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Abstract: Acute respiratory distress syndrome (ARDS) is the most severe complication of 
COVID-19, a disease caused by severe acute respiratory syndrome coronavirus (SARS CoV) 
2. The mechanisms underlying the progression from asymptomatic disease to pneumonia and 
ARDS are complex and by far unelucidated. As for bacterial sepsis, the release of damage 
associated molecular patterns and pathogen associated molecular patterns triggers activation 
of the complement cascade. Subsequently, overexpressed anaphylatoxins recruit inflamma
tory cells in the lung and other organs and contribute initiating and amplifying a vicious 
circle of thromboinflammation causing organs damage and eventually death. Preclinical and 
observational studies in patients with COVID-19 provided evidence that complement inhibi
tion effectively may attenuate lung and systemic inflammation, restore the coagulation/ 
fibrinolysis balance, improve organs function and eventually may save life. Ongoing Phase 
2/3 trials should elucidate the benefit to risk profile of complement inhibitors and may clarify 
the optimal targets in the complement cascade. 
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Introduction
Since December 2019, COVID-19, a disease caused by the severe acute respira
tory syndrome coronavirus 2 (SARS-CoV-2) places a major burden on healthcare 
and economy systems in most if not all countries. As of May 15th 2021, COVID- 
19 has affected more than 160 million people and caused about 3.4 million 
deaths.1 It is now well established that following a phase of viral replication in 
airway and lung tissues, a deregulated immune response is the hallmark of 
COVID-19 alike bacterial sepsis.2 SARS-CoV-2 triggers immune responses that 
may vary quantitatively and qualitatively in-between individuals and overtime in 
the same individual. The very early – within 24 to 48 hours – response to SARS- 
CoV-2 involved mainly activation of plasmacytoid predendritic cells with subse
quent upregulation of interferon type 1 (IFN-1) pathway3 which in turn may 
trigger TNF/IL-1β-driven inflammatory response.4 Distinct cytokine profiles may 
be associated with distinct clinical phenotypes with variable prognosis.5 

Contrasting with the heterogeneity in clinical phenotypes, a core immune signa
ture carried by peripheral blood cells is characterized by profound T-cells altera
tion and selective cytokines upregulation, specific antibodies and minimal 
alterations in B cells.6 The complement system plays a pivotal role in innate 
immunity.7–9 In sepsis, overactivation of the complement system may favour pro- 
coagulation over fibrinolysis and inflammation over immune suppression resulting 
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in a vicious circle of self-amplification of thrombo- 
inflammation.10 Likewise, a dysregulated complement 
system may partly account for the progression from 
mild to severe form of COVID-19.11 This narrative 
review summarized the current knowledge about the acti
vation and deregulation in the complement system during 
sepsis and COVID-19 and about modulating the comple
ment cascade as a therapeutic approach.

Evidence That COVID-19 is 
a Complement Mediated Disease
Physiological Basis
The complement system is composed by heat-labile 
plasma proteins that cross-talk in a catalytic cascade. 
After Bordet demonstration of the bacteriolytic activity 
of the serum alexin,7 Ehrlich introduced the term 
complement.12 A proportionate activation of the comple
ment system is essential to immune homeostasis whereas 
overactivation may trigger thromboinflammation and end- 
organ damages and complement deficiency may cause 
susceptibility to life-threatening infections, and may pre
cede autoimmune disorders. The complement system has 
about 40 proteins organized in seven functional compo
nents (Table 1). The complement system acts as a sentinel 
that rapidly and with high specificity detects, traces, tar
gets and eradicates pathogens. Its activation involved the 
classical, mannose-binding lectin (MBL), and alternative 
pathways. The classical pathway is activated by direct 
association of C1q with pathogen surfaces or by binding 
of C1q to antigen-antibody complexes during an adaptive 
immune response. The MBL pathway is triggered by bind
ing of MBL to mannose containing carbohydrate struc
tures on bacteria or virus surface. The alternative pathway 
is activated by binding of spontaneously activated comple
ment C3 protein (C3b fragment) to pathogen’s surface. 
These three pathways converge to the formation of C3 
convertase that stimulates the formation of C3a, C3b, 
C5a, C5b, C6, C7, C8, and C9. The fragments C5b, C6, 
C7, C8, and C9 form the membrane attack complex (C5b- 
9, MAC) triggering bacteria lysis (Figure 1). Opsonins and 
anaphylatoxins boost pathogens phagocytosis and activate 
circulating white blood cells.9 The proinflammatory effects 
are finetuned by counter-balancing inhibitory factors such 
as inactive C3b.13 Each step of the catalytic cascade is 
tightly controlled by soluble and cell membrane bound 
regulatory factors (Table 1). Beyond immunity, the com
plement system has other targets including stem cells and 

