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Background: Diabetic retinopathy (DR) is characterized by retinal vascular endothelial cell 
death and vascular inflammation, which are microvascular complications of diabetes mellitus 
(DM). Salusin-β, a newly identified peptide, is closely associated with hypertension, athero-
sclerosis and diabetic cardiomyopathy. However, the exact role of salusin-β in high glucose 
(HG)-induced retinal capillary endothelial cell (REC) inflammation and apoptosis remains 
unclear.
Patients and Methods: A total of 60 patients with type 2 diabetes and 20 healthy controls 
were included in this study. Based on fundus fluorescein angiography findings, the diabetic 
patients were divided into three subgroups: diabetes without retinopathy (DWR), non- 
proliferative DR (NPDR) and proliferative DR (PDR). Serum salusin-β levels were measured 
by enzyme-linked immunosorbent assay. Human RECs (HRECs) were cultured in normal 
glucose (NG) and HG medium with or without salusin-β. Salusin-β expression was analysed 
by Western blotting and immunofluorescence staining. Expression of the pro-inflammatory 
cytokines MCP-1, IL-1β, TNF-α, and VCAM-1 was analysed by Western blotting. Reactive 
oxygen species (ROS) production was measured with 2′,7′-dichlorofluorescein diacetate 
(DCFH-DA). Cell apoptosis rates were determined by flow cytometry. The levels of p38, 
JNK, p-p38, and p-JNK and the apoptosis-related proteins cleaved caspase-3, Bax, and cl2 
were analysed by Western blotting.
Results: Serum salusin-β levels were higher in diabetic patients than in healthy controls (p = 
0.0027), especially in patients with NPDR and PDR (both p<0.01). HG upregulated salusin-β 
expression in HRECs in a time-dependent manner. Salusin-β exacerbated inflammation and 
apoptosis, upregulated intracellular ROS production in HG-induced HRECs, and activated 
ROS-dependent JNK and p38 MAPK signalling, while knockdown of salusin-β suppressed 
these effects.
Conclusion: Our findings indicate that salusin-β can promote inflammation and apoptosis 
via ROS-dependent JNK and p38 MAPK signalling in HG-induced HRECs and could be 
a therapeutic target for DR.
Keywords: salusin-β, reactive oxygen species, inflammation, apoptosis, diabetic retinopathy

Introduction
Diabetic retinopathy (DR) is the leading cause of blindness in working-age adults 
worldwide and has gradually received attention.1 DR is one of the most common 
microvascular complications of diabetes mellitus (DM) and is primarily induced by 
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long-term hyperglycaemia or factors such as hypertension 
and dyslipidaemia, which harm retinal capillaries.2 The 
early stage of DR is characterized by apoptosis and pro- 
inflammatory changes in retinal capillary endothelial cells 
(RECs), resulting in acellular capillaries and vascular 
permeability.3–6 Unfortunately, there is no effective treat-
ment for the early stage of DR. Thus, a better understand-
ing of DR pathogenesis and novel therapeutic approaches 
are urgently needed.

DR is a chronic, progressive low-grade inflammatory 
disease that leads to abnormal retinal structure and func-
tion. Interestingly, human RECs (HRECs) play a crucial 
role in antioxidation, regulating inflammatory factors, 
maintaining inner blood-retinal barriers, and mediating 
retinal neurotrophic supplementation.7,8 However, inflam-
mation and oxidative stress induced by long-term hyper-
glycaemia can cause retinal microvascular endothelial cell 
apoptosis or dysfunction, induce blood-retinal barrier 
breakdown, and increase vascular permeability, all of 
which promote DR progression.9–11

Salusin-β, a newly identified multifunctional bioactive 
peptide containing 20 amino acid residues, is widely 
expressed and synthesized in blood vessels, bone marrow, 
endocrine glands, the brain, the liver and the kidney and 
plays a vital role in atherosclerosis, hypertension, and 
metabolic syndrome.12,13 Additionally, the serum levels 
of salusin-β are markedly elevated in patients with 
Behcet's disease, cerebrovascular disease, hypertension 
and coronary artery disease compared with those in 
healthy controls (HCs).14,15 Recent studies have demon-
strated that salusin-β mediates multiple cellular functions, 
such as proliferation, apoptosis, oxidative stress and 
inflammation.16,17 Indeed, salusin-β knockdown reduced 
cell proliferation, apoptosis, oxidative stress, and inflam-
mation in cisplatin- or LPS-induced renal tubular cells and 
mice with acute kidney injury; however, salusin-β over-
expression reversed these effects.18 Additionally, another 
study indicated that salusin-β silencing reduced high glu-
cose (HG)-induced apoptosis by upregulating Bcl-2 
expression and downregulating Bax and caspase-3 expres-
sion in human umbilical vein endothelial cells.17 

Moreover, other studies revealed that salusin-β blockade 
alleviated oxidative stress, inflammation, and cardiac dys-
function in diabetic rats.16

To date, studies have shown that HG is an inducer of 
salusin-β16,17 and that salusin-β is a contributor to apoptosis, 
oxidative stress and the inflammatory response, all of which 
are critically involved in the pathogenesis of DR. Thus, we 

hypothesized that salusin-β participates in the initiation and 
progression of DR. Therefore, in this study, we investigated 
whether serum levels of salusin-β in DR patients were 
different from those in HCs. Furthermore, we examined 
the potential roles and underlying mechanisms of salusin-β 
in HG-induced HRECs inflammation and apoptosis.

