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Purpose: The clinical and inflammatory associations of mast cells (MCs) and basophils in chronic 
obstructive pulmonary disease (COPD) are poorly understood. We previously developed and 
validated a qPCR-based MC/basophil gene signature in asthma to measure these cells in sputum 
samples. Here, we measured this gene signature in a COPD and control population to explore the 
relationship of sputum MCs/basophils to inflammatory and COPD clinical characteristics.
Patients and Methods: MC/basophil signature genes (TPSAB1/TPSB2, CPA3, ENO2, 
GATA2, KIT, GPR56, HDC, SOCS2) were measured by qPCR in sputum from a COPD 
(n=96) and a non-respiratory control (n=17) population. Comparative analyses of gene 
expression between the COPD and the control population, and between eosinophilic 
COPD and non-eosinophilic COPD were tested. Logistic regression analysis and Spearman 
correlation were used to determine relationships of sputum MC/basophil genes to inflamma
tory (sputum eosinophil proportions, blood eosinophils) and clinical (age, body mass index, 
quality of life, lung function, past year exacerbations) characteristics of COPD.
Results: MC/basophil genes were increased in COPD versus control participants (CPA3, 
KIT, GATA2, HDC) and between eosinophilic-COPD and non-eosinophilic COPD (TPSB2, 
CPA3, HDC, SOCS2). We found all MC/basophil genes were positively intercorrelated. In 
COPD, MC/basophil genes were associated with eosinophilic airway inflammation (GATA2, 
TPSB2, CPA3, GPR56, HDC, SOCS2), blood eosinophilia (all genes) and decreased lung 
function (KIT, GATA2, GPR56, HDC).
Conclusion: We demonstrate associations of MCs and basophils with eosinophilic inflam
mation and lower lung function in COPD. These findings are consistent with prior results in 
asthma and may represent a new tool for endotyping eosinophilic-COPD.
Keywords: basophils, mast cells, COPD, gene expression, inflammation

Plain Language Summary
Mast cells (MCs) and basophils are important granulocytes that exert numerous immune functions, 
the dysregulation of which promote airway inflammation, bronchoconstriction and airway remo
delling. The scarcity of these immune cells in the airways and the absence of MCs from circulation 
make them challenging to study in the clinical context and their inflammatory and clinical associa
tions in COPD remain poorly understood. We have previously developed and validated a qPCR- 
based MC/basophil gene signature in asthma that reflects the abundance of these cells in sputum 
samples. Here, we apply this gene signature in a COPD cohort (n=96) and non-respiratory disease 
controls (n=17), demonstrating dysregulation of sputum MCs and basophils in COPD. Sputum MC/ 
basophil-related gene expression was related to airway and systemic eosinophilic inflammation and 
lower lung function in COPD. These novel findings demonstrate potentially automatable PCR- 
based measure of airway MCs/basophils in COPD and reveal dysregulation of lumen MCs and 
basophils and associations with important clinical and inflammatory characteristics in COPD.
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Introduction
COPD is the third leading cause of death and fifth cause of 
disability worldwide.1 Disease progression is marked by 
lung function decline and increased exacerbations of wor
sening symptoms.2 Inflammation plays an integral patho
physiological role in COPD. Patients can present with 
varied inflammatory patterns, the most well described 
being neutrophilic airway inflammation.3 However, eosi
nophilic inflammation, in sputum and blood, is also pre
sent in a significant number of individuals with COPD.4–8 

Eosinophilic COPD (E-COPD) is associated with 
increased acute lung attacks,8,9 as well as higher healthcare 
utilization and costs.10 An understanding of the inflamma
tory pathways and mechanisms of E-COPD, and biomar
kers that can support treatment and management is needed. 
Mast cells (MCs) and basophils exert numerous immuno
logical functions associated with allergy, eosinophilic 
inflammation11,12 and airway remodelling.13 Recently, 
sputum MCs have been associated with asthma control 
and lung function14 and have been found to be dysregu
lated in severe asthma.15–17 Bronchial MC numbers are 
increased in smokers compared to non-smokers, with MC 
density correlating with airway remodelling18 and lung 
function.19 Sputum MC numbers are increased in current 
COPD smokers compared to ex-smokers20 and biopsy 
basophil numbers are increased in COPD patients com
pared to controls.21 However, the relationship of MCs and 
basophils to inflammation and clinical features of COPD, 
particularly E-COPD, is less understood. Further, the scar
city of MCs and basophils in airway-derived clinical sam
ples such as sputum and the absence of mature MCs in 
circulation can make direct measurement difficult.

MCs and basophils possess distinctive and overlapping 
transcriptomic signatures expressed at greater levels com
pared to other immune cells in the lungs.22,23 We recently 
developed and validated a sputum MC/basophil gene sig
nature, consisting of eight genes relating to varied MC/ 
basophil immune functions (TPSAB1/TPSB2, CPA3, 
ENO2, GATA2, KIT, GPR56, HDC, SOCS2). qPCR-based 
measures of MC/basophil-related genes were directly 
related to MC and basophil abundance in sputum 
samples.17 Jiang et al further demonstrated a similar MC 
gene signature was directly related to biopsy MC 
abundance.24 These findings demonstrate the value of 
unique MC/basophil-related gene signatures to measure 
their abundance in complex primary airway samples such 
as sputum and bronchial biopsies.