progenitor cells, nervous system, and metabolic tissues 
modulating cellular stress, apoptosis and autophagy.9

Role of Anaphylatoxin C5 in the 
Physiopathology of Sepsis (Figure 2)
Human C5a is a 74 amino acid glycosylated peptide with anti- 
parallel α-helical structures that are crosslinked by disulphide 
bands, making the molecule quite stable, especially in the 
presence of oxidants. C5a is released from the N terminal 
region of the α chain of C5 by C5 convertases (C3b2•Bb or 
C4b•C2a•C3b) induced cleavage of C5 into C5a + C5b. C5b 
interacts with C6, C7, C8 and C9 to form the membrane attack 
complex C5b-9 (MAC). The release of C5a can also be 
triggered by neutral proteases derived from neutrophils or 
lung macrophages, and by thrombin (factor IIa).

The anaphylatoxin C5a contributes to the systemic over
activation of the proinflammatory cytokines that characterize 
sepsis. In cecal ligation and puncture (CLP) induced sepsis in 
mice, C5a induced the migration of interleukin-12+ dendritic 
cell (IL-12+DC) from the peritoneal cavity to blood stream and 
lymph nodes contributing to the systemic spreading of inflam
mation. IL-12+DC are key inducers of interferon (IFN)c+ Th1 
and IL-17+ Th17 cells. The pleiotropic activities of IL-12 on 
natural killer (NK), T and B cells function require to be 
finetuned for an appropriate immune responses. C5a prevents 
toll-like receptor (TLR)4-induced synthesis of IL-12, IL-23, 
and IL-27 via extracellular signal-regulated kinase (ERK) and 
phosphoinositide 3-kinase (PI3K). In addition to its role in 
dampening TLR4-driven synthesis, C5a also regulates CD40- 
induced IL-12 production through ERK1/2. IFN regulatory 
factor 1 (IRF-1) and IFN consensus sequence binding protein 
(ICSBP; IRF-8) are also as crucial transcription factors down- 
streaming ERK and PI3K pathways, respectively. These data 
indicate that C5a modulates both innate (TLR4) and adaptive 
(CD40) immune responses that drive the production of IL-12 
family cytokines. C5a also interferes with CD40/CD40 ligand 
axis involved in the communication between the antigen pre
senting cell (mostly IL-12+DC) and T cell preventing Th1 
polarization.14,15 C5a/C5aR axis interacts synergistically with 
TLRs stimulating NK cells production of TNF-α and IFN-γ.16 

C5a inhibits LPS-induced production of TNF-α in neutrophils 
and by contrast enhances TNF-α release by macrophages.17 

There is also evidence for a synergistic relationship between 
C5a and LPS to produce neutrophil-derived antigenic IL-8.18 

The release of IL-6 is closely linked to up-regulation of C5aR 
and activation of ERK1/2 and p38 as a final common step 
involving activation of mitogen and stress activated kinase 1/2 
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(MSK1/2).19,20 Interestingly, C5a exhibited anti-inflammatory 
effects by downregulating IL-17A and IL-23 via inhibition of 
CD11b(+)F4/80(+) macrophages and upregulating IL-10.21,22 

Therefore, C5a down-modulates the more potent IL-17A while 
up-regulating the weaker IL-17F.

