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Objective: To evaluate a deep learning-based method to autonomously detect dry eye 
disease (DED) in anterior segment optical coherence tomography (AS-OCT) images com
pared to common clinical dry eye tests.
Methods: In this study, 27,180 AS-OCT images were prospectively collected from 151 eyes 
of 91 patients. Images were used to train and test the deep learning model. Masked cornea 
specialist ophthalmologist diagnoses were used as the gold standard. Clinical dry eye tests 
were performed on patients in the DED group to compare the results of the model. The dry 
eye tests performed were tear break-up time (TBUT), Schirmer's test, corneal staining, 
conjunctival staining, and Ocular Surface Disease Index (OSDI).
Results: Our deep learning model achieved an accuracy of 84.62%, sensitivity of 86.36%, 
and specificity of 82.35% in the diagnosis of DED. The positive likelihood ratio was 4.89, 
and the negative likelihood ratio was 0.17. The mean DED probability score was 0.81 ± 0.23 
in the DED group and 0.20 ± 0.27 in the healthy group (P < 0.01). The deep learning model 
accuracy in the diagnosis of DED was significantly better than that of corneal staining, 
conjunctival staining, and Schirmer's test (P < 0.05). There was no significant difference 
between the deep learning diagnostic accuracy and that of the OSDI and TBUT.
Conclusion: Based on preliminary results, reliable autonomous diagnosis of DED with our 
deep learning model was achieved, when compared with standard dry eye clinical tests that 
correlated significantly more or similarly to diagnoses made by cornea specialist 
ophthalmologists.
Keywords: dry eye disease, artificial intelligence, optical coherence tomography

Introduction
With up to 25% of patients seen in ophthalmic clinics presenting with dry eye 
disease (DED) related symptoms, it is important to be able to accurately and 
efficiently diagnose to provide proper treatment to patients.1–4 Dry eye disease 
can lead to a decrease in quality of life, as well as, damage to the eye.5 DED not 
only matters to the patients affected but also to society when you consider the 
economic burden of treating DED. The economic burden of DED in the United 
States has been calculated to cost on average US$3.84 billion annually in direct 
medical costs and US$55.4 billion annually when including indirect costs and 
productivity loss.6

Therefore, the diagnosis of DED has become a major research focus for 
ophthalmologists considering current diagnostic tests are time-consuming, invasive, 
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unreliable, and poorly associated with patient’s 
symptoms.4,7–9 The Tear Film and Ocular Surface 
Society Dry Eye Workshop II (TFOS DEWS II) concluded 
that while there is no gold standard for diagnosis of DED, 
diagnosis should be based on subjects meeting a series of 
sensitive thresholds for multiple clinical tests with optimal 
cutoffs that maximize sensitivities and specificities.10 

Current commonly used dry eye diagnostic tests include 
tear break-up time, ocular surface staining, Schirmer's test, 
and symptom questionnaires. Other diagnostic tests that 
are becoming more prevalent in clinic are tear osmolarity, 
tear film interferometry, ocular surface thermography, and 
tear film biomarkers.4,8,11 One of the most common tests 
performed following the patient's history and thorough 
slit-lamp examination is the Schirmer's test, which has 
been shown to be inconsistent, invasive, irritating, and 
affected by the position of the eye.4,12 Moreover, besides 
the difficulty of generating reproducible, accurate results, 
the cutoff value for an abnormal finding is not definitive, 
ranging from <5 mm to <10 mm in the literature.13 With 
similar problems arising from other dry eye tests com
monly administered, it is understandable why dry eye is 
commonly misdiagnosed and requires further research into 
diagnostic tools.