Here we measured the validated sputum MC/basophil 
gene signature in COPD (n=96) and control populations 
(n=17) to explore the relationship of MCs and basophils to 
airway and systemic inflammation, clinical characteristics 
and exacerbation risk in COPD. We hypothesized that MC/ 
basophil-related genes would be differentially expressed 
between control participants, eosinophilic and non-eosino
philic COPD and would be associated with systemic eosi
nophilia, clinical characteristics, and risk of lung attacks in 
COPD.

Methods
Study Design
In this observational, cross-sectional study, COPD partici
pants were recruited via the respiratory ambulatory care 
clinics at John Hunter Hospital (NSW, Australia), the 
clinical research database of the Department of 
Respiratory and Sleep Medicine, John Hunter Hospital 
and by advertisement. Control participants were recruited 
by advertisement. Studies were approved by the Hunter 
New England Health Human Research Ethics Committee 
for COPD (12/12/12/3.06) and control (8/08/20/3.10) 
populations and research conducted complied with the 
Declaration of Helsinki. All participants provided written 
informed consent.

Participants
Participants required a doctor-confirmed diagnosis of 
COPD with documented evidence of incompletely rever
sible airflow limitation, and stable COPD at study visit. 
For detailed inclusion/exclusion criteria for COPD partici
pants, see supplementary appendix S1. Control partici
pants had no diagnosis of respiratory disease and had no 
overt respiratory infection at study visit. Current smokers 
were excluded from the study (COPD and controls).

Clinical Methods
Participants underwent previously published clinical 
methods,25 including sputum sample collection, blood col
lection for full blood count (peripheral blood eosinophil 
[PBE] count), spirometry (forced expiratory volume in one 
second [FEV1%], forced vital capacity [FVC%] and FEV1/ 
FVC%), health status assessment (COPD Assessment Test 
[CAT] and St George’s Respiratory Questionnaire 
[SGRQ]) and past year exacerbation history (see 
Supplementary appendix S1 for exacerbation definitions).
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Sputum Processing and Inflammatory 
Phenotyping
Sputum was induced and processed as described previously
26 (see supplementary appendix S1 for details). Airway 
inflammatory phenotypes were determined via differential 
cell counts as follows: neutrophilic inflammation (N- 
COPD) (≥61% neutrophils, <3% eosinophils); eosinophilic 
inflammation (E-COPD) (<61% neutrophils, ≥3% eosino
phils); mixed granulocytic inflammation (MG-COPD) 
(≥61% neutrophils, ≥3% eosinophils); paucigranulocytic 

inflammation (PG-COPD) (<61% neutrophils, <3% 
eosinophils).27 Dichotomous categorisations include eosino
philic (E-COPD and MG-COPD) vs non-eosinophilic (NE- 
COPD, which combines N-COPD and PG-COPD). PBE 
categories were determined using a PBE threshold (PBE 
high ≥300 cells/µL vs low <300 cells/µL).

Laboratory Methods
Sputum qPCR-based gene expression methods have been 
previously described.28–30 Target gene expression 

Table 1 Clinical Characteristics of Study Sample Populations

Controls COPD p-value

Sample number (n) 17 96

Clinical characteristics

Sex, female n (%) 7 (41.2) 35 (36.5) 0.71

Age, years (range) 39.5 (22.5–72.5) 70.6 (52.4–83.5) <0.0001
BMI, (kg/m2) 27.7 (24.3, 31.0) 30.1 (26.7, 34.2) 0.09

Ex-smoker, n (%) 6 (35.3) 88 (91.7) <0.0001
Ex-smoker pack years (n=94) 3.2 (0.5, 17.0) (n=6) 46.9 (33.0, 69.4) (n=88) 0.0002
ICS use, n (%) - 88 (91.7) -

ICS dose (Beclomethasone equiv. µg/day) (n=86) - 2000 (1000, 2000) (n=86) -

LABA use, n (%) - 94 (97.9) -
LAMA use, n (%) - 89 (92.7) -

SGRQ total - 55.6 ± 17.4 -

CAT total 6.2 ± 4.7 21.1 ± 6.5 <0.0001
Pre β2 FEV1% predicted (n=112) 92.6 (89.4, 105.7) (n=17) 48.5 (39.1, 62.4) (n=95) <0.0001
Pre β2 FVC % predicted (n=108) 91.8 (88.6, 103.2) (n=17) 74.4 (64.4, 83.2) (n=91) <0.0001
Pre β2 FEV1/FVC % (n=108) 78.3 (72.8, 81.9) (n=17) 50.3 (36.3, 64.5) (n=91) <0.0001
Post β2 FEV1% predicted (n=112) 95.8 (91.9, 106.9) (n=17) 51.8 (41.3, 66.5) (n=95) <0.0001
Post β2 FVC % predicted (n=110) 96.2 (88.3, 104.0) (n=17) 77.6 (67.3, 86.7) (n=93) <0.0001
Post β2 FEV1/FVC % (n=110) 82.0 (77.0, 85.5) (n=17) 52.5 (38.9, 65.0) (n=93) <0.0001
Number of total exacerbations in past 12 months - 2.0 (1.0, 3.5) -

Number of severe exacerbations in past 12 months (n=95) - 1.0 (0, 1.0) -

GOLD quadrant A, n (%) - 3 (3.1) -
GOLD quadrant B, n (%) - 22 (22.9)

GOLD quadrant C, n (%) - 1 (1.0)
GOLD quadrant D, n (%) - 70 (72.9)