Activation of the C5a-C5aR pathway induced intrinsic 
(mitochondrial) and extrinsic (TNFα, Fas ligand) apoptosis 
of thymocytes, adrenal medullary and cortical cells.23 C5a 
inhibited spontaneous human neutrophil apoptosis via PI3- 
K/Akt signalling pathway.24,25 The local complement- 
dependent expansion of the effector repertoire results 
from C5a/C5aR-induced suppression of effector T-cell 
apoptosis, through PI-3Kγ–dependent alterations in Bcl-2 
and Fas expression.26 Finally, upregulated C5a impairs 
neutrophils phagocytosis, reactive oxygen species (ROS) 
generation, and chemotactic migration.27 C5a and C5b 
collectively activate platelets and endothelial cells, with 
subsequent induction of expression of tissue factor, von 
Willebrand factor, prothrombinase assembly sites and 
P-selectin.28 E. coli-induced tissue factor upregulation is 
mainly dependent on C5a and much less on CD14.29,30 

Finally, C5a plays a critical role in sepsis induced cardio
myopathy mainly by down-regulating sarcoplasmic reticu
lum Ca2+-ATPase and sarcolemma Na+-Ca2+ exchanger, 
key calcium regulatory proteins in left ventricle 
cardiomyocytes.31 Endotoxin upregulates C5a-C5aR sys
tem in a time-dependent manner subsequently within cer
ebral endothelium, microglial cells neighbouring the 
endothelium, and in deeper brain parenchyma.32 C5a trig
gers microglial cells release of proinflammatory cytokines 
and phagocytosis capacity, and activates astrocytes.

Role of Anaphylatoxins in the 
Physiopathology of Coronavirus Diseases
Acute respiratory distress syndrome (ARDS) is a severe 
complication of coronavirus infection.33–35 There are 
numerous cytokine-related molecules and pathways rele
vant to understanding the biological mechanisms under
lying acute lung injury after viral infection. Complement 
activation and C5a play a key role in the development of 
virus-related ARDS.36 In C57BL/6J mice, mouse-adapted 

Table 1 Functional Components of the Complement System

Functional 
Components

Molecules Functions

Initiator complement 

factors

C1q complex 

Mannose binding lectin 

Ficolins

Trigger complement cascade by binding to activated soluble or 

membrane bound ligands

Enzymatic mediators C3 convertase 

C5 convertase

Induce cleavage or conformational changes of complement 

components

Opsonins C3b, C4b (largest fragment resulting from 
convertase cleavage)

Bind to specific receptors at bacterial cell surface 
Stimulate phagocytosis

Anaphylatoxins C3a, C4a, C5a (smallest fragment resulting from 
convertase cleavage)

Bind to endothelial cells and increase blood flow 
Trigger cytokines cascade

Membrane attack 
complex

Assembly of C5b, C6, C7 and C9 Bind and destroy bacteria membrane with subsequent lysis of 
bacteria

Complement 
receptors

Cell surface receptors Bind to complement proteins

Regulatory 
complement factors

Soluble: 
Factor H 

C4-binding protein 

Cell membrane: 
Decay-accelerating factor 

Complement receptor 2 

Complement receptor 1 
Membrane cofactor protein 

Proteolytic enzymes serine protease factor 1

Prevent overactivation of complement proteins
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Figure 1 Four major pathways are involved in complement activation: classical, lectin, alternative, and coagulation pathways. The classical pathway is activated by direct 
association of C1q with pathogen surfaces or by binding of C1q to antigen-antibody complexes during an adaptive immune response. The mannose binding lectin pathway is 
triggered by binding of MBL to mannose containing carbohydrate structures on bacteria or virus surface. The alternative pathway is activated by binding of spontaneously 
activated complement C3 protein (C3b fragment) to pathogen’s surface. These three pathways converge to the formation of C3 convertase that stimulates the formation of 
C3a, C3b, C5a, C5b, C6, C7, C8, and C9. The fragments C5b, C6, C7, C8, and C9 form the membrane attack complex (C5b-9, MAC) triggering bacteria lysis, while C5a is 
a strong anaphylatoxin. The fourth activation pathway is through the action of thrombin, which catalysis C5 into C5a and C5b.