Another research area that is receiving global attention 
is the use of artificial intelligence in medicine to improve 
diagnostic accuracy and efficiency. Artificial intelligence 
algorithms using deep learning have been shown to pos
sess the ability to diagnose conditions such as lung cancer, 
breast cancer, skin cancer, and diabetic retinopathy.14–16 In 
ophthalmology, artificial intelligence has been developed 
to predict the likelihood of necessary future keratoplasty 
intervention based on optical coherence tomography 
(OCT) images, as well as, keratoconus detection based 
on OCT images.17,18 Using OCT, studies have shown it 
is possible to detect DED through quantification of the 
adhesiveness of the ocular surface, measuring the tear 
meniscus height, and measuring the tear meniscus 
volume.4,19 With other recent studies showing that there 
are features found in the epithelial layer of the cornea 
prevalent in the DED population, it is reasonable to pro
pose that an automated deep learning algorithm could 
identify these features and more.14,20 Such an algorithm 
would have the capability of diagnosing DED regardless 
of the multifactorial etiology.

Our team has previously developed an autonomous 
deep learning model that can differentiate between healthy 
eyes and eyes with DED, keratoconus, or Fuchs’ 

endothelial dystrophy.21 For this study, our team devel
oped a novel algorithm, from a larger set of data, focused 
on differentiating healthy eyes and eyes with DED. After 
development and training, we tested the model on an 
independent, unseen dataset to further validate its efficacy. 
We compared the results of the model to results from 
commonly performed dry eye tests for the dry eye disease 
group. This is the first study comparing a deep learning 
algorithm capable of diagnosing DED with standard clin
ical dry eye tests.

Materials and Methods
This study was approved by the Institutional Review 
Board of the University of Miami and adhered to the tenets 
of the Declaration of Helsinki and HIPAA regulations. All 
relevant ethical guidelines were followed, and written 
informed consent was obtained from each subject after 
an explanation of the nature and possible consequences 
of the study.

Patient Selection
A healthy patient was defined as having no corneal 
International Classification of Diseases, 10th Revision 
(ICD-10) diagnosis, no corneal abnormalities, and no clin
ical signs of dry eye disease described in any of their 
recorded clinical examination history. For a patient to be 
considered healthy they also had no abnormal dry eye test 
results. A patient with dry eye disease was defined as 
having an ICD-10 diagnosis of dry eye disease 
(H04.123) by a fellowship-trained American Board of 
Ophthalmology-certified cornea specialist and confirma
tion by dry eye tests performed by a study team member 
(C.C. and E.O.). The ophthalmologists relied on patient 
history and clinical dry eye tests following the recommen
dations of the TFOS DEWS II to reach a diagnosis. The 
ophthalmologists were masked to the results of the deep 
learning model and dry eye test results performed by 
a study team member. Patients with a diagnosis of DED 
by a cornea specialist and abnormal values for at least one 
of the dry eye tests were used in the training and testing 
phases.

Exclusion criteria consisted of active bacterial or viral 
ocular infection, bullous keratopathy, active or chronic 
allergic, bacterial, or viral infection of the ocular adnexa, 
refractive surgery in either eye within the last 6 months, 
using any ocular medication (except lubricants, mydriatics, 
stain, and topical anesthesia used for study assessments), 
current punctual occlusions inserted into either the 
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superior lacrimal punctum or inferior lacrimal punctum of 
either eye, pterygium, or current contact lens wearer. 
Patients with any corneal ICD-10 diagnosis except dry 
eye disease were excluded from the study.

Dry Eye Testing
The clinical dry eye tests were performed based on the 
guidelines recommended by the TFOS DEWS II. Dry eye 
testing was performed after the OCT image was taken, 
therefore the staining and use of anesthetics during dry 
eye testing did not affect the image. The TFOS DEWS II 
recommends performing tests in a sequence from the least 
invasive to the most invasive. The dry eye tests performed, 
in chronological order, were the Ocular Surface Disease 
Index (OSDI), tear break-up time (TBUT) with fluorescein 
staining, corneal fluorescein staining using the NEI grad
ing scale, conjunctival lissamine green staining using the 
NEI grading scale, and 5-minute Schirmer's I test with 
topical anesthesia. Corneal fluorescein staining was 
recorded using the NEI staining grid by which a score of 
0–3 was assigned to each of the five corneal regions, and 
a total score from 0 to 15 was obtained by the summation 
of the five regions. For the conjunctival staining, the NEI 
staining score of 0–3 was applied to each of the six con
junctival regions, resulting in a total score from 0 to 18. 
Abnormal TBUT was defined as ≤10 s, abnormal 5-minute 
Schirmer's I test was defined as ≤5 mm, abnormal corneal 
and conjunctival staining were defined as a total score >3, 
and abnormal OSDI score was defined as ≥13.10,22,23 