Patients and Methods
Participants
This clinical trial was approved by the Ethics Committee 
of Animal and Human Experimentation of Chongqing 
Medical University, and all patients signed informed con-
sent forms. All experimental procedures complied with the 
guidelines of the Declaration of Helsinki. Five millilitres 
of peripheral venous blood was collected into coagulation 
tubes from 60 type 2 diabetes mellitus (T2DM) patients 
and 20 HCs between 7 am and 10 am after 10 h of fasting. 
Blood samples were centrifuged at 3000 × g for 5 min at 
4°C, and the serum samples were then stored in sealed 
Eppendorf tubes at −80°C until analysis. Base on the 
international DR grading criteria,19 the sixty T2DM 
patients were grouped into the diabetes without retinopa-
thy (DWR), non-proliferative DR (NPDR), and prolifera-
tive DR (PDR) groups (DWR, n= 20; NPDR, n= 20; PDR, 
n=20) by well-trained retinal specialists according to the 
results of fundus photography and fluorescein angiogra-
phy. DM patients were diagnosed in accordance with the 
criteria of the American Diabetes Association.20 

Individuals with autoimmune disease, haematological dis-
ease, cardiovascular disease, cerebrovascular disease, dia-
lysis, active infection, cancer and other ocular disorders 
were excluded to avoid potential baseline activation. 
Participants in the HCs group were matched by age and 
sex. The anthropometric and biochemical characteristics of 
the participants are shown in Table 1.

Determination of Serum Salusin-β Levels
Serum salusin-β levels were measured using 
a commercially available enzyme-linked immunosorbent 
assay (ELISA) kit purchased from USCN Life Science 
Inc. (Wuhan, Hubei, China) according to the manufac-
turer’s instructions. The detection range was from 24.69 
to 2000 pg/mL. After the reaction, the absorbance values 
of the samples and standards were immediately deter-
mined in a microplate reader (Model 3550, Bio-Rad 
Laboratories, Hercules, CA, USA) at 450 nm.
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Cell Culture and Transfection
HRECs were purchased from the Type Culture Collection 
of the Chinese Academy of Science. Cells were cultured in 
DMEM (Gibco, Grand Island, NY, USA) supplemented 
with 10% foetal bovine serum (Gibco), 100 U/mL strep-
tomycin (HyClone, Logan, UT, USA) and 100 U/mL 
penicillin (HyClone) in a humidified atmosphere contain-
ing 5% CO2 at 37°C. A trypsin-EDTA solution was used 
to dissociate the cells from the flasks (Corning, Lowell, 
MA, USA) at confluence. Before treatment, cells were 
placed in serum-free medium for 12 h. To mimic the 
elevated glucose level in diabetes, HRECs were cultured 
in 5.5 mM glucose (NG) or 25 mM glucose (HG) medium 
for 48 h, and the former was used as a control for the 
indicated times. Recombinant adenoviruses harbouring 
a short hairpin RNA (shRNA) against salusin-β (Ad- 
salusin-shRNA) and scrambled shRNA were commercially 
constructed by Genomeditech Co. (Shanghai, China). The 
targeted sequence of salusin-β and the negative control 
sequence were reported previously17 (Table 2). To obtain 

salusin-β-knockdown cells, HRECs were subcultured in 
six-well plates under normal conditions to a confluence 
of approximately 70% and subjected to adenovirus- 
mediated transduction of shRNA against salusin-β or 
scrambled shRNA (MOI=100) following the manufac-
turer’s protocol. After 24 h of transfection, cells were 
collected and used for the following assays.

Western Blot Analysis
Cells were washed with precooled phosphate-buffered sal-
ine (PBS) and were then sonicated on ice in RIPA buffer 
(Beyotime Biotechnology, Shanghai, China) containing 
1% PMSF. The total protein concentrations were deter-
mined with a BCA kit (Beyotime Biotechnology, 
Shanghai, China) according to the manufacturer’s proto-
col. Equal amounts of protein were loaded in each lane 
and separated on SDS-PAGE gels. After the proteins were 
transferred to PVDF membranes, the membranes were 
blocked with 5% skim milk powder for 2 h at room 
temperature. The membranes were then incubated first 

Table 1 Comparison of Clinical and Biochemical Data of Subjects

Variable HCs (n=20) DM (n=20) p DM p

WDR (n=20) NPDR (n=20) PDR (n=20)

Sex,males(%) 60% 46.6% 0.302 35% 50% 55% 0.423

BMI(kg/m2) 23.19±2.89 24.02±2.70 0.243 23.95±2.61 23.41±2.65 24.70±2.79 0.312
Age(years) 55.1±6.1 56.1±6.5 0.541 56.4±6.5 56.9±6.8 54.9±6.4 0.703

SBP(mmHg) 121.8±8.4 124.4±7.3 0.176 123.9±8.6 124.3±5.7 125.2±7.8 0.553

DBP(mmHg) 81.1±4.9 82.7±4.9 0.224 82.1±5.2 81.7±5.2 84.3±4.1 0.192
TC(mmol/L) 4.23±0.31 4.35±0.45 0.263 4.33±0.50 4.29±0.22 4.42±0.55 0.504