Figure 2 Summary of C5a action in sepsis. After binding to its C5aR and C5L2 receptors, C5a will have different effects on the immune system and different organs. The 
C5a pathway will lead to the secretion of pro-inflammatory cytokines by macrophages such as IL-6, IL-1 or TNF alpha allowing the recruitment of other immune cells. On 
PMNs, C5a will first increase the expression of CCR to facilitate their recruitment but will then induce a paralysis of ERK1/2 leading to a decrease in phagocytosis or 
respiratory burst. C5a-exposed endothelial cells obtain an activated phenotype with adhesion molecule and tissue factor expression that will initiate the coagulation cascade 
with a risk of DIC. Lymphopenia is a feature of sepsis and is related to increased lymphocyte apoptosis via the C5a pathway. C5a induces apoptosis of adrenomedullary cells, 
which are responsible for the bulk of endogenous catecholamines, leading to a disequilibrium that favors the development of septic shock. The binding of C5a to its 
receptors on the surface of the cardiomyocytes will lead to a defect in the repolarization of the cell and an accumulation of calcium in the cytoplasm, resulting in a defect in 
contractility and relaxation of the cardiomyocytes.
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SARS-CoV infection resulted in high-titre virus replication 
within the lung, induction of inflammatory cytokines and 
chemokines, and immune cell infiltration within the 
lung.37 C3 activation products were detected in SARS- 
CoV-infected mice, but not in control mice, as early as 
24 hours post-infection. Complement component 3 deposi
tion was observed in the lungs two to four days following 
infection in wildtype mice. C3 knocked out mice were 
protected from SARSCoV-induced weight loss, had 
reduced lung damage, lung and systemic inflammation, 
and improved respiratory function. The unaltered kinetics 
of viral replication in the C3-deficient mice suggested that 
the protective effects related to the prevention of comple
ment-mediated inflammatory processes and not to reduc
tion of viral titre. In contrast, transgenic mice lacking 
alternative pathway proteins, Factor B or C4, were not 
protected from SARS CoV-mediated weight loss, suggest
ing that inhibition of the complement alternative pathway 
alone may not be sufficient. This implies that inhibition of 
C3 or C5 may be required. Likewise, Middle East respira
tory syndrome (MERS)-CoV infection in mice caused 
severe acute respiratory failure and high mortality accom
panied by elevated secretion of cytokines and 
chemokines.38 In this model, complement overactivation 
was characterized by increased concentrations in sera and 
lung tissue of C5a and C5b-9. The avian influenza virus 
H5N1 induced histopathological changes in the lungs are 
like those observed in SARS.39 In a mouse model of 
H5N1, complement activates immune effector cells and 
drives lung inflammation. C3a and C5a increased vascular 
permeability, activated leukocytes and endothelial cells, 
up-regulated adhesion molecule and cytokine expression, 
and induced goblet cell secretion of mucus. In these mice, 
deposition of C3, C5b-9, and mannose-binding lectin 
(MBL)-C was observed in lung tissue. Up-regulation of 
MBL-associated serine protease-2 (MASP-2) and comple
ment receptors C3aR and C5aR was also detected. Specific 
inhibition of either C3aR or C5a in the infected mice 
reduced lung damage, inflammation and neutrophil infil
tration, and improved survival.40 Upregulation of MASP-2 
by extracellular release of the viral N-protein may be 
a common pathway of complement overaction by 
coronaviruses.41

