring methods that are designed 
for evaluating PPIs and PPIDs.

In Figure 1, we see that SiteScore of many small 
molecules’ receptors (yellow circles) are higher than anti
bodies (blue squares). The highest SiteScore observed 
among antibodies’ receptors was 0.91, indicating that the 
site is druggable, which was computed for Integrin αIIb-β3 
inhibitor. Indeed, the receptor also has known protein and 
small-molecule ligands as we described in the previous 
section. If we look only at small molecules (yellow cir
cles), a positive correlation between QED and SiteScore 
was observed (R2: 0.73). The correlation indicates that 
more drug-like ligands bind more druggable protein pock
ets, which is reasonable. However, there are exceptions, 
which need further explanation. There are three PPIDs 
with a high SiteScore and a low QED (labeled with a in 
Figure 1) and a drug with a low SiteScore and a high QED 
(labeled with b). The three PPI drugs labeled as a are those 
which target the Bcl family (Bcl-2/BAX or Bcl-xL/BAK). 
These are relatively large compounds (Figure 1A), which 
were designed to mimic the partner protein. The molecular 
weight of the three compounds is over 800, where the 
average of PPI small-molecule drugs/candidates in Table 
2 is 663. The Bcl-2 antagonist Venetoclax (PDB ID: 
6O0K) approved for cancer therapy, is one of the three 
drugs circled with the label a. Bcl-2 is a member of the 
pro-survival class of proteins that includes Bcl-xL, Bcl-W, 
A1/BFL-1, and Mcl-1. Their pro-survival function is 
caused by binding and restraining related members of 
a family of pro-apoptotic proteins such as the sensors of 
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cellular stress, like BH3-only proteins, and the effectors 
of apoptosis, like BAX or BAK.69 As shown in Figure 
2A–E, Venetoclax mimics a part of the alpha-helix of the 
partner protein. The bound form of Venetoclax with BCL2 
is shown in Figure 2A, and the complex of BAX BH3 
peptide with BCL2 is shown in Figure 2B. In Figure 2C 
and D, the structure of Venetoclax and the peptide struc
ture is shown separately. In Figure 2E, the SiteMap result 
for the BCL2 binding site is shown. Pharmacophoric fea
tures were detected in the corresponding part to the side 
chain of amino acids in the helix. To form interactions at 
a distance about 3 turns of helix, the size of the compound 
needed to be large, and therefore, their QED turned low.

On the other hand, the drug labeled with b at the right 
bottom corner of Figure 1, Tafamidis (PDB ID: 3TCT) 
(Figure 1B), showed a low SiteScore with a high QED. It 
acts as a stabilizer and the target protein is a homo tetra
mer. Transthyretin, a natively tetrameric protein, is 
involved in the transport of thyroxine and the vitamin A– 
retinol-binding protein complex. Tetramer dissociation 
causes aggregation of transthyretin, which triggers trans
thyretin amyloidoses (ATTR). ATTR is a fatal disease 
characterized by progressive neuropathy and/or 
cardiomyopathy.70 Since the transthyretin dimer has a flat 
PPI surface, as shown in Figure 2G, no pocket was 
detected around the ligand when SiteScore was calculated 

Figure 1 The ligand druggability relative to the protein pocket druggability for PPI drugs/candidates. QED and SiteScore were computed for PPI drugs and candidates in 
Table 2. Yellow circles, small-molecule drugs; blue squares, antibodies; red diamonds, proteins. Approved drugs are shown in a darker color. Compounds labeled as a and 
b are shown below in the panel. QED was not computed for antibodies and shown at an extra column marked with *SiteMap (ver. 5.0.011), the software we used for 
computing SiteScore, offers two modes. As default, we used the option of “Identify top-ranked potential receptor binding sites”, which automatically detects a pocket and 
computes SiteScore. Scores were properly computed with this option for small compound binding pockets but often failed for PPI surfaces because of their flat shape. In 
such cases, we used another option, “Evaluate a single binding site region”, which computes SiteScore for a user-specified region. For binding sites for antibodies, we 
combined it with an additional option of “detect shallow binding site” option. (A) The chemical structures of the three compounds specified by a circle in the graph. (B) The 
chemical structure of the compound specified at the right bottom in the graph.
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with a transthyretin monomer. Interestingly, however, 
a druggable pocket was detected around the ligand at the 
interface when SiteScore was calculated with the 

transthyretin tetramer (Figure 2F). That is how the small 
molecule, with the molecular weight of 308, functioned as 
a drug against the target protein with a flat surface as 