TG(mmol/L) 2.06±0.67 1.98±0.60 0.608 1.92±0.60 1.85±0.63 2.18±0.54 0.331

FPG(mmol/L) 5.00±0.57 8.20±2.22 ˂0.001 7.87±2.34 8.21±2.26 8.53±2.11 0.650
HbA1c(%) 9.81±1.66 10.38±1.98 10.10±1.61 0.605

Duration(years) 6.1(2.8–9.0) 7.0(4.2–10.8) 11.6(6.7–18.2)* 0.001

Notes: Data are presented as the mean ± standard deviation for normally distributed variables, and the median (interquartile ranges) for abnormal distributions. Unpaired 
t-test and Mann–Whitney U-test were used for comparisons of normally and abnormally distributed continuous variables between two groups, respectively. Multiple and 
pairwise comparisons were determined by analysis of variance and Student–Newman–Keuls tests for normally distributed data, and Kruskal–Wallis and stepwise–step-down 
tests for abnormal distributions. Categorical variables were presented as the percentage (%). The χ2-test was used to compare categorical variables. Statistical differences 
were defined by P-values (two-tailed) <0.05. *P < 0.05 versus without diabetic retinopathy (WDR). 
Abbreviations: BMI, body mass index; DBP, diastolic blood pressure; SBP, systolic blood pressure; DM, diabetes mellitus; FPG, fasting plasma glucose; TC, total cholesterol; 
TG, triglyceride.

Table 2 Sequences of Scrambled shRNA and Salusin-β-shRNA

Primer Sequence

Scrambled shRNA Sense 5ʹ-gatccGTTCTCCGAACGTGTCACGTTTCAAGAGAACGTGAC ACGTTCGGAGAACTTTTTTACGCGTg-3’
Antisense 5ʹ-aattcACGCGTAAAAAAGTTCTCCGAACGTGTCACGTTCTCT TGAAACGTGACACGTTCGGAGAACg-3’

Salusin-β-shRNA Sense 5ʹ-gatccGCCCTTCTTGGGTTGTGTATGTTCAAGAGACATACAC AACCCAAGAAGGGCTTTTTTa-3’
Antisense 5ʹ-agcttAAAAAAGCCCTTCTTGGGTTGTGTATGTCTCTTGAAC ATACACAACCCAAGAAGGGCg-3’
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with specific primary antibodies overnight at 4°C and then 
with appropriate horseradish peroxidase (HRP)-conjugated 
secondary antibodies (1:5000 dilution) for 1 h at 37°C. 
The immunoreactive bands were visualized with enhanced 
chemiluminescence reagents (4A Biotech Co., Beijing, 
China) in a Fusion Solo 6S image analysis system 
(Vilber Lourmat, Paris, France). The band intensities 
were quantified with Gel-Pro Analyser 4.0 (Media 
Cybernetics, Silver Spring, MD, USA). β-Actin was used 
as the loading control. Anti-MCP-1 (1:5000; cat. no. 
ab151538) and anti-VCAM1 (1:5000; cat. no. ab134047) 
antibodies were purchased from Abcam (Cambridge, UK). 
Anti-TNF-α (1:1000; cat. no. 3707), anti-IL-1β (1:10,000; 
cat. no. 12242), anti-JNK (1:1000; cat. no. 9252), anti- 
p-JNK (1:1000; cat. no. 4668), anti-p38 (1:1000; cat. no. 
8690), anti-p-p38 (1:1000; cat. no. 4511) and anti-cleaved 
caspase-3 (1:1000; cat. no. 9664) antibodies were pur-
chased from Cell Signaling Technology (Boston, MA, 
USA). Anti-Bax (1:6000; cat. no. 50599-2-lg) and Anti- 
Bcl2 (1:1000; cat. no. 26593-1-AP) antibodies were pur-
chased from Proteintech Group (Chicago, IL, USA). The 
anti-salusin-β (1:260; cat. no. PAC026Hu01) antibody was 
purchased from USCN Life Science Inc. (Wuhan, Hubei, 
China). The anti-β-actin (1:10,000; cat. no. 700068) anti-
body was obtained from Zenbio (Chengdu, Sichuan, 
China).

Reactive Oxygen Species (ROS) Assay
A ROS assay kit from Beyotime Biotechnology (Shanghai, 
China) was used to measure intracellular ROS levels in 
treated HRECs. The reagent 2ʹ,7ʹ-dichlorofluorescein dia-
cetate (DCFH-DA) is rapidly oxidized into fluorescent 
dichlorofluorescein (DCF) by intracellular ROS, and the 
amount of ROS can thus be quantified. In brief, HRECs 
were seeded in confocal dishes, starved for 12 h, and 
incubated for 48 h with normal glucose (NG), NG+ salu-
sin-β, HG, and HG + salusin-β medium with or without 
pretreatment with the antioxidant N-acetyl-L-cysteine 
(NAC, 5 mM) (Sigma-Aldrich, St. Louis, MO, USA) for 
6 h. After being washed twice with serum-free medium, 
the treated cells were incubated with 10 µM DCFH-DA 
for 20 min at 37°C in a light-protected, humidified cham-
ber. Fluorescence signals were visualized with a laser 
scanning confocal microscope (Zeiss, Germany) at 488 
nm with constant parameters. Image-Pro Plus software 
(Version 6.0, Media Cybernetics, Bethesda, MD, USA) 
was used to quantify the relative fluorescence intensity of 
DCF per cell in the scan area.