Legend of the cutoff values used can be appreciated in 
Supplemental Digital Content Table 1.

OCT Image Acquisition
A total of 27,180 AS-OCT images (14,040: DED; 13,140: 
healthy) were captured from 151 eyes (91 patients) 
throughout the study. From December 2016 to 
October 2019 scans were obtained using an HD-OCT 
(Envisu R2210, Bioptigen, Leica, Buffalo Grove, IL, 
USA) from patients during their visit to the cornea depart
ment of the Bascom Palmer Eye Institute (Figure 1). The 
device performs 32,000 axial scans per second with an 
axial resolution of approximately 3 μm. The central cor
neal scans were obtained using a 6 mm radial scan pattern 
with 36 cross-sectional images repeated five times (ie 180 
in total). The patients were organized based on patient 
selection criteria into healthy and DED groups. The data 
was then stripped of all protected health identifiers.

Training the Deep Learning Classification 
Model
Before initiating the training phase, poor-quality images 
were excluded by trained operators (CC and EO) to pre
vent the algorithm from learning unrelated features. We 
accomplished this by removing images that contained any 
of the following: decentralization, blinking, missing parts 
of the endothelium or epithelial layers of the cornea, and 
low signal-to-noise ratio. After cleaning the 20,160 train
ing images (10,080: DED; 10,080: healthy) and removing 
2292 images, 17,868 images (9013 DED; 8855: healthy) 
of the 112 training eyes passed the quality control step. 
The data was then randomly divided into two disjoint 
datasets (ie non-overlapping), with 80% of the images 
assigned to the training group and 20% assigned to the 
validation group. A flowchart for the distribution of 
images throughout the training and testing of the deep 
learning model is provided in Figure 2.

We used a VGG19 model with the parameters of the 
model pre-trained on ImageNet dataset for our classifica
tion task.24 The VGG19 model consisted of 16 convolu
tional layers, five maximum pooling layers, three fully 
connected layers, and a softmax layer. The model was 
trained using a single GeForce GTX 1080 Ti GPU. We 
fine-tuned the weights by training the model using our 
data. We used learning rate of 0.0001, regularization 
weight of 0.0001 and momentum of 0.9. The image- 
level classification threshold was set to 0.50. The 
model was trained until it converged for 10 epochs. We 
implemented our model using MATLAB 2019b and 

Figure 1 Anterior segment optical coherence tomography of a healthy cornea 
using an HD-OCT (Envisu R2210, Bioptigen, Leica, Buffalo Grove, IL, USA) col
lected at the Bascom Palmer Eye Institute.
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a deep learning toolbox running on Windows 10 home 
edition. Training accuracy, validation accuracy, testing 
accuracy, and cross entropy were used to evaluate the 
quality of the training process. Cross entropy is 
a measure of the distance between the true probability 
distribution and the approximate probability distribution, 
which the training process aims to minimize.

For visualization of the learned features by the net
work, we plotted the activation values for different con
volutional layers. We performed an occlusion test by 
repeatedly placing patches in the image at random values 
and computing the probability of detecting the disease 
using our network.25

Testing the Deep Learning Classification 
Model and Dry Eye Test Comparison
The deep learning model analyzes each of the 180 OCT 
images of a single eye scan independently and assigns 
a diagnosis of either healthy or dry eye to each image. 
The deep learning model assigns an overall eye diagnosis 
based on whether more than 50% of the images (>90 
images) were diagnosed as healthy or dry eye.