Figure 2 A few structures of PPI drugs in complex with target proteins. (A) The crystal structure of BCL2 with Venetoclax (PDB ID: 6O0K). (B) The crystal structure of 
BCL2 in complex with a BAX BH3 peptide (PDB ID: 2XA0). (C) The 2D structure of Venetoclax; (D) Superposition of Venetoclax and BAX BH3 peptide (magenta). (E) The 
SiteMap result calculated under the “Evaluate a single binding site region” condition with “detect shallow binding site” option for the BCL2/venetoclax complex (PDB ID: 
6O0K). The white dots indicate the size of the pocket that is reflected in SiteScore. The color represents pharmacophoric features: yellow, hydrophobic; blue hydrogen 
bond donor; red, hydrogen bond acceptor. (F) The SiteMap result calculated with the “Identify top-ranked potential receptor binding sites” condition without the “detect 
shallow binding site” option for the biological assembly of TTR in complex with two Tafamidis units (green) (PDB ID: 3TCT). (G) The SiteMap result calculated with the 
“Evaluate a single binding site region” option with the “detect shallow binding site” option for the monomer of TTR and Tafamidis (green) (PDB ID: 3TCT).
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a monomer. Because of the flat surface, the SiteScore was 
low. This example shows that understanding how the 
target protein works under in vivo condition is critical to 
develop PPIDs.

Next, we compared the PPI small-molecule drugs in 
Table 2 with a dataset of non-PPI ligands. We used the 
non-PPI ligand dataset constructed by Soga et al,71 which 
consists of 41 non-redundant protein-ligand complexes 
determined by X-ray crystallography at a high resolution. 
As shown in Figure 3A and B, it is very clear that PPI 
drugs/candidates have lower druggability scores, both 
QED and SiteScore, than non-PPI ligands. Since the two 
metrics were originally developed for assessing typical 
pockets and drugs, the results indicate that the PPIs and 
the PPIDs are different and not suitable as conventional 
drugs and binding sites. In Figure 3C, we compared the 
four descriptors used in the RO4, the molecular weight, 
AlogP, the number of rings, and the number of hydrogen 
bond acceptors for PPI drugs (yellow) and the non-PPI 

ligands (green). For all four descriptors, PPIDs tend to 
have larger values than non-PPI ligands, which is the 
main reason why the PPIDs showed lower QED scores 
in our analysis. Figure 3C also shows that most of the 
PPIDs follow the RO4, which is in principle the opposite 
from the RO5, the empirical rule of drug-likeness of 
compounds. Accumulating examples of active ligands 
that are outside the general parameters of the RO5 will 
be crucial to exploring new drug candidates, and expand
ing the concept of drugs as a whole.

Extended Analysis with the 2P2I Database
We further analyzed the characteristics of PPIs in compar
ison with typical drug-binding pockets using the FTMap 
server.29 In this analysis, we extended the dataset of PPIs by 
adding entries from the 2P2I database.50 2P2I classifies its 
entries into three categories: Class 1 for peptide–protein 
interactions, Class 2 for protein–protein structures, and his
tone-bromodomain complexes (BRD). We removed the 

Figure 3 Distributions of druggability scores and small-molecule 2D descriptors of PPI drugs/candidates and non-PPI ligands. PPI drug/candidates are only limited to small 
molecules. Non-PPI ligands include natural ligands and are not limited to drug and drug candidates. (A) The ligand druggability relative to the protein pocket druggability. PPI 
drugs include drug candidates. (B) Box plots of druggability score distribution. A line through each box shows the median. (C) Distributions of small-molecule 2D 
descriptors used for QED and the RO4. Black lines on the plots show the criteria of the RO4.
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BRD class from our study since they have high sequence 
and structure similarities among them. We also removed 
Menin/MLL complex, because it does not have a protein- 
PPID structures. In Table 2, there are four entries that are 
not included in 2P2I, which were CCR5/gp120, NEDD8/ 
NEDD8’s heterodimeric E1, FKBP1A/Calcineurin, and 
transthyretin-tetramer. Among them, we only added 
CCR5/gp120 and FKBP1A/Calcineurin to the dataset 
since they have both the PPI structure and the protein- 
PPID structure available in PDB. The total number of 
PPIs used was 21. For traditional drug target data, we 
used the DUD set.72 The DUD set contains active com
pounds and decoys for 40 target proteins. Decoys are com
pounds that do not bind to the target but have similar 
chemical characteristics to active compounds. The 40 pro
teins consisted of popular drug targets, including kinases, 
proteases, nuclear hormone receptors. Among them, 21 
targets that do not have cofactors and missing residues 
were used for this study. The list of PDB IDs of the dataset 
is shown in Supplementary Table S2.