Flow Cytometry
Annexin V-FITC/propidium iodide (PI) double staining 
was used to examine the effect of salusin-β on HG- 
induced apoptosis of HRECs with or without NAC pre-
treatment. After treatment, cells were collected and 
washed three times with precooled PBS, resuspended in 
1× binding buffer and stained with 5 µL of Annexin 
V-FITC and 5 µL of PI in the dark at room temperature 
according to the manufacturer’s instructions. Finally, the 
samples were analysed with a CytoFLEX flow cytometer 
(Beckman Coulter, India) within 1 h of staining.

Immunofluorescence Staining
After the indicated treatments, cells on slides were fixed with 
4% paraformaldehyde (PFA) for 30 min and permeabilized 
with 0.1% Triton X-100 in PBS for 10 min at room tempera-
ture. Cells were blocked with 10% goat serum for 30 min at 
37°C in a humidified chamber and subsequently incubated 
with the anti-salusin-β primary antibody at 4°C overnight. 
After being washed three times with PBS, cells were incu-
bated with goat anti-rabbit IgG DyLight 488 (1:250; cat. no. 
A23220, Abbkine Scientific, Redlands, CA, USA) for 1 h at 
37°C in the dark. Images were acquired with a fluorescence 
microscope (Olympus IX71, Tokyo, Japan).

Statistical Analysis
Clinical data were collected and are presented as means ± 
standard deviations for normally distributed variables and as 
medians (interquartile ranges [IQRs]) for non-normally dis-
tributed variables. Independent Student’s t-test and one-way 
analysis of variance (ANOVA) followed by Tukey’s post 
hoc test were used to compare normally distributed contin-
uous variables between two groups and among multiple 
groups, respectively. Kruskal–Wallis and stepwise–step-
down tests were used to compare non-normally distributed 
continuous variables. The χ2-test was used to compare 
categorical variables, which are presented as percentages 
(%). Statistical analysis was performed using SPSS 21.0 
(SPSS Inc., Chicago, IL, USA). A value of p<0.05 (two- 
tailed) was considered to indicate statistical significance. At 
least three individual experiments were performed.

Results
DR Patients Exhibit Elevated Levels of 
Circulating Salusin-β
To examine whether long-term hyperglycaemia can 
increase the expression of salusin-β, we first measured 
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the serum levels of salusin-β in patients. Our results show 
that the serum levels of salusin-β were significantly 
increased in T2DM patients compared with HCs 
(p<0.01) (Figure 1A). Furthermore, T2DM patients were 
separated into the DWR, NPDR, and PDR subgroups. 
Subgroup analysis showed that the serum levels of salu-
sin-β in the NPDR and PDR groups were significantly 
increased compared to those in the HC group (both 
p<0.01), while no significant differences were found 
between the DWR and HC groups or the NPDR and 
PDR groups (Figure 1B). Although no significant differ-
ence was found between the DWR and HC groups (p = 
0.285), the serum salusin-β levels in the DWR group were 
higher than those in the HC group.

HG Increases Salusin-β Expression in 
HRECs
After treatment with HG (25 mM) for 24 h, 48 h, and 72 h, 
the expression of salusin-β was analysed by immunofluor-
escence and Western blotting. The expression levels of 
salusin-β in the HG groups treated for 48 h and 72 
h were significantly increased compared with those in the 
corresponding NG groups (Figure 2A–C). Moreover, the 
protein level of salusin-β in the HG group treated for 72 
h was much higher than that in the HG group treated for 
48 h (Figure 2A–C). Additionally, no significant differ-
ences were found between the HG group treated for 24 
h and any NG group (Figure 2A–C). These results show 
that HG can increase the expression of salusin-β in HRECs 
in a time-dependent manner. Thus, the time point of 48 
h was selected for HG treatment in subsequent 
experiments.

Salusin-β Promotes the Expression of 
Inflammatory Factors in HG-Induced 
HRECs in a Concentration-Dependent 
Manner
After treatment with increasing doses of salusin-β (0.1 nM, 1 
nM, and 10 nM) for 48 h, the expression levels of the 
inflammatory factors MCP-1, IL-1β, TNF-α, and VCAM-1 
in HG-induced HRECs were measured by Western blotting 
(Figure 2D). The expression levels of MCP-1, IL-1β, TNF-α, 
and VCAM-1 in the HG group were significantly increased 
compared with those in the NG group (p<0.05, p<0.05, 
p<0.05, and p<0.01, respectively) after treatment for 48 
h. In addition, compared with those in the HG group, the 
levels of the pro-inflammatory cytokines MCP-1, IL-1β, 
TNF-α, and VCAM-1 were significantly increased in both 
the HG + 1 nM salusin-β (HG 48 h +1) group (p<0.001, 
p<0.01, p<0.01, and p<0.0001, respectively) and the HG + 
10 nM salusin-β (HG 48 h +10) group (all p<0.0001) (Figure 
2D). However, no significant difference was found between 
the HG 48 h and HG 48 h+0.1 salusin-β groups. These results 
indicate that HG induces inflammation and that combined 
treatment of HG and salusin-β induces a more robust inflam-
matory response in HRECs than HG alone. Therefore, 
a concentration of 1 nM salusin-β was selected for subse-
quent experiments.