After training of the model, the remaining 7020 AS- 
OCT images (3960: DED; 3060: healthy) of 39 eyes (24 

patients) were used to test the model. There was no over
lap between the training and testing sets; all the images, 
eyes, and patients included in the testing set were never 
seen before by the deep learning model. The testing set 
images were collected after the creation of the model and 
were included based on the criteria outlined in Patient 
Selection. Demographics for this dataset are shown in 
Table 1. The deep learning model automatically calculated 
a DED probability score of 0 to 1.

The results of the deep learning model were compared 
to each of the individual clinical dry eye test. An abnormal 
value for each of the dry eye tests outlined in Dry Eye 
Testing was considered positive for DED.

Statistical Analysis
Microsoft Excel (Redmond, Washington, version 1902) 
and IBM SPSS statistics (Armonk, New York, version 
26) were used for statistical analyses. The Mann– 
Whitney U-Test was used to calculate significances 
between the DED group and healthy group. Significances 
between the deep learning model and the clinical dry eye 
tests were calculated using McNemar’s test. P-values less 
than 0.05 were considered statistically significant. Values 
are presented as means ± standard deviation.

Figure 2 Flowchart of the distribution of images throughout the training and testing of the deep learning model, including the quality control phase and grouping of images 
within the healthy and dry eye disease groups.

https://doi.org/10.2147/OPTH.S321764                                                                                                                                                                                                                               

DovePress                                                                                                                                                                 

Clinical Ophthalmology 2021:15 4284

Chase et al                                                                                                                                                            Dovepress

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


Results
Training
After completion of the training, 5710 iterations, the train
ing accuracy and validation accuracy were 100% and 
99.44%, respectively. Cross entropy showed a continuous 
decrease to a final entropy of 1.1e-5 for the training and 
0.017 for the validation (Figure 3).

Visualization using occlusion testing showed that the 
epithelial layer and tear film were the learned areas of the 
AS-OCT images that differentiated images with DED from 
healthy images (Figure 4).

Testing
The mean DED probability score was 0.81 ± 0.23 in the 
DED group and 0.20 ± 0.27 in the healthy group, which 
was highly statistically significant (P < 0.01). For the DED 
group, 19 out of 22 eyes were classified correctly, while 
for the healthy group, 14 out of 17 eyes were classified 
correctly. The accuracy of the model in diagnosing DED 
was 84.62%, with a sensitivity of 86.36%, and a specificity 
of 82.35%. The positive likelihood ratio was 4.89, and the 
negative likelihood ratio was 0.17. Raw data for the DED 
group is shown in Supplemental Digital Content Table 2. 
Raw data for the healthy group is shown in Supplemental 
Digital Content Table 3.

Clinical Dry Eye Test Comparisons
Of the 22 DED eyes, the deep learning model and 
corneal fluorescein staining correctly agreed with the 

ophthalmologist on 7 eyes (31.82%), while the deep learn
ing model was correct for 12 eyes (54.54%) when corneal 
fluorescein staining was incorrect and corneal fluorescein 
staining was correct for 0 eyes (0%) when the deep learn
ing model was incorrect. This difference was highly sta
tistically significant (P < 0.01). The comparison results 
between the deep learning model and the other clinical 
dry eye tests are reported in Table 2. A complete analysis 
of the comparison between the deep learning model and 
each of the clinical dry tests is shown in Supplemental 
Digital Content Table 4. The deep learning model’s diag
noses association with the ophthalmologists’ diagnoses 
was statistically significant when compared to corneal 
fluorescein staining, conjunctival lissamine green staining, 

Table 1 Demographics

Healthy Dry Eye 
Syndrome

Total

Images, no. 3060 3960 7020

Patients, no. 10 14 24

Eyes, no. (%) 17 22 39

Right 8 (47.1%) 12 (54.5%) 20 (51.3%)

Left 9 (52.9%) 10 (45.5%) 19 (48.7%)

Age (years), mean 
(SD)

41.6 (15.4) 68.2 (8.3) 55.3 (18.1)

Gender, no. (%)
Male 6 (60.0%) 3 (20.0%) 9 (37.5%)

Female 4 (40.0%) 11 (80.0%) 15 (62.5%)

Note: Data from the demographics of patients collected for the testing phase after 
the creation of the deep learning model.