Induced sputum analysis

Sputum cell viability, % (n=111) 68.9 (52.8, 80.4) (n=16) 80.6 (67.2, 92.8) (n=95) 0.01
Sputum total cell count, x 106/mL (n=111) 3.6 (1.7, 7.1) (n=16) 5.1 (2.9, 10.2) (n=95) 0.07
Sputum neutrophils % 25.4 (12.6, 34.9) 60.6 (42.1, 80.6) <0.0001
Sputum eosinophils % 0.5 (0.1, 1.0) 1.9 (0.8, 4.0) 0.0001
Sputum macrophages % 65.1 (37.5, 75.0) 29.6 (15.8, 43.5) <0.0001
Sputum lymphocytes % 3.0 (1.5, 5.4) 1.0 (0.3, 2.0) 0.001
Sputum columnar epithelial cell % 2.9 (0.4, 5.8) 2.0 (0.5, 4.5) 0.63

Peripheral blood eosinophil count (x109/L) 0.1 (0.1, 0.2) 0.2 (0.1, 0.4) 0.005

Notes: Data presented as n (%), mean ± SD or median (Q1, Q3). Bolding indicates significance (p-value <0.05). 
Abbreviations: BMI, body mass index; ICS, inhaled corticosteroid; LABA, long-acting β2 agonist; LAMA, long-acting muscarinic antagonist; SGRQ, St George Respiratory 
Questionnaire; CAT, COPD Assessment Tool; FEV1, forced expiratory volume in one second; FVC, forced vital capacity.
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normalized to the B-actin housekeeping gene. ΔCt (change 
in cycle threshold between target gene and B-actin) and 
2−ΔCt (relative mRNA abundance) values were used in the 
analysis. For detailed laboratory methods see supplemen
tary appendix S1.

Statistical Analyses
Two-group comparisons were analyzed using Student’s 
t-test (parametric) or Wilcoxon rank sum (non-parametric). 
Kruskal–Wallis with Bonferroni post-hoc correction was 
used for multiple groups. Categorical data were analyzed 
using Fisher’s exact test, with Fisher’s p-value reported 
when expected counts were <5. Spearman correlation 

coefficients were used. Relative mRNA abundance values 
(2−ΔCt) were used for comparisons between groups and 
correlation analysis. Gene expression values (ΔCt) were 
used for regression analysis due to approximate normal 
distribution. MC/basophil genes were analyzed individu
ally and in a combinatorial gene metric (see supplementary 
appendix S1).31 Relationship of MC/basophil genes to 
inflammatory phenotypes was determined with univariate 
logistic regression and receiver operating characteristic 
(ROC) curve analysis. Least absolute shrinkage and selec
tion operator (LASSO) multivariate regression was used to 
select important genes in a model (R Studio v.3.6.2). 
Participants were categorized by PBE threshold (PBE 
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Figure 1 Relative mRNA abundance of (A) TPSB2, (B) CPA3, (C) KIT, (D) GATA2, (E) SOCS2, (F) ENO2, (G) GPR56, (H) HDC, and (I) combinatorial MC/basophil gene metric 
in COPD participants compared to control participants. Bars represent median, with error bars representing Q1, Q3. Relative mRNA abundance compared between groups 
are expressed as 2−ΔCt relative to the housekeeping gene β-actin. Combinatorial gene metric based on ΔCt gene expression values. *p≤0.05, **p≤0.01, ***p≤0.001, 
****p≤0.0001.
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high ≥300 cells/µL vs low <300 cells/µL) and frequent 
(≥2) and infrequent (0–1) for total and severe exacerba
tions in prior 12 months. A p-value <0.05 was considered 
statistically significant. Data were analyzed using STATA 
v.15.1 and GraphPad Prism v7. The data that support the 
findings of this study are available from the authorship 
team upon reasonable request.

Results
Clinical Characteristics of COPD and 
Control Participants
Participant demographics for both groups are shown in 
Table 1. COPD individuals were older, with more ex- 
smokers who had a higher pack-year history (Table 1). 
Most COPD participants had severe disease (GOLD quad
rant D, n=70 [72.9%]). Sputum neutrophil and eosinophil 
proportions and PBE counts were higher in COPD parti
cipants compared to controls.

MC/Basophil mRNA Abundance 
Increased Between COPD and Controls
Relative mRNA abundance significantly differed between 
COPD and control participants for CPA3, KIT, GATA2, 
SOCS2, ENO2 and HDC (Figure 1). CPA3, KIT, GATA2 
and HDC mRNA abundance were increased in COPD vs 
controls. Control participants had increased SOCS2 and 
ENO2 mRNA abundance. No significant difference in the 
combinatorial gene metric was found.

MC/Basophil mRNA Abundance 
Correlated in COPD
Spearman correlational analysis determined significantly 
positively correlated MC/basophil mRNA abundance 
between all genes in COPD sputum (Figure 2). Notable 
results include a strong positive correlation between 
TPSB2 and CPA3 (r=0.74, p<0.001), and moderate posi
tive correlations between GATA2 and KIT (r=0.55, 
p<0.001), GATA2 and HDC (r=0.63, p<0.001) and HDC 
and KIT (r=0.69, p<0.001).

Clinical Characteristics of Eosinophilic- 
COPD and Non-Eosinophilic COPD
E-COPD and NE-COPD were categorized using sputum 
differential cell count. Clinical characteristics of E-COPD 
and NE-COPD groups (Table 2) were not significantly 
different. Sputum neutrophil proportion was higher in 

NE-COPD vs E-COPD. Sputum eosinophil proportion 
and PBE count were higher in E-COPD vs NE-COPD.