High Glucose Increases the Production of 
ROS and Salusin-β Further Increases ROS 
Production in HG-Induced HRECs
After cells were cultured in NG and HG with or without 
1 nM salusin-β for 48 h, intracellular ROS production 
was analysed by DCF fluorescence. The level of ROS 

Figure 1 Serum levels of salusin-β in DM patients. (A) Serum salusin-β levels were measured in HCs and T2DM patients. All p-values were determined by unpaired Student’s 
t-tests. (B) Serum salusin-β levels in subgroups of DM patients. One-way ANOVA with Tukey’s test was used to calculate the p-values of comparisons between each pair of 
groups. All data were normally distributed. **p<0.01.
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Figure 2 Expression levels of salusin-β at different time points and protein levels of pro-inflammatory cytokines after treatment with increasing concentrations of exogenous 
salusin-β. (A) After treatment with HG for 24 h, 48 h, and 72 h, the expression of salusin-β was measured by immunofluorescence. (B) Quantitative analysis of the salusin-β 
level based on the fluorescence intensity. (C) After treatment with HG for 24 h, 48 h, and 72 h, the expression level of salusin-β was analysed by Western blotting. (D) After 
treatment of HG-induced HRECs with increasing concentrations of salusin-β (0.1 nM, 1 nM, and 10 nM) for 48 h, the expression levels of MCP-1, IL-1β, TNF-α, and VCAM-1 
were analysed by Western blotting. One-way ANOVA with Tukey’s test was used to assess the differences among the groups. n=3. *p<0.05, **p<0.01, ***p<0.001, 
****p<0.0001. 
Abbreviations: NG, normal glucose (5.5 mM); HG, high glucose (25 mM); 0.1, 0.1 nM salusin-β; 1,1 nM salusin-β; 10, 10 nM salusin-β.
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production in the HG group was significantly higher 
than that in the NG group, as shown in Figure 3A and 
B (p<0.0001). Compared with that in the HG group, the 
ROS production level in the HG+1 group was obviously 
increased (p<0.001) (Figure 3A and B). However, no 
significant difference was found between the NG and 
NG +1 groups (Figure 3A and B). These results suggest 
that HG stimulates the production of ROS; moreover, 
the combination of HG and salusin-β causes greater 
ROS production in HRECs than does HG alone. A 1 
nM concentration of salusin-β was not sufficient to 
increase the production of ROS in the NG group; 
a higher concentration of salusin-β may induce changes 
in ROS production in the NG group.

Salusin-β Increases Inflammation and 
Apoptosis in HG-Induced HRECs
After cells were cultured with NG, NG + 1 nM salusin- 
β, HG, and HG + 1 nM salusin-β for 48 h, the expres-
sion levels of MCP-1, IL-1β, TNF-α, VCAM-1, cleaved 
caspase-3, Bax, and Bcl2 were measured by Western 
blotting, and the apoptosis rates were determined by 
flow cytometry. The expression levels of inflammatory 
cytokines were measured and compared with those in 
the NG group, revealing that the expression levels of 
MCP-1, IL-1β, TNF-α, and VCAM-1 in the HG group 
were significantly elevated (p<0.01, p<0.01, p<0.01, and 
p<0.001, respectively) (Figure 3C). The levels of MCP- 
1, IL-1β, TNF-α, and VCAM-1 were significantly higher 
in the HG + 1 group than in the HG group (p<0.0001, 
p<0.0001, p<0.001, and p<0.01, respectively), although 
no significant differences in these levels were found 
between the NG and NG+1 groups (Figure 3C). 
Subsequently, apoptosis-related proteins were analysed. 
The expression levels of cleaved caspase-3 and Bax 
were significantly increased but that of Bcl2 was 
decreased in the HG group compared with the NG 
group (p<0.05, p<0.01, and p<0.001, respectively) 
(Figure 4A). These changes were accompanied by an 
increased apoptosis rate in the HG group (p<0.01) 
(Figure 4B and C). Compared with the HG group, the 
HG+1 group showed significantly increased expression 
of cleaved caspase-3 and Bax (p<0.01 and p<0.0001, 
respectively), decreased expression of Bcl2 (p<0.01) 
(Figure 4A) and an increased apoptosis rate (p<0.001) 
(Figure 4B and C). These results show that 1 nM 

salusin-β exacerbates inflammation and apoptosis in 
HG-induced HRECs. Although the concentration of 1 
nM salusin-β was not sufficient to increase the expres-
sion of inflammatory factors and apoptosis in the NG 
group, a higher concentration of salusin-β may induce 
such increases.

NAC Attenuates the Expression of 
Inflammatory Factors and Apoptosis 
Stimulated by Salusin-β in HG-Induced 
HRECs
To verify the role of ROS in the salusin-β-mediated induction 
of inflammatory factor expression and apoptosis, HRECs were 
cultured for 48 h in NG, HG, and HG+1 nM salusin-β with or 
without NAC (5 mM) pretreatment. As shown in Figure 5A 
and B, the effect of the ROS scavenger, NAC, was confirmed 
in the HG+1+NAC group. The expression levels of MCP-1, 
IL-1β, TNF-α, and VCAM-1 in the HG+1+NAC group were 
significantly reduced compared with those in the HG+1 group 
(all p<0.0001) (Figure 5C). Moreover, the expression levels of 
cleaved caspase-3 and Bax were significantly decreased and 
that of Bcl2 was increased in the HG+1+NAC group compared 
with the HG+1 group (all p<0.0001) (Figure 6A), accompa-
nied by a significantly decreased apoptosis rate in the HG+1 
+NAC group (p<0.0001) (Figure 6B and C). These results 
showed that NAC alleviates inflammation and apoptosis acti-
vated by salusin-β in HG-induced HRECs.