Figure 3 Training accuracy, validation accuracy, and cross entropy loss function 
plots during training phase of deep learning model. Training accuracy (performance 
in percentage) to correctly identify a trained image, validation accuracy (perfor
mance in percentage) to correctly identify a nontrained image (A) and cross 
entropy loss function (B) over 5710 iterations or training steps.
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and Schirmer's test diagnoses (P = 0.0015, P = 0.0012, and 
P = 0.0265, respectively). The difference was not statisti
cally significant when comparing the deep learning model 
to TBUT and the OSDI (P = 0.1824 and P = 0.2278, 
respectively).

Discussion
Accurately diagnosing and appropriately managing DED 
still remains a challenge. To date, several studies have 
been published evaluating the diagnostic performance of 
dry eye tests. However, there is no gold standard test for 
the diagnosis.10 In this preliminary study, our model 
achieved a sensitivity of 86.36%, a specificity of 82.35%, 
and accuracy of 84.62% in autonomously distinguishing 
DED from healthy. Our model used an end-to-end black 
box, whereas we did not input which features for the 

algorithm to learn. The deep learning model wasprovided 
raw AS-OCT images classified as either healthy or DED 
and was tasked with developing a method for determining 
features that differentiated the two groups. Our algorithm 
highlighted the patterns of tear film-corneal epithelium 
during the occlusion, proving the model was learning the 
correct differentiating features of the AS-OCT images. 
Abou Shousha et al demonstrated that an autonomous 
deep learning model could differentiate between healthy 
eyes and eyes with DED using AS-OCT images.21 To the 
best of our knowledge, there is no study in the literature 
evaluating the accuracy of deep learning-based artificial 
intelligence algorithms in the diagnosis of DED compared 
to standard clinical dry eye tests.

Anterior segment OCT (AS-OCT) main advantages 
include fast, non-contact, in-vivo, and quasi-histological 

Figure 4 Results of the occlusion testing showing features of the OCT image recognized by the deep learning model. (A) AS-OCT images of a cornea with dry eye disease 
on the left and a healthy cornea on the right with (B) visualization of the learned features of the deep learning neural network.
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imaging of corneal structures.26,27 With the increasing 
number of AS-OCT images throughout ophthalmology 
clinics, deep learning has become an important potential 
to interpret the big data. AS-OCT and its clinical applica
tions in patients with DED have become one of the major 
research topics over the past decade. Our model has 
detected patterns in the corneal epithelium and tear film 
layer that could be sourced from the damage due to DED 
as extensively reported in the previous research. In 
a recent study, it has been reported that a significant cor
relation exists between the percentage of corneal fluores
cein staining area and the percentage of the area of 
epithelial erosion detected by AS-OCT, in rabbits with 
experimental dry eye models.28 Abou Shousha et al 
reported that ultra-high resolution OCT reveals irregularity 
of epithelial surface, which can be improved after treat
ment in patients with dry eye.20 Another study by 
Deinema et al investigated the corneal reflectivity using 
AS-OCT in patients with DED and healthy subjects. Tear 
film-corner interface reflectivity has been shown to be 
higher in eyes with hyperosmolar tears compared to con
trol eyes.29 Other studies involving dry eye and OCT have 
shown that there is a positive correlation between tear film 
measurements from OCT and the Schirmer's test, as well 
as, showing high reproducibility of tear film measurements 
using OCT.30,31

We found that our deep learning model’s diagnoses 
correlated with cornea specialist ophthalmologists’ diag
noses more closely or similarly to the results of five of the 
most common tests for dry eye screening. Our deep learn
ing model agreed with ophthalmologists significantly more 
than the Schirmer's test, corneal fluorescein staining, and 
conjunctival lissamine green staining. While the model did 
agree with more ophthalmologists in our sample than the 
TBUT and OSDI, the difference was not statistically sig
nificant. Although the model did not agree with ophthal
mologists significantly more than the OSDI and TBUT, 
there are several advantages the deep learning model using 
AS-OCT images has compared to these two tests.