Clinical evidence suggests that complement is acti
vated during SARS infection and that the progression of 
severe pneumonia, acute lung injury, or ARDS in these 
patients is strongly associated with complement 
activation.42 Likewise, C5a is associated with the 

inflammatory response and severe lung damage that occurs 
in patients infected with the 2009 H1N1 influenza virus.43 

It has also been shown that SARS-CoV can directly acti
vate complement via the lectin pathway.44 Cytokine storm 
is thought to be a key step in the pathogenesis of ARDS 
following SARS-CoV-2 infection.45 Observational studies 
have shown evidence for over-activation of the comple
ment pathway in patients with COVID-19. Lung and skin 
biopsies in patients with severe COVID-19 revealed 
microvascular damage and microthrombosis consistent 
with activation of the alternative and lectin pathways.46 

Indeed, vascular injuries were associated with extensive of 
C5b-9, C4d and MASP-2. Clinical studies consistently 
reported increased levels of sC5b-9 correlating with sever
ity of illness.47–50 Likewise, levels of C5a were gradually 
increased in serum and bronchoalveolar lavage from 
asymptomatic patients, patients with pneumonia and 
those with ARDS.51 Upregulation of the C5a-C5aR axis 
was sustained for at least 10 days after admission probably 
as a result of prolonged activation of the lectin and classi
cal pathways. Overactivation of C5a-C5aR axis in the lung 
contributes directly and indirectly to recruitment of mye
loid cells and subsequently to vasculitis and 
endothelialitis.

Collectively, preclinical and clinical observations sug
gest that COVID-19, alike other highly pathogenic viral 
diseases, is a complement-mediated disease, and that mod
ulating the complement cascade may be an effective treat
ment option.

Complement System Inhibition
Theoretically, options for blocking the complement system 
may include targeting components of the lectin, classical 
or alternative pathways, or acting downstream at the level 
of C3-C3a or C5-C5a.52,53

Preclinical Studies
Main preclinical studies are summarized in Table 2. In 
E. coli challenged primates, selective inhibition of the C3 
convertase prevented TLR-4 mediated inflammatory sig
nals, tissues inflammation, preserved organs function and 
improved survival.54 These effects were preceded by inhi
bition of complement activation and deposition in tissues 
of MDL, C3b and C4b-9. In the same model, inhibition of 
C3 convertase protected against E. coli sepsis induced 
lung fibrosis by downregulating profibrogenic and matrix 
proteins genes.55 In rats with CLP induced sepsis, anti-C5a 
antibodies significantly reduced systemic and tissues 
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inflammation, restored the coagulation/fibrinolytic bal
ance, and improved survival.56,57 Likewise, in piglets 
with polymicrobial sepsis, the combination of the C5 
inhibitor coversin and of an anti-CD14 significantly atte
nuated the inflammatory response and disseminated intra
vascular coagulopathy, improved hemodynamic, organ 
function and survival.58,59 In mice challenged with lethal 
load of H5N1, C3aR or C5aR inhibitors prevented neutro
phils infiltration in the lung, downregulated local and 
systemic release of proinflammatory mediators with sub
sequent attenuation of lung injury and increased survival 
rate.40 The pharmacological approach of inhibiting C3a- 
C3aR or C5a-C5aR axes resulted in similar anti- 
inflammatory effects, organs protection and survival in 
H7N9 infected non-human primates60 and in MERS-CoV 

infected mice.38 Monoclonal antibodies that selectively 
blocked C5a-R1 prevented lung inflammation and injuries 
in a mice model of inhaled C5a induced acute lung injury 
mimicking COVID-19.51

Clinical Studies
Main studies on the use of complement factor inhibitors in 
sepsis or COVID-19 are summarized in Table 3. Small 
sized observational studies suggested favorable outcomes 
in patients with sepsis treated with C1 esterase 
inhibitor.61,62 In a randomized trial, infusions of C1 ester
ase inhibitor reduced 28-day mortality by 33% from 
45%.63 This trial has several limitations including 
a small sample size (61 patients), the lack of a placebo 
and of blinding of treatment administration and outcomes 