Salusin-β Activates and NAC Inhibits the 
JNK and P38 MAPK Pathways
To further examine the mechanism underlying the effects of 
salusin-β on HG-induced HRECs, the protein levels of p38, 
JNK, p-p38, and p-JNK were analysed by Western blotting. 
The ratios of p-JNK/JNK and p-p38/p38 were significantly 
increased in the HG group compared with the NG group (both 
p<0.0001) (Figure 6D). Moreover, the p-JNK/JNK and p-p38/ 
p38 ratios were significantly increased in the HG+1 group 
compared with the HG group (both p<0.001) (Figure 6D) but 
were significantly decreased in the HG+1+NAC group com-
pared with the HG+1 group (both p<0.0001) (Figure 6D). 
These results suggest that HG activates the JNK and p38 
MAPK pathways and that 1 nM salusin-β enhances the activa-
tion of both pathways. These results also suggest that NAC 
inhibits the JNK and p38 MAPK pathways, which were acti-
vated by 1 nM salusin-β.
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Figure 3 Salusin-β increased ROS production and inflammatory cytokine expression in HG-induced HRECs. Cells were cultured with NG, NG+1 nM salusin-β, HG, and HG 
+ 1 nM salusin-β for 48 h. (A) A ROS fluorescence assay kit was used to determine ROS levels. (B) Statistical analysis of ROS production was performed. (C) The expression 
levels of MCP-1, IL-1β, TNF-α, and VCAM-1 were analysed by Western blotting. One-way ANOVA with Tukey’s test was used to assess the differences among the groups. 
n=3. **p<0.01, ***p<0.001, ****p<0.0001. 
Abbreviations: NG, normal glucose (5.5 mM); HG, high glucose (25 mM); 1, 1 nM salusin-β.
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Figure 4 Salusin-β increased apoptosis in HG-induced HRECs. Cells were cultured with NG, NG+1 nM salusin-β, HG, and HG + 1 nM salusin-β for 48 h. (A) The levels of 
apoptosis-associated proteins, including cleaved caspase-3, Bax, and Bcl2, were analysed by Western blotting. (B) The apoptosis rates were determined by flow cytometry. 
(C) Statistical analysis of apoptosis rates was performed. One-way ANOVA with Tukey’s test was used to assess the differences among the groups. n=3. *p<0.05, **p<0.01, 
***p<0.001. 
Abbreviations: NG, normal glucose (5.5 mM); HG, high glucose (25 mM); 1, 1 nM salusin-β.
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Figure 5 NAC alleviated oxidative stress and the inflammatory response stimulated by salusin-β in HG-induced HRECs. Cells were cultured with NG, HG, HG + 1 nM 
salusin-β, and HG + 1 nM salusin-β + 5 mM NAC (cells were pretreated with 5 mM NAC for 6 h before incubation with salusin-β in HG medium) for 48 h, and the indicated 
assays were then performed. (A) A ROS fluorescence assay kit was used to determine ROS levels. (B) Statistical analysis of ROS production was performed. (C) The 
expression levels of MCP-1, IL-1β, TNF-α, and VCAM-1 were analysed by Western blotting. One-way ANOVA with Tukey’s test was used to assess the differences among 
the groups. n=3. ****p<0.0001. 
Abbreviations: NG, normal glucose (5.5 mM); HG, high glucose (25 mM); 1, 1 nM salusin-β; NAC, N-acetyl-L-cysteine.
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Figure 6 NAC alleviated apoptosis and inhibited the JNK and P38 MAPK pathways stimulated by salusin-β in HG-induced HRECs. Cells were cultured with NG, HG, HG + 
1 nM salusin-β, and HG + 1 nM salusin-β + 5 mM NAC (cells were pretreated with 5 mM NAC for 6 h before incubation with salusin-β in HG medium) for 48 h, and the 
indicated assays were then performed. (A) The levels of apoptosis-associated proteins, including cleaved caspase-3, Bax, and Bcl2, were analysed by Western blotting. (B) 
Apoptosis rates were determined by flow cytometry. (C) Statistical analysis of the apoptosis rates was performed. (D) The levels of p-JNK, JNK, p-p38 and p38 were 
analysed by Western blotting. One-way ANOVA with Tukey’s test was used to assess the differences among the groups. n=3. ***p<0.001, ****p<0.0001. 
Abbreviations: NG, normal glucose (5.5 mM); HG, high glucose (25 mM); 1, 1 nM salusin-β; NAC, N-acetyl-L-cysteine.
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Salusin-β Knockdown Suppresses 
Oxidative Stress in HG-Induced HRECs
Adenoviral vectors expressing shRNA against salusin-β 
were used to knock down salusin-β expression. The effec-
tiveness of salusin-β knockdown in HRECs was confirmed 
at the protein level (Figure 7A). After knockdown of 
salusin-β, HRECs were cultured in NG and HG medium 
for 48 h. DCFH-DA fluorescent dye was used to measure 
intracellular ROS levels in treated HRECs. As shown in 
Figure 7B and C, HG resulted in overproduction of ROS 
in HRECs, but this effect was abrogated by salusin-β 
knockdown.