MC/Basophil mRNA Abundance is 
Increased in Eosinophilic COPD
We compared MC/basophil gene expression between 
E-COPD, NE-COPD and control participants 
(Figure 3). Relative mRNA abundance differed for 
TPSB2, CPA3, KIT, GATA2, SOCS2, ENO2 and HDC 
between COPD inflammatory phenotypes and controls. 
GATA2 and KIT were significantly elevated in COPD 
inflammatory phenotypes compared to controls, how
ever, showed no significant differences between the 
phenotypes. TPSB2, CPA3 and HDC mRNA abundance 
were significantly higher in E-COPD compared to NE- 
COPD and control participants. SOCS2 mRNA abun
dance was significantly increased in E-COPD com
pared to NE-COPD. SOCS2 and ENO2 mRNA 
abundance were significantly higher in control partici
pants compared to NE-COPD. The combinatorial MC/ 
basophil gene metric incorporating the 8 signature 
genes was significantly higher in E-COPD (−0.3070) 
vs NE-COPD (0.2141) vs controls (0.3139) (p=0.0002). 
Additional analyses comparing relative mRNA abun
dance of the genes between the four COPD airway 
inflammatory phenotypes (N-COPD [n=34], E-COPD 
[n=31], MG-COPD [n=13] and PG-COPD [n=18]) vs 
control participants [n=17] (Appendix S2, Figure S1) 
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showed similar results. GATA2 and HDC were signifi
cantly elevated in disease inflammatory phenotypes 
compared to controls however, showed no significant 
differences between the phenotypes. For TPSB2 and 
CPA3, relative mRNA abundance was significantly 
higher in E-COPD compared to N-COPD, PG-COPD, 
and control participants. The combinatorial gene metric 
was significantly higher in the E-COPD (−0.4259) 
compared to the N-COPD (0.2809) and control partici
pants (0.3139) (p=0.0006).

MC/Basophil Gene Expression Predicts 
Airway Eosinophilic Airway Inflammation 
in COPD
Univariate logistic regression with ROC curve analysis was 
used to analyze the association of MC/basophil gene expres
sion with eosinophilic vs non-eosinophilic airway inflamma
tion (Table 3). All odds ratios produced were below 1, 
indicating increased gene ΔCt values (equating to decreased 
relative mRNA abundance) were associated with decreased 

Table 2 Clinical Characteristics of Eosinophilic COPD and Non-Eosinophilic COPD

E-COPD NE-COPD p-value

Sample number (n) 44 52

Clinical characteristics

Sex, female n (%) 14 (31.8) 21 (40.4) 0.39

Age, years (range) 70.8 (52.4–83.5) 70.6 (54.4–82.2) 0.88
BMI, (kg/m2) 30.2 (27.3, 34.3) 29.1 (25.2, 34.2) 0.43

Ex-smoker, n (%) 39 (88.6) 49 (94.2) 0.46

Ex-smoker pack years (n=88) 42.0 (33.0, 62.5) (n=39) 53.8 (40.0, 75.0) (n=49) 0.05
ICS use, n (%) 40 (90.9) 48 (92.3) 1.00

ICS dose (Beclomethasone equiv. µg/day) (n=86) 1500 (1000, 2000) (n=39) 2000 (1000, 2000) (n=47) 0.27

LABA use, n (%) 44 (100.0) 50 (96.2) 0.50
LAMA use, n (%) 41 (93.2) 48 (92.3) 1.00

SGRQ total 54.7 ± 18.7 56.4 ± 16.4 0.63

CAT total 21.0 ± 6.9 21.2 ± 6.3 0.88
Pre β2 FEV1% predicted (n=95) 51.2 (41.9, 62.6) (n=43) 46.4 (33.2, 59.4) (n=52) 0.14

Pre β2 FVC % predicted (n=91) 74.7 (65.6, 82.9) (n=39) 74.4 (64.2, 85.9) (n=52) 0.95

Pre β2 FEV1/FVC % (n=91) 51.7 (41.4, 65.1) (n=39) 49.5 (31.3, 61.2) (n=52) 0.23
Post β2 FEV1% predicted (n=95) 54.2 (42.9, 67.4) (n=43) 50.5 (33.6, 62.0) (n=52) 0.21

Post β2 FVC % predicted (n=93) 79.6 (67.3, 86.5) (n=41) 76.7 (66.8, 87.0) (n=52) 0.93

Post β2 FEV1/FVC % (n=93) 55.6 (42.2, 66.4) (n=41) 52.0 (31.9, 61.6) (n=52) 0.12
Number of total exacerbations in past 12 months 2.0 (1.0, 4.0) 2.0 (1.0, 3.0) 0.31

Number of severe exacerbations in past 12 months (n=95) 0 (0, 1.0) (n=44) 1.0 (0, 1.0) (n=51) 0.05

GOLD quadrant A, n (%) 3 (6.8) 0 (0) 0.13
GOLD quadrant B, n (%) 8 (18.2) 14 (26.9)

GOLD quadrant C, n (%) 0 (0) 1 (1.9)

GOLD quadrant D, n (%) 33 (75.0) 37 (71.2)

Induced sputum analysis

Sputum cell viability, % (n=95) 79.2 (63.6, 87.7) (n=44) 86.7 (67.7, 94.5) (n=51) 0.06