The advantages of the deep learning approach using 
AS-OCT images to diagnose DED are autonomy, objec
tivity, quick duration, and the test is non-invasive. The 
main advantage of AS-OCT devices coupled with deep 
learning algorithms is that it is an automatic test that can 
be used by less specialized healthcare professionals. The 
OSDI is completely subjective since it is a questionnaire, 
while the TBUT is highly subjective given that the time 
between the last blink, and the breakdown of the tear film Ta

bl
e 

2 
R

es
ul

ts
 fr

om
 t

he
 T

es
tin

g 
Ph

as
e

C
or

ne
al

 F
lu

or
es

ce
in

 
St

ai
ni

ng
C

on
ju

nc
ti

va
l L

is
sa

m
in

e 
G

re
en

 
St

ai
ni

ng
O

SD
I

T
B

U
T

Sc
hi

rm
er

’s 
Te

st
To

ta
l

H
ea

lt
hy

D
ry

 E
ye

H
ea

lt
hy

D
ry

 E
ye

H
ea

lt
hy

D
ry

 E
ye

H
ea

lt
hy

D
ry

 E
ye

H
ea

lt
hy

D
ry

 E
ye

D
ee

p 
Le

ar
ni

ng
 M

od
el

H
ea

lth
y

C
ou

nt
3

0
2

1
0

3
1

2
1

2
3

%
 o

f T
ot

al
13

.6
4%

0.
0%

9.
09

%
4.

55
%

0%
13

.6
4%

4.
55

%
9.

09
%

4.
55

%
9.