Table 2 Preclinical Studies on Complement Inhibition

Authors Models Animals Interventions Effects

Silasi- 
Mansat54

Infusion with 1×109 live E coli 
(LD50 dose)

Baboons C3 convertase inhibitor: Compstatin 
was administered as a 10-mg/kg 

intravenous bolus followed by 60 μg/kg/ 

min continuous infusion

Reduction in inflammatory and 
hemostatic processes, Improvement in 

systemic blood pressure and organ 

function

Silasi- 

Mansat55

Infusion with 1×109 live E coli 
(LD50 dose)

Baboons C3 convertase inhibitor: Compstatin 

was administered as a 10-mg/kg 
intravenous bolus followed by 60 μg/kg/ 

min continuous infusion

Reduction in early profibrogenic 

responses in the lung, including fibroblast 
differentiation, cell migration and 

proliferation, and the enhanced 

production of collagens and other matrix 
proteins.

Czermak56 Cecal ligation and puncture Rats IgG antibody against C5a Improvement in survival rates Reduction 

in levels of bacteremia

Laudes57 Cecal ligation and puncture Rats Rabbit Anti-Rat C5a Improvement in survival rates 

Improvement in platelet counts, 

fibrinogen, FVII:C, AT, plasminogen, t-PA, 
and PAI as well as TAT complexes and 

D-dimer

Barratt- 

Due58

Live E. coli sepsis Pigs C5 and leukotriene B4 inhibitor 

Ornithodoros moubata complement 

inhibitor (OmCI; coversin) alone and 
combined with anti-CD14

Reduction in proinflammatory mediators 

and in thrombogenicity, 

Increase in IL-10, Delayed hemodynamic 
changes

Skjeflo59 Live E. coli sepsis Pigs C5 and leukotriene B4 inhibitor 
Ornithodoros moubata complement 

inhibitor (OmCI; coversin) alone and 

combined with anti-CD14

Improvement in survival 
Improvement in pulmonary and systemic 

hemodynamic 

Reduction in proinflammatory mediators

Sun60 Intratracheal inoculation with 

10650% tissue culture infective 
dose (TCID50) of A/Anhui/1/ 

2013 (H7N9) virus

Green 

monkeys

Neutralizing specific antihuman C5a 

antibody (IFX-1)

Reduction in the ALI and systemic 

inflammation 
Reduction in lung viral replication
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assessment. In a patient with sepsis and disseminated 
intravascular coagulopathy induced thrombotic microan
giopathy, treatment with eculizumab, humanized monoclo
nal antibody that inhibits the cleavage of C5 to C5a and 
C5b, restored the coagulation/fibrinolytic balance and 
reduced sepsis associated terminal organs complications.64

Cases series have suggested promising effects on clin
ical outcomes in patients with severe COVID-19 treated 
with C1 esterase inhibitors,65 MASP-2 monoclonal 
antibodies,66 compstatin-based complement C3 inhibitor,67 