Sputum total cell count, x 106/mL (n=95) 4.7 (2.8, 8.3) (n=44) 5.8 (3.0, 12.4) (n=51) 0.14
Sputum neutrophils % 53.2 (39.8, 63.8) 69.1 (47.1, 85.4) 0.0004
Sputum eosinophils % 4.9 (3.3, 13.3) 0.9 (0.5, 1.4) <0.0001
Sputum macrophages % 32.9 (21.0, 42.9) 24.9 (10.4, 43.5) 0.11
Sputum lymphocytes % 1.3 (0.5, 2.1) 0.8 (0.3, 1.9) 0.33

Sputum columnar epithelial cell % 2.3 (1.0, 4.3) 1.3 (0, 5.1) 0.17

Peripheral blood eosinophil count (x109/L) 0.3 (0.2, 0.5) 0.2 (0.1, 0.2) <0.0001

Notes: Data presented as n (%), mean ± SD or median (Q1, Q3). Bolding indicates significance (p-value <0.05). 
Abbreviations: Eosinophilic COPD, E-COPD. non-eosinophilic COPD, NE-COPD. BMI, body mass index; ICS, inhaled corticosteroid; LABA, long-acting β2 agonist; LAMA, 
long-acting muscarinic antagonist; SGRQ, St George Respiratory Questionnaire; CAT, COPD Assessment Tool; FEV1, forced expiratory volume in one second; FVC, forced 
vital capacity.
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odds of being categorized as eosinophilic. All genes (except 
KIT and ENO2) were significantly associated with eosino
philic inflammation. Univariate and multivariate LASSO 
regression determined CPA3 had the highest AUC of 0.78, 
suggesting it is the most important gene in predicting eosi
nophilic inflammation with good predictive accuracy. The 
combinatorial gene metric was also associated with eosino
philic inflammation (AUC=0.73, p<0.0001).

MC/Basophil mRNA Abundance is 
Increased in PBE-High COPD
We examined sputum MC/basophil gene abundance in 
relation to PBEs, using a clinically relevant cut-off 
(PBE high ≥300 cells/µL vs low <300 cells/µL). 
Clinical characteristics of PBE-high and low groups 
are shown in Table 4. For all genes, mRNA abundance 
was increased in PBE high (n=40) vs low (n=56) 
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Figure 3 Relative mRNA abundance of (A) TPSB2, (B) CPA3, (C) KIT, (D) GATA2, (E) SOCS2, (F) ENO2, (G) GPR56, (H) HDC, and (I) combinatorial MC/basophil gene metric 
between Eosinophilic COPD (E-COPD), Non-eosinophilic COPD (NE-COPD) and control participants. Bars represent median, with error bars representing Q1, Q3. 
Relative mRNA abundance compared between groups are expressed as 2−ΔCt relative to the housekeeping gene β-actin. Combinatorial gene metric based on ΔCt gene 
expression values. #p<0.02 versus control participants; *p<0.02 versus NE-COPD participants.
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groups (Figure 4). The combinatorial gene metric was 
increased in PBE high (−0.3070) vs low (0.2004, 
p<0.0001).

MC/Basophil mRNA Abundance is 
Associated with Lung Function
KIT, GATA2, GPR56, and HDC were negatively correlated 
with pre-β2 FEV1% predicted values, whilst GATA2 was nega
tively correlated with pre-β2 FEV1/FVC%, indicating higher 
relative mRNA abundance was correlated with lower lung 
function (Table 5). The combined gene metric was positively 
correlated with pre-β2 FEV1% predicted values, indicating a 
lower ΔCt value (indicating higher relative mRNA abundance) 
was correlated with lower lung function (Table 5). Similar 
correlations for KIT, GATA2, GPR56 and HDC were observed 
with post-β2 FEV1% predicted (data not shown). Increased 
GATA2 mRNA abundance was negatively correlated with 
BMI (r= −0.225, p=0.03). TPSB2 (r= −0.228, p=0.03) was 
negatively correlated with health status (CAT total score), 
indicating lower relative mRNA abundance was correlated 
with worse health status. MC/basophil mRNA abundance did 
not differ between COPD participants who experienced fre
quent (≥2) and infrequent (0–1) exacerbations, for total and 
severe exacerbations (Figure 5). The exception was GPR56, 
which was significantly increased in the group with infrequent 
severe exacerbations. The combinatorial gene metric was not 
significantly different for total or severe exacerbations.

Discussion
MCs and basophils have functionally diverse pathophysio
logical roles impacting on airway inflammation and 

remodeling. Their direct measurement in sputum is diffi
cult due to their scarcity; hence, their inflammatory and 
clinical associations in COPD remain poorly understood. 
We measured a previously validated sputum MC/basophil 
gene signature in people with COPD and a control cohort 
and identified several MC/basophil-related genes increased 
in mRNA abundance in COPD participants. Correlation 
analysis revealed genes were all interrelated in COPD 
sputum. Increased MC/basophil gene expression was asso
ciated with airway and peripheral eosinophilic inflamma
tion and decreased lung function in COPD. These novel 
findings demonstrate a dysregulation of MCs and baso
phils in E-COPD through measures of sputum MC/baso
phil gene expression.