Salusin-β Knockdown Attenuates 
Inflammation and Apoptosis in HG- 
Treated HRECs
The protein expression levels of inflammatory factors—ie, 
MCP-1, IL-1β, TNF-α, and VCAM-1—were increased in 
HG-induced HRECs, and salusin-β knockdown obviously 
reduced the increases in the expression levels of these 
inflammatory factors mediated by HG in HRECs 
(p<0.0001, p<0.0001, p<0.001, and p<0.001, respectively) 
(Figure 7D). The increased levels of apoptosis-related 
proteins, including cleaved caspase-3 and Bax, resulting 
from HG treatment were reduced by salusin-β deficiency 
(p<0.01 and p<0.001, respectively), and the level of Bcl2 
was increased (p<0.05) (Figure 8A). Consistent with the 
above results, the flow cytometry data further confirmed 
that salusin-β knockdown significantly attenuated HG- 
induced apoptosis in HRECs (p<0.001) (Figure 8B and C).

Salusin-β Knockdown Inhibits the JNK 
and P38 MAPK Pathways Activated by 
HG in HRECs
After knockdown of salusin-β with shRNA, the p-JNK/ 
JNK and p-p38/p38 ratios in the HG group were signifi-
cantly reduced in HG-treated HRECs compared with NG- 
treated HRECs (p<0.01 and p<0.0001, respectively) 
(Figure 9). Collectively, the above data suggest that salu-
sin-β promotes HG-induced inflammation and apoptosis in 
HRECs at least partially through the ROS-dependent JNK 
and p38 MAPK pathways.

Discussion
In the present study, we investigated whether salusin-β 
modulates HG-induced inflammation and apoptosis in 

HRECs and explored the underlying mechanisms. Our 
study indicated that the serum salusin-β levels were sig-
nificantly increased not only in the total cohort of DM 
patients but also in patients in the DR subgroups. 
Additionally, HG induced an inflammatory response, 
apoptosis, and intracellular ROS production accompanied 
by overexpression of salusin-β in HRECs, and exogenous 
salusin-β enhanced these effects at least partly in a glucose 
concentration-dependent manner. Moreover, salusin-β 
knockdown attenuated oxidative stress, inflammation and 
apoptosis in HG-induced HRECs and inhibited the phos-
phorylation of JNK and p38, which were upregulated by 
HG. These results suggest that salusin-β knockdown exerts 
protective effects against HG-induced inflammation and 
apoptosis in HRECs.

Previous studies indicated that salusin-β, an endogen-
ous vasoactive peptide first identified by Shichiri in 2003, 
is widely expressed in human, rat, and mouse tissues.21–23 

The protein expression level of salusin-β was increased in 
the myocardium of diabetic rats,16 and the serum level of 
salusin-β was increased in diabetic patients.14 HG stimu-
lates salusin-β expression in multiple types of cells, such 
as cardiomyocytes and human umbilical vein endothelial 
cells.16,17 Consistent with these previous findings, our 
results showed that serum salusin-β levels were increased 
not only in the total cohort of DM patients but also in the 
DR patient subgroups. We also found that HG signifi-
cantly increased the expression of salusin-β in HRECs in 
a time-dependent manner. These results indicate that 
hyperglycaemia and high glucose may stimulate salusin- 
β expression and that salusin-β may play a role in DR 
progression.

In the past few decades, studies have shown that oxi-
dative stress plays a key role in the pathogenesis of DR 
and that excessive ROS accumulation in and around retinal 
blood vessels causes mitochondrial defects, apoptosis, 
inflammation, and structural and functional changes (such 
as microcirculatory abnormalities and neurodegeneration) 
in the context of DR.24,25 Previous studies have indicated 
that ROS mediates several biological processes in which 
salusin-β is involved. For example, salusin-β promotes the 
foam cell formation and monocyte adhesion by increasing 
the production of ROS in atherosclerosis.26,27 Salusin-β 
stimulates the migration of VSMCs and intimal hyperpla-
sia after vascular injury through an oxidative stress-related 
pathway and stimulates the production of intracellular 
ROS in human umbilical vein endothelial cells.28–31 

However, whether ROS participate in the effects of 
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Figure 7 Effectiveness of salusin-β knockdown in HRECs. Salusin-β knockdown attenuated oxidative stress and inflammation in HG-treated HRECs. After adenovirus- 
mediated transduction of shRNA against salusin-β or scrambled shRNA for 24 h, the indicated assays were performed. (A) The expression of salusin-β was analysed by 
Western blotting. (B) A ROS fluorescence assay kit was used to determine ROS levels. (C) Statistical analysis of ROS production was performed. (D) The expression levels 
of MCP-1, IL-1β, TNF-α, and VCAM-1 were analysed by Western blotting. One-way ANOVA with Tukey’s test was used to assess the differences among the groups. n=3. 
***p<0.001, ****p<0.0001. 
Abbreviations: NG, normal glucose (5.5 mM); HG, high glucose (25 mM); veh, vehicle; scr, scramble.
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Figure 8 Salusin-β knockdown attenuated apoptosis in HG-treated HRECs. After adenovirus-mediated transduction of shRNA against salusin-β or scrambled shRNA for 24 
h, HRECs were cultured in HG medium for 48 h. (A) The levels of apoptosis-associated proteins, including cleaved caspase-3, Bax, and Bcl2, were analysed by Western 
blotting. (B) Apoptosis rates were determined by flow cytometry. (C) Statistical analysis of the apoptosis rates was performed. One-way ANOVA with Tukey’s test was used 
to assess the differences among the groups. n=3. *p<0.05, **p<0.01, ***p<0.001. 
Abbreviations: NG, normal glucose (5.5 mM); HG, high glucose (25 mM); veh, vehicle; scr, scramble.
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salusin-β on HG-induced HRECs in DR remains unknown. 
In our study, we found that the combination of HG and 
exogenous salusin-β increased the production of intracel-
lular ROS more than HG alone, while silencing salusin-β 
suppressed HG-induced ROS production in HRECs. These 
results indicate that HG-induced salusin-β contributes to 
the excessive production of ROS in HRECs treated 
with HG.