09
%

13
.6

4%

D
ry

 E
ye

C
ou

nt
12

7
15

4
8

11
7

12
11

8
19

%
 o

f T
ot

al
54

.5
5%

31
.8

2%
68

.1
8%

18
.1

8%
36

.3
6%

50
%

31
.8

2%
54

.5
5%

50
%

36
.3

6%
86

.3
6%

To
ta

l
C

ou
nt

15
7

17
5

8
14

8
14

12
10

22

%
 o

f T
ot

al
68

.1
8%

31
.8

2%
77

.2
7%

22
.7

3%
36

.3
6%

63
.6

4%
36

.3
6%

63
.6

4%
54

.5
5%

45
.4

5%
10

0.
0%

N
ot

es
: D

at
a 

sh
ow

in
g 

th
e 

pe
rc

en
ta

ge
 id

en
tifi

ed
 c

or
re

ct
ly,

 u
si

ng
 d

ia
gn

os
is

 b
y 

a 
tr

ai
ne

d 
m

as
ke

d 
op

ht
ha

lm
ol

og
is

t 
as

 t
he

 g
ol

d 
st

an
da

rd
, b

y 
th

e 
de

ep
 le

ar
ni

ng
 m

od
el

 c
om

pa
re

d 
in

de
pe

nd
en

tly
 w

ith
 t

he
 fi

ve
 c

lin
ic

al
 d

ry
 e

ye
 t

es
ts

 –
 c

or
ne

al
 

flu
or

es
ce

in
 s

ta
in

in
g,

 c
on

ju
nc

tiv
al

 li
ss

am
in

e 
gr

ee
n 

st
ai

ni
ng

, O
cu

la
r 

Su
rf

ac
e 

D
is

ea
se

 I
nd

ex
 (

O
SD

I),
 t

ea
r 

br
ea

k-
up

 t
im

e 
(T

BU
T

), 
an

d 
Sc

hi
rm

er
’s 

te
st

. T
he

 d
ee

p 
le

ar
ni

ng
 m

od
el

 a
gr

ee
d 

w
ith

 t
he

 o
ph

th
al

m
ol

og
is

t 
si

gn
ifi

ca
nt

ly
 m

or
e 

th
an

 t
he

 
co

rn
ea

l fl
uo

re
sc

ei
n 

st
ai

ni
ng

, c
on

ju
nc

tiv
al

 li
ss

am
in

e 
gr

ee
n 

st
ai

ni
ng

, a
nd

 t
he

 S
ch

ir
m

er
's 

te
st

 (
P 

< 
0.

05
). 

T
he

re
 w

as
 n

o 
st

at
is

tic
al

 s
ig

ni
fic

an
ce

 b
et

w
ee

n 
th

e 
de

ep
 le

ar
ni

ng
 m

od
el

 a
nd

 t
he

 O
SD

I a
nd

 T
BU

T.

Clinical Ophthalmology 2021:15                                                                                                   https://doi.org/10.2147/OPTH.S321764                                                                                                                                                                                                                       

DovePress                                                                                                                       
4287

Dovepress                                                                                                                                                           Chase et al

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


is reliant on the examiner’s impression of when the first 
dry spot appears. TBUT has been criticized for low repro
ducibility and high variations in values when 
retested.4,32,33 Whereas for the reproducibility of AS- 
OCT scans, Chan et al showed that measurements of the 
cornea in normal eyes and diseased eyes are highly repro
ducible using AS-OCT images, and Zhou et al showed 
reproducibility of tear film measurements with OCT.34,35 

Also, the radial AS-OCT scans performed for this study 
had a duration time of 5 seconds, making it a convenient 
and quick test to conduct with a deep learning model that 
can autonomously diagnose. Lastly, an AS-OCT scan is 
non-invasive and there is no direct contact with the eye, 
while TBUT is mildly invasive when fluorescein is 
instilled into the eye, causing some patients discomfort.

While our results are promising, we used a limited dataset 
to achieve these results, so in future studies, the number of 
images should be increased to improve the accuracy and 
reliability. Due to the limited dataset, we were unable to age- 
match the two groups during the development of the deep 
learning model. Future studies should include increased sam
ple size, age-matching, incorporate HD-OCT images from 
different devices, and collect data from multiple centers. 
Another limitation in our study stems from the lack of 
a gold standard in dry eye testing, which is a major limitation 
for dry eye research. Without a gold standard, we had to 
devise a reasonable way to define the DED group. We chose 
to define an eye with DED as an ICD-10 diagnosis of DED 
and one abnormal clinical dry eye test. Based on our results, 
this method was successful; however, this method could 
theoretically lead to our classifier misdiagnosing mild DED 
as healthy. While our model showed accuracy in autono
mously diagnosing DED, as of now, it is unable to quantify 
the disease. Further development of the model will enable it 
to be able to classify the severity of the DED. The deep 
learning model was not able to differentiate DED by origin 
of disease, which is a consideration for further development 
of the model. While we trained the model on only high- 
quality images in the training phase, there was no quality 
control phase implemented during the testing phase, which 
may have reduced the diagnostic ability of the model. 
Another consideration for further development of the model 
includes an autonomous quality control algorithm that would 
remove poor-quality images when analyzing the 180 cross- 
sectional images.

In conclusion, AS-OCT devices coupled with autono
mous diagnostic algorithms are promising for the interpre
tation of an increased number of ophthalmologic images. 

This is the first study using deep learning to diagnose DED 
and compare the efficacy of commonly used diagnostic 
tools. With further development and testing, our model 
potentially may be used as a tool for DED screening 
programs without supervision from health care providers. 
To enhance the accuracy of our model, further multi-center 
studies using larger sample sizes are required.
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