The analysis method we used, FTMap, predicts drug- 
binding sites on a protein surface by identifying energeti
cally favorable binding places for small compound 
fragments on the protein surface via docking. FTMap 
uses sixteen organic fragments shown in Table 3. If 
bound fragments form a cluster on a PPI site, the site 
could function similarly to a traditional ligand-binding 
pocket. Thus, from an FTMap result, the pocket-likeness 
of PPIs can be evaluated. We defined binding site residues 

in the receptor proteins as those which have at least one 
heavy atom within 4.5 Å to any heavy atom from ligands.

In Figure 4A, we compared the number of interacting 
compound fragments for PPI sites and conventional pock
ets. The X-axis is the total number of fragments interact
ing with the receptor protein at the binding interface and 
the Y-axis shows the number of interacting fragments per 
binding site residue. The total number of interacting 
fragments (X-axis) of PPI sites (blue circles) ranged 
from 0 to 81, similar to the typical binding pockets (red 
circles), which was 6 to 87. Although there are a few PPI 
sites that have a large number of interacting fragments, 
overall the PPIs tend to have less interaction than the 
typical binding pockets. The average number of interact
ing fragments on the interface of the PPI set was 39.95 
(standard deviation: 26.68), which was smaller than that 
of the binding pocket set (50.33, standard deviation: 
19.74). The difference of the distribution of number of 
binding fragments for PPI sites were different with 
a statistically significance against the typical pockets at 
p-value 0.1 level (p-value of 0.07 by Student’s t-test), 
Turning our attention now to the Y-axis, on average PPI 
sites had a lower number of interacting fragments per 
residue (1.55, standard deviation: 1.09) than ligand- 
binding pockets (2.07, standard deviation: 0.77). This 
difference is statistically significant at p < 0.05 level 
(0.048). For the typical binding pockets, the highest 
value of the average number of fragments per residue is 
2.89 and more than two-thirds (71.4%) of them have 
higher than 2.0. On the other hand, for the PPI set, even 
if the largest value was 4.05 and more than half (58.3%) 
cases are less than 2.0. These results show that PPI sites 
tend to have less concentration of bound fragments than 
typical binding pockets, indicating that PPIs do not form 
ideal pockets for drug binding. This observation is con
sistent with the conclusion from the previous section that 
PPIs have smaller SiteScore values than RO5 drug- 
binding pockets.

Next, we analyzed two classes of PPI drug binding sites 
separately, peptide–protein interaction (Class 1, 9 entries) and 
protein–protein interaction (class 2, 12 entries including the 
CCR5/gp120 and FKBP1A/Calcineurin from Table 2) (Figure 
4B). Interestingly, a clear separation was observed between the 
two classes. Class 1 (blue) tends to have a larger number for 
both the total number of fragments and the average number of 
fragments per binding site residue than class 2 (red). This 
implies that peptide binding PPIs tend to form pockets similar 
to typical ligand-binding pockets and are thus likely easier to 

Table 3 The Average Number of Fragments Binding to the 
Interface

Fragment DUD 2P2I

Ethane 5.38 4.62

Ethanol 6.12 5.62

Isopropanol 5.56 5.94
Tert-butanol 4.94 5.75

Acetonitrile 6.38 4.88

Methanamine 6.38 5.62
N,N-dimethylformamide 5.69 6.19

Dimethyl ether 5.62 5.44
Benzaldehyde 5.56 5.81

Benzene 4.94 5.19

Cyclohexane 3.75 5.25
Phenol 5.44 5.94

Acetamide 6.06 5.75

Acetone 5.81 5.56
Acetaldehyde 6.50 5.94

Urea 6.38 5.50
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develop drugs than protein–protein interaction sites. Naturally, 
compound fragments bind more to the drug-binding residues 
than non-drug binding residues at the PPI sites (Figure 4C). 
The result also implies that computational methods, protocols, 
and scores that are originally developed for typical binding 
pockets may be readily applicable to peptide binding PPIs.