Given their key roles in many airway pathological 
and inflammatory processes32–34 and their ability to 
activate via IgE-independent activation pathways,13,35 

MCs and basophils may contribute to COPD pathogen
esis. Our findings demonstrate dysregulation of sputum 
MCs and basophils in the airway lumen in COPD, and 
that sputum MCs and basophils are associated with 
both airway and peripheral eosinophilic inflammation 
in COPD. These findings are comparable to previous 
findings in severe asthma,14–17,36 demonstrating a com
mon inflammatory mechanism involving MCs and 
basophils associated with eosinophilia in COPD and 
severe asthma. Notably, TPSB2, CPA3, HDC and the 
combinatorial gene metric were increased in E-COPD 
compared to NE-COPD. A recent study identifying 
SOCS2 and HDC as differentially expressed in 
E-COPD vs NE-COPD in sputum microarray analysis 

Table 3 Association Between Eosinophilic Inflammation Classification and MC/Basophil Gene Expression in COPD

Univariate Logistic Regression Multivariate Logistic Regression (LASSO)

Gene Odds Ratio (95% CI), p-value AUC Coefficient AUC

TPSB2 0.650 (0.519, 0.814), p<0.0001 0.77 0 -

CPA3 0.627 (0.499, 0.787), p<0.0001 0.78 −0.090 0.78
KIT 0.796 (0.616, 1.029), p=0.08 0.60 0 -

GATA2 0.759 (0.616, 0.936), p=0.01 0.63 0 -
SOCS2 0.702 (0.566, 0.870), p=0.001 0.73 0 -

ENO2 0.845 (0.681, 1.048), p=0.13 0.58 0 -

GPR56 0.758 (0.582, 0.987), p=0.04 0.61 0 -
HDC 0.673 (0.530, 0.854), p=0.001 0.70 0 -

Combinatorial gene metric 0.282 (0.140, 0.568), p<0.0001 0.73 -

Notes: Univariate logistic regression models of eosinophilic inflammation outcome and individual gene expressions (ΔCt relative to the housekeeping gene β-actin). 
Multivariate regression analyses performed with LASSO (least absolute shrinkage and selection operator). Combinatorial gene metric based on ΔCt gene expression values. 
Bolding indicates significance (p-value <0.05). 
Abbreviation: AUC, area under the curve.
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supports the positive association between MC/basophil 
genes and eosinophilic inflammation in COPD.37 This 
study also reported increased IL9R in E-COPD com
pared to non-eosinophilic COPD. IL9 promotes MC 
growth and differentiation, and this further supports 
the role of MCs and basophils in T2 inflammation in 
COPD.37 mRNA abundance of all MC/basophil genes 
was correlated in COPD sputum, supporting a common 
MC/basophil origin, with qPCR measures of MC/ 

basophil-related genes reflecting MC and basophil 
abundance in sputum. There were no significant clin
ical differences between E-COPD and NE-COPD and 
therefore the differences in MC/basophil gene expres
sion between the groups demonstrate the importance of 
molecular biomarkers such as these to distinguish 
between COPD inflammatory phenotypes. Previous 
asthma studies have shown networks of CPA3, HDC 
and GATA216 and TPSAB1 and CPA3,38 were related to 

Table 4 Clinical Characteristics of PBE-High and PBE-Low COPD

PBE-High PBE-Low p-value

Sample number (n) 40 56

Clinical characteristics

Sex, female n (%) 15 (37.5) 20 (35.7) 0.86

Age, years (range) 70.0 (52.4–81.5) 71.4 (54.4–83.5) 0.06
BMI, (kg/m2) 30.4 (29.0, 35.1) 28.7 (25.2, 33.0) 0.14

Ex-smoker, n (%) 35 (87.5) 53 (94.6) 0.27

Ex-smoker pack years (n=88) 42.8 (22.0, 62.0) (n=35) 53.8 (40.0, 72.0) (n=53) 0.03
ICS use, n (%) 37 (92.5) 51 (91.1) 1.00

ICS dose (Beclomethasone equiv. µg/day) (n=86) 2000 (1000, 2000) (n=36) 1500 (500, 2000) (n=50) 0.01
LABA use, n (%) 40 (100.0) 54 (96.4) 0.51
LAMA use, n (%) 37 (92.5) 52 (92.9) 1.00

SGRQ total 58.0 ± 19.4 53.9 ± 15.8 0.26

CAT total 22.1 ± 7.2 20.3 ± 6.0 0.19
Pre β2 FEV1% predicted (n=95) 45.9 (38.8, 60.8) (n=39) 51.6 (39.8, 64.5) (n=56) 0.22

Pre β2 FVC % predicted (n=91) 73.1 (58.5, 82.4) (n=37) 76.1 (65.7, 87.1) (n=54) 0.14

Pre β2 FEV1/FVC % (n=91) 48.0 (38.8, 65.1) (n=37) 51.1 (35.2, 61.6) (n=54) 0.92
Post β2 FEV1% predicted (n=95) 49.0 (40.4, 61.5) (n=40) 53.2 (41.3, 67.9) (n=55) 0.30

Post β2 FVC % predicted (n=93) 74.9 (59.9, 84.9) (n=39) 78.6 (68.9, 87.4) (n=54) 0.15

Post β2 FEV1/FVC % (n=93) 52.7 (40.0, 65.3) (n=39) 52.4 (35.7, 62.7) (n=54) 0.66
Number of total exacerbations in past 12 months 3.0 (1.0, 5.5) 2.0 (1.0, 3.0) 0.19

Number of severe exacerbations in past 12 months (n=95) 0 (0, 1.0) (n=44) 1.0 (0, 1.0) (n=55) 0.62