Retinal endothelial cell death and vascular inflammation 
are the characteristic features of DR32,33 and are caused 
mainly by sustained hyperglycaemia.34 Previous studies 
indicated that salusin-βplays a key role in mediating cell 
death and vascular inflammation concomitant with upregu-
lation of ROS production in mice.35 Additionally, salusin-β 
blockade significantly decreased pro-inflammatory cytokine 
expression, macrophage infiltration, and pulmonary vascu-
lar remodelling via the ROS/NF-κB signalling pathway in 

a rodent model of pulmonary arterial hypertension.36 

Salusin-β contributed to apoptosis of renal tubular epithelial 
cells in acute kidney injury mice via activation of the PKC/ 
ROS/DNA damage/p53 apoptotic pathway.18 Chronic 
blockade of salusin-β in the paraventricular nucleus attenu-
ated hypertension and hypothalamic inflammation through 
the ROS/NF-κB signalling pathway in spontaneously hyper-
tensive rats.37 Consistent with these findings, our results 
showed that salusin-β induced by HG increased intracellular 
ROS production and subsequently upregulated the expres-
sion of the pro-inflammatory cytokines IL-1β, MCP-1, 
TNF-α, and VCAM-1 and increased the levels of apoptosis- 
associated proteins to induce an inflammatory response and 
apoptosis. Moreover, these effects were suppressed by 
shRNA-mediated silencing of salusin-β in HRECs treated 
with HG. Furthermore, to prove that salusin-β induces 
inflammation and apoptosis through increasedROS, we 

Figure 9 Salusin-β knockdown inhibited the JNK and P38 MAPK pathways activated by HG in HRECs. After adenovirus-mediated transduction of shRNA against salusin-β 
or scrambled shRNA for 24 h, HRECs were cultured in HG medium for 48 h, and then the levels of p-JNK, JNK, p-p38 and p38 were analysed by Western blotting. n=3. 
**p<0.01, ****p<0.0001. 
Abbreviations: NG, normal glucose (5.5 mM); HG, high glucose (25 mM); veh, vehicle; scr, scramble.
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pretreated HRECs with NAC, a ROS scavenger, before 
incubation with salusin-β to eliminate ROS. We finally 
found that the increased inflammation and apoptosis 
induced by salusin-β were mitigated by NAC. These results 
suggest that salusin-β is responsible for the HG-induced 
inflammation and apoptosis mediated by ROS production.

The JNK and P38 MAPK signalling pathways can be 
activated by numerous cellular stresses, such as oxidative, 
hypoxic and genotoxic stresses, and they regulate various 
extracellularly stimulated processes, including apoptosis, 
inflammation, innate immunity, and responses to various 
neuropeptides.38,39 A previous study reported that shRNA- 
mediated knockdown of JNK and p38 MAPK attenuated 
inflammation and apoptosis in mice with diabetic 
cardiomyopathy.40 The JNK and p38 MAPK signalling 
pathways are pro-apoptotic and pro-inflammatory path-
ways activated by excess intracellular ROS and have 
been proven to participate in the development of DR in 
several studies.41,42 In this study, we discovered that the 
levels of p-JNK and p-p38 were increased in HG-induced 
HRECs, consistent with the results of previous 
studies.43–45 Combined treatment with exogenous salusin- 

β and HG resulted in higher levels of p-JNK and p-p38 
than treatment with HG alone, whereas both knockdown 
salusin-β and NAC pretreatment reduced these levels. 
These results demonstrate that salusin-β induced by HG 
can activate the JNK and p38 MAPK signalling pathways 
in a ROS-dependent manner. Overall, we demonstrated 
that salusin-β contributes to the progression of DR by 
activating the ROS-dependent JNK and p38 MAPK sig-
nalling pathways and promoting inflammation and apop-
tosis in HG-induced HRECs (Please see Figure 10 for the 
detailed information.). The limitations of our study include 
the limited numbers of patients and HCs. Moreover, this 
was primarily a cell-based study; thus, our findings might 
not reflect the results in vivo. Therefore, studies with 
a larger patient cohort will be useful to support our find-
ings, and a DR animal model is needed to further explore 
the mechanisms. Although many recent studies have 
addressed the role of salusin-β in different diseases, its 
biotoxicity and effects on normal physiological processes 
are still unclear. Therefore, much remains to be done 
before these findings can be clinically translated.

Conclusions
In conclusion, our results indicate that salusin-β can 
increase HG-induced inflammation and apoptosis by acti-
vating the ROS-dependent JNK and p38 MAPK signalling 
pathways in HRECs and participates in the progress of 
DR. Our study will pave the way for the discovery of 
a new therapeutic target for DR.
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