Figure 4D and E show typical examples of FTMap analysis 
for conventional drug-binding pockets and PPI interfaces. 
Figure 4D is a result of HIV protease (PDB ID: 1HPX), one 
of the pockets from the DUD set. Even though FTMap tries to 
dock fragments for all the surface regions, most fragments (87 
out of 92) were bound to the binding pocket of the receptor 
(residues colored in red). Figure 4E is a result for PPI interface, 
integrase (PDB ID: 2B4J). FTMap placed 95 fragments, most 
of the fragments (blue) were clustered together, but none of 
them were placed near the PPI interface (red). Figure 4F is an 
example of peptide binding sites, Mdm2 (PDB ID: 1YCQ). 
The protein gives the largest value of the average number of 
fragments per binding interface residue (4.05) among the PPI 
set. The ligand protein, p53, is a 17 residue-long helical peptide 

(light blue, Figure 4F). FTMap docked all the fragments at the 
binding site, which have a concave shape formed with 20 
residues.

At last, in Table 3, we examined the breakdown of fragment 
types that bound on the PPI drug binding sites and conven
tional binding pockets used in Figure 4. The top five fragments 
that bind to the typical pockets were acetaldehyde, urea, 
methylamine, acetonitrile, and ethanol. All of the top five 
fragments have hydrogen bond donors or acceptors. On the 
other hand, the top five fragments for PPIs were N, 
N-dimethylformamide, isopropanol, phenol, acetaldehyde, 
and benzaldehyde. These five are relatively larger and more 
hydrophobic than the top five fragments for conventional 
pockets. In addition, phenol and benzaldehyde have benzene 
rings, which is consistent with the hydrophobic characteristic 
of PPI core regions.32

Conclusions
In this paper, we surveyed several previous works analyz
ing physicochemical properties of PPIs and PPIDs. Then, 

Figure 4 The number of bound fragments computed by FTMap at PPI-drug-binding sites and drug-binding pockets. (A) The total number of binding fragments and the 
average number of binding fragments per residue for PPI drug binding sites (blue) and drug-binding pockets (red). (B) PPI-drug-binding sites were further split into two 
classes: Blue, Class 1, protein-peptide interaction complexes; red, Class 2, protein–protein interaction complexes. (C) The average number of binding fragments per drug 
non-binding residues (x-axis) and drug-binding residues (y-axis). (D) The FTMap result for HIV protease (PDB ID: 1HPX), selected as a typical drug-binding pocket. The 
docking poses of fragments are colored in blue and binding pocket residues defined by considering the cognate binding ligand are colored red. (E) The FTMap results for 
integrase from the integrase/LEDGF complex (PDB ID: 2B4J) as an example of PPI interfaces. (F) The fragment docking result for MDM from the MDM/P53 complex (PDB 
ID: 1YCQ). A 17 amino-acids-long helical peptide from P53 is colored in light blue, and fragments bound to the receptor structure are shown in blue.
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we gathered structural information of PPIDs which have 
been approved or under clinical trial. With the list, char
acteristics of PPIDs and their binding interface were com
puted using QED, SiteScore and FTMap. In comparison to 
typical protein-drug complexes, PPIs (and their PPIDs) 
have lower druggability scores (QED and SiteScore) and 
are less favored by molecular fragments (FTMap), as 
expected.

Since the explored drug target space is being saturated, 
PPIs are highlighted as new and potent targets. However, 
as listed in Table 2 and Supplementary Table S1, only 
a few number of PPIDs have been developed and are 
under clinical trial. More than 90% of human interactome 
still remains. Although PPIs are challenging targets for 
drug discovery, there is ample room for discovery and 
opportunities to treat orphan diseases.

Overall, existing rules describing druggability seem not 
to be optimized for PPIDs. Thus, new rules are necessary 
for PPI drug discovery to assess their druggability prop
erly. To design a new rule, many structures of PPIDs 
binding to target PPIs would be needed, however, cur
rently only limited structure information is available. 
Recent remarkable advances in emerging technologies 
such as cryo-EM and machine learning techniques would 
make up for the gap between the available and the required 
structure information, which will contribute to efficient 
advances of drug discovery research.
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