GOLD quadrant A, n (%) 2 (5.0) 1 (1.8) 0.06
GOLD quadrant B, n (%) 5 (12.5) 17 (30.4)

GOLD quadrant C, n (%) 1 (2.5) 0 (0)

GOLD quadrant D, n (%) 32 (80.0) 38 (67.9)

Induced sputum analysis

Sputum cell viability, % (n=95) 80.6 (71.4, 94.1) (n=40) 80.8 (63.6, 92.0) (n=55) 0.67

Sputum total cell count, x 106/mL (n=95) 5.1 (3.1, 10.7) (n=40) 5.2 (2.7, 10.2) (n=55) 0.76
Sputum neutrophils % 58.1 (41.6, 80.6) 62.3 (42.4, 79.0) 0.66

Sputum eosinophils % 3.5 (1.9, 12.3) 1.0 (0.5, 2.3) <0.0001
Sputum macrophages % 28.5 (15.8, 41.5) 33.1 (16.0, 45.8) 0.26
Sputum lymphocytes % 0.8 (1.3, 1.9) 1.3 (0.3, 2.1) 0.19

Sputum columnar epithelial cell % 2.0 (0.8, 3.9) 1.8 (0.3, 5.3) 0.96

Peripheral blood eosinophil count (x109/L) 0.4 (0.3, 0.6) 0.2 (0.1, 0.2) <0.0001

Notes: Data presented as n (%), mean ± SD or median (Q1, Q3). Peripheral blood eosinophil (PBE) high (≥300 cells/µL). PBE low (<300 cells/µL). Bolding indicates 
significance (p-value <0.05). 
Abbreviations: BMI, body mass index; ICS, inhaled corticosteroid; LABA, long-acting β2 agonist; LAMA, long-acting muscarinic antagonist; SGRQ, St George Respiratory 
Questionnaire; CAT, COPD Assessment Tool; FEV1, forced expiratory volume in one second; FVC, forced vital capacity.
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T2 cytokine genes (IL-4, IL-5, IL-13) and future stu
dies should address the potential role of MCs/basophils 
in promoting T2 inflammation in COPD. The latter 
study also demonstrated that IgE-independent epithelial 
IL-33 MC activation was related to T2 inflammation 
demonstrating potential importance of allergic and non- 
allergic MC-mediated mechanisms.38 We observed 
increased expression of all MC/basophil genes in 

PBE-high COPD. PBEs are promoted by IL-5 and IL- 
5 is expressed by MCs and basophils, further demon
strating a link between airway MC/basophils and a T2- 
high phenotype in COPD.39–41 CPA3 was found to be 
the best predictor of sputum eosinophilic inflammation 
in COPD. Therefore, the clinical measurement of MC/ 
basophil signature genes in sputum is useful as a rela
tively non-invasive tool in predicting sputum 
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Figure 4 Relative mRNA abundance of (A) TPSB2, (B) CPA3, (C) KIT, (D) GATA2, (E) SOCS2, (F) ENO2, (G) GPR56, (H) HDC, and (I) combinatorial gene metric in COPD 
participants categorized as PBE high or PBE low. Bars represent median, with error bars representing Q1, Q3. Relative mRNA abundance compared between groups are 
expressed as 2−ΔCt relative to the housekeeping gene β-actin. Combinatorial gene metric based on ΔCt gene expression values. PBE high (≥300 cells/µL) (n=40) and PBE low 
(<300 cells/µL) (n=56). *p≤0.05, **p≤0.01, ***p≤0.001, ****p≤0.0001.
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inflammatory phenotypes in COPD. Surprisingly, 
SOCS2 and ENO2 expression were significantly 
increased in non-COPD controls compared to COPD 
participants. This may represent a mechanism of 
inflammatory dysregulation in COPD, as SOCS2 plays 
a role as a feedback inhibitor of IL1β and TLR signal
ling, particularly in dendritic cells42 and are also upre
gulated during dendritic cell maturation.43 Neither gene 
significantly correlated with age in COPD or non- 
COPD participants; thus, the lower age of the non- 
COPD controls likely does not fully account for this 
result.

KIT, GATA2, GPR56 and HDC were associated with 
decreased lung function. GATA2, KIT and HDC showed 
relatively high intercorrelation in COPD. GATA2, important 
in MC/basophil differentiation,44 promotes KIT45 and 
HDC46 expression, both important in MC/basophil devel
opment, proliferation and survival and acute inflammation.
46,47 A previous study has reported FEV1% predicted values 
were decreased in eosinophilic COPD patients compared to 
non-eosinophilic COPD.8 As these genes were significantly 
increased in E-COPD, this may reflect the decreased lung 
function seen in E-COPD. Of note, TPSB2 and CPA3 whilst 
also increased in E-COPD and highly intercorrelated, were 
not associated with decreased lung function. Similarly, 

previous research has shown that CPA3 is not related to 
lung function in COPD.48 Airway MC expression of MC- 
related factors may be modulated in different inflammatory 
and clinical contexts in asthma,49,50 thus it may be that a 
particular MC/basophil phenotype associated with 
increased expression of GATA2, KIT and HDC is related 
to lower lung function in COPD, or that other factors that 
contribute to increased expression of these genes are also 
associated with lower lung function. GPR56 is a proposed 
basophil-specific gene.22 Its increased expression was 
related to poorer lung function and suggests a role of baso
phils in COPD. In contrast, GPR56 was the only MC/ 
basophil gene differentially expressed between exacerba
tion phenotypes and was higher in participants with reduced 
severe exacerbation history. Previous findings have shown 
that basophil-derived IL-4, drives macrophage-produced 
MMP-12 and contributes to emphysema in COPD mouse 
models.34 Recent findings suggest a more complex scenario 
with a proposed immunomodulatory role for basophils in 
the airways.51 Lack of altered expression of other MC/ 
basophil genes between exacerbation phenotypes suggests 
that MC/basophil presence in the airway lumen may not be 
an important predictor of exacerbation risk in COPD.