anti-C5 drugs,48,68–70 or C5a-C5aR1 antagonists.41,51 

A non-randomized study compared the complement C3 
inhibitor AMY-101 and eculizumab -an anti-C5 monoclo
nal antibody- administered to 3 and 10 patients with severe 
COVID-19, respectively.71 Both drugs were associated with 
substantial reduction in circulating biomarkers of inflam
mation. The C3 inhibitor was associated with faster 
decrease in neutrophils count and NETosis and increase in 
lymphocytes and platelets count than eculizumab. Lung 
function and arterial haematosis improved similarly with 
both drugs. Unsurprisingly, AMY-101 and not eculizumab 
resulted in a rapid and sustained decrease in C3a serum 
levels. Of note, in contrast with AMY-101 effects, eculizu
mab was associated with transient decrease followed by 
a rebound in sC5b69 levels and residual AP-mediated com
plement haemolytic activity, suggesting transient and 
incomplete terminal pathway inhibition. These findings 
would support that in COVID-19, targeting C3 or its 
upstream activators may provide more benefits than the 
sole inhibition of C5-C5a-C5a-R axis via the regulation 
beyond the cytokine storm, of the Net generation and 
thrombotic microangiopathy. A quasi-randomized trial has 
investigated intravenous administration of 900mg of eculi
zumab at day 1, 8, 15 and 22 of ICU admission, in 80 
critically ill COVID-19.49 Preliminary data found that 
these doses resulted in incomplete and transient inhibition 
of terminal pathway, and subsequent patients received 
higher doses at more frequent infusions. Eculizumab treated 
patients were more likely to survive at day-15 and day 28 
and had prolonged survival time as compared to control. 
Eculizumab was associated with faster improvement in 
arterial oxygen tension and tissue oxygenation, more rapid 
increase in platelets count and prothrombin time, better 
renal function, and steeper decline in circulating levels of 
IL-6, IL-17 and IFN-α2. There were more patients with 
secondary bacterial infections in the eculizumab group ver
sus controls. While levels of CH50 and sC5b-9 were dra
matically decreased by eculizumab, levels of C5a did not 

differ from those of eculizumab-free patients.50 The incom
plete terminal pathway inhibition by eculizumab in patients 
with severe COVID-19 is unclear. The strong activation of 
complement may have played a role in insufficient inhibi
tion of the terminal complement pathway by eculizumab. 
Targeting C5a or C5a-R1 may offer the advantage over C5 
antagonists, to preserve the formation of the membrane 
complex attack which is crucial to kill bacteria and to 
provide complete blockade of the anaphylatoxin C5a. The 
favorable benefit to risk ratio suggested in observational 
studies and small sized controlled studies should be tem
pered off by serious limitations inherent to the design of 
these studies, including intermediate outcomes and not 
patient-centered outcome and limited controls for selection 
and confounding biases. A proof-of-concept, phase 2 study 
has investigated IFX-1 - a selective antagonist of C5a- in 30 
adults with severe COVID-19.72 There was no significant 
difference in changes in the ratio of arterial tension to the 
fraction of inspired oxygen (PaO2/FiO2) between IFX-1 
treated and free patients (17% vs 41%; difference –24% 
[95% CI –58 to 9], p=0.15). Likewise, there were no dif
ference in mortality by 28 days, 13% (95% CI 0–31) for 
IFX-1 and 27% (4–49) for controls (HR for death 0.65 
[95% CI 0.10–4.14]). Patients in the experimental arm 
were more likely to have normalized lymphocytes count 
by day 15 (13 /15 [87%] versus 7/15 [47%], p=0.05). This 
adaptive design trial has now progressed to a Phase 3, 
placebo-controlled stage. Several ongoing randomized 
trials are investigating in severe COVID-19, the anti-C5 
drugs zilucoplan,73,74 eculizumab,75 ravulizumab,76–78 the 
C3 inhibitors AMY-10179 and APL-9,80 the C1 esterase 
inhibitor conestat alpha,81–83 the novel peptide RLS- 
0071,84 the MASP-2 inhibitor narsoplimab.85 These trials 
are of variable size (ranging from 32 to 1500 participants) 
and most often compare active treatment to best supportive 
care.

Conclusion
Alike bacterial sepsis, severe COVID-19 is characterized 
by overactivation of the terminal complement pathway 
that contributes to airways and lung inflammation and 
injuries, disruption of endothelial function with subsequent 
spreading of the excessive inflammatory response to the 
periphery and imbalanced coagulation/fibrinolysis result
ing in organs failure and eventually death. Collectively 
experimental data and preliminary results from observa
tional studies shed light on the potential benefits from 
complement inhibition in severe COVID-19. Ongoing 
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randomized trials should confirm a favorable benefit to 
risk ratio for complement inhibitors, and should precise 
the optimal targets in the complement cascade. Awaiting 
final results from these trials, complement inhibition 
should not be part of the routine management of patients 
with COVID-19.
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