Our study has limitations. The cross-sectional study 
design does not provide an understanding of gene 

Table 5 Associations Between MC/Basophil mRNA Abundance and Clinical Characteristics in COPD

Age BMI SGRQ Total CAT Total Pre β2 FEV1% 
Predicted

Pre β2 FVC % 
Predicted

Pre β2 FEV1/ 
FVC %

r- 

value

p- 

value

r- 

value

p- 

value

r- 

value

p- 

value

r- 

value

p- 

value

r- 

value

p- 

value

r- 

value

p- 

value

r- 

value

p- 

value

TPSB2 0.079 0.44 −0.073 0.48 −0.136 0.19 −0.228 0.03 −0.035 0.74 0.008 0.94 −0.054 0.61

CPA3 0.009 0.93 −0.052 0.61 −0.122 0.24 −0.131 0.20 −0.003 0.98 0.008 0.94 −0.017 0.87

KIT −0.025 0.81 −0.142 0.17 0.141 0.17 0.147 0.15 −0.283 0.006 −0.093 0.38 −0.199 0.06

GATA2 −0.190 0.06 −0.225 0.03 0.057 0.58 0.028 0.79 −0.315 0.002 −0.035 0.74 −0.241 0.02

SOCS2 −0.075 0.47 0.067 0.52 −0.047 0.65 −0.146 0.16 −0.091 0.38 −0.037 0.73 −0.020 0.85

ENO2 0.053 0.61 −0.008 0.94 0.091 0.38 0.120 0.24 −0.119 0.25 −0.175 0.10 0.022 0.84

GPR56 −0.076 0.46 −0.014 0.89 0.012 0.91 −0.064 0.53 −0.252 0.01 −0.054 0.61 −0.192 0.07

HDC −0.010 0.92 −0.117 0.26 0.035 0.74 0.091 0.38 −0.220 0.03 −0.045 0.67 −0.181 0.09

Combinatorial gene 

metric

0.054 0.60 0.063 0.54 −0.037 0.72 0.011 0.91 0.227 0.03 0.074 0.49 0.151 0.15

Notes: Relative mRNA abundance 2−ΔCt values based on the housekeeping gene β-actin used in correlation analysis. Spearman correlation r-values reported. Combinatorial 
gene metric based on ΔCt gene expression values. Bolding indicates significance (p-value <0.05). 
Abbreviations: BMI, body mass index; SGRQ, St George Respiratory Questionnaire; CAT, COPD Assessment Tool; FEV1, forced expiratory volume in one second; FVC, 
forced vital capacity.
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expression over time nor its longitudinal relationship to 
inflammatory measures. Replication of our findings in 
an independent cohort would be desirable in future 
studies. Retrospective data collection of exacerbations 
was based on patient recall over the past year. Atopic 
status and FeNO levels were not collected, and future 
work may provide further insight into the relationship 
of MCs and basophils to allergic COPD. Current smo
kers were excluded from our study, and validation of 

these findings in current smokers is important for 
future studies. The difference in age range between 
the control and COPD populations was large, with an 
older median age in COPD participants. We do not 
know the influence of age on MC/basophil gene 
expression. However, we found no correlation between 
MC/basophil mRNA abundance and age in COPD par
ticipants, nor did age differ significantly between 
E-COPD and NE-COPD.
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Figure 5 Relative mRNA abundance of (A) TPSB2, (B) CPA3, (C) KIT, (D) GATA2, (E) SOCS2, (F) ENO2, (G) GPR56, (H) HDC, and (I) combinatorial gene metric in COPD 
participants classified by frequent (>2) and infrequent (0–1) exacerbator status for total (frequent [n=58] and infrequent [n=38]) or severe (frequent [n=14] and infrequent 
[n=81]) exacerbations. Bars represent median, with error bars representing Q1, Q3. Relative mRNA abundance compared between groups are expressed as 2−ΔCt relative to 
the housekeeping gene β-actin. Combinatorial gene metric based on ΔCt gene expression values. *p≤0.05.
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Conclusions
In conclusion, we applied a sputum qPCR-based MC/ 
basophil gene signature validated in asthma, to a 
COPD cohort compared to controls and demonstrated 
that sputum MCs and basophils were dysregulated in 
COPD, with several genes increased in COPD partici
pants. We also found that MC/basophil gene expression 
was associated with airway and peripheral eosinophilic 
inflammation and poorer lung function in COPD. The 
clinical measurement of MC/basophil signature genes 
in sputum is useful as a relatively non-invasive tool for 
endotyping E-COPD, with clinical associations with 
decreased lung function.

Abbreviations
AUC, area under the curve; BMI, body mass index; CAT, 
COPD Assessment Test; CPA3, carboxypeptidase A3; 
COPD, chronic obstructive pulmonary disease; E-COPD, 
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