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Abstract: With overall food intake among the general population as high as ever, metabolic 
syndrome (MetS) has become a global epidemic and is responsible for many serious life- 
threatening diseases, especially heart failure. In multiple metabolic disorders, maintaining 
a dynamic balance of mitochondrial number and function is necessary to prevent the over
production of reactive oxygen species (ROS), which has been proved to be one of the 
important mechanisms of cardiomyocyte injury due to the mismatching of oxygen consump
tion and mitochondrial population and finally to heart failure. Mitophagy is a process that 
eliminates damaged or redundant mitochondria. It is mediated by a series of signaling 
molecules, including PINK, parkin, BINP3, FUNDC1, CTSD, Drp1, Rab9 and mTOR. 
Meanwhile, increasing evidence also showed that the interaction between ferroptosis and 
mitophagy interfered with mitochondrial homeostasis. This review will focus on these 
essential molecules and pathways of mitophagy and cell homeostasis affected by hypoxia 
and other stimuli in metabolic heart diseases. 
Keywords: mitophagy, metabolic heart diseases, metabolic syndrome, PTEN induced 
putative kinase, PINK, parkin, Bcl-2/E1B19kDa-interacting protein, BNIP3, FUN14 domain- 
containing protein 1, FUNDC1, ferroptosis

Introduction
Metabolic syndrome (MetS) refers to a group of cardiovascular risk factors that 
include insulin resistance, obesity, dyslipidemia, increased glucose intolerance, and 
increased blood pressure.1 MetS, caused by high caloric intake and lack of exercise, 
has become a global epidemic.2 The combination of two or more of these disorders 
can dramatically increase the risk for potentially life-threatening diseases, espe
cially cardiovascular disease. Disorders of heart glucose and lipid metabolism 
inevitably lead to abnormal energy production and oxygen usage. It has been 
demonstrated that cells face severe oxidative stress in metabolic heart diseases. 
Mitochondria are considered the power-house of the cell and are involved in 
essential cellular functions, including ATP production, regulation of apoptosis, 
and especially the production and elimination of ROS. Mitochondrial abnormalities 
become the central pathogenesis of heart failure.3 Disorders of mitochondrial 
electron transfer typically lead to the accumulation of ROS, impaired mitochondrial 
oxidative phosphorylation, and imbalances in mitochondrial biogenesis, which 
cause irreversible damage. Glucose and lipid metabolism can be improved in 
MetS by reducing oxidative damage and facilitating mitochondria-network- 
dependent activities.4 A dynamic balance of mitochondrial population and function 
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is essential for heart cell survival.5 Mitophagy, a process 
for clearing damaged or redundant mitochondria, is 
a primary method of protection from anoxic cellular sti
muli in MetS heart. Under hypoxic conditions, reducing 
the number of mitochondria can prevent the production of 
ROS caused by the mismatching of oxygen consumption 
and mitochondrial population. Mitophagy was confirmed 
to be inhibited with several forms, like phosphatidylinosi
tol 3-kinases and mTOR, in the hearts of diabetic 
patients.6,7 Furthermore, metabolic-stress-mediated vascu
lar endothelial injury can be prevented by promoting mito
phagy in obese and diabetic mice.8 Selective 
mitochondrial degradation was previously thought to be 
a random event, though recent evidence suggests that 
mitophagy is a targeted process.9

Mitophagy can be categorized into three forms, basal 
mitophagy, stress-induced mitophagy and programmed 
mitophagy, which are triggered by different conditions 
and manifested as dependence on different regulatory fac
tors, like parkin or NIP3-like protein X (NIX).

The process of mitophagy relies on a series of steps: 
selection, tagging, phagosome formation, transportation, 
and lysosome attachment. Once targeted, vesicles are 
used to isolate and transport mitochondria. This process 
is mainly mediated by receptors, such as Bcl-2/ 
E1B19kDa-interacting protein (BNIP3), NIX, FUN14 
domain-containing protein 1 (FUNDC1), and microtu
bule-associated protein 1A/1B light chain 3 (LC3B; 
a binding protein that is located in the outer membrane 
of vesicle fragments), which are recruited to form 
phagosomes.10 Toshiro Saito el al11 carried researches in 
mice, which suggests that when suffering from myocar
dial ischemia, autophagy (mitophagy) is mediated by 
a protein consisting of unc-51 like kinase 1 (Ulk1), dyna
min-1-like protein (Drp1) and some other receptors. 
Mitophagy process can be negatively regulated by mam
malian target of rapamycin (mTOR) along with other key 
proteins, such as Beclin.

Here, we review current understandings and advances 
about these essential molecules and pathways of mito
phagy in metabolic heart diseases (Figure 1).

PINK1 and Parkin
PTEN induced putative kinase 1(PINK1) is a Ser/Thr 
kinase encoded by PINK1 gene and consists of 581 
amino acids. Parkin is a cytoplasmic protein with 465 
amino acid residues. Under normal conditions, PINK1 is 
transported to the mitochondrial matrix and degraded. 

However, when mitochondria are damaged or redundant, 
damaged proteins located at the outer membrane of mito
chondria are tagged by PINK1 or parkin—or various ubi
quitin ligases such as mitochondrial ubiquitin ligase 
activator of NF-kB1 (MUL1), which is triggered by meta
bolic stress—thus promoting the degradation of damaged 
mitochondria by binding with lysosomes.12,13 PINK1 is 
thought to protect myocardial cells from stress-induced 
mitochondrial dysfunction. The binding of parkin and 
depolarized mitochondria caused by activated PINK1 
induces mitophagy.14,15 It has been demonstrated in pan
creatic beta-cells from patients with diabetes that PINK1/ 
Parkin-mediated mitophagy has a protective role.16 The 
PINK1 pathway also plays an important role in MetS, 
where mitophagy is induced in response to environmental 
changes. Wu et al8 previously demonstrated that PINK1 
and parkin pathways are activated by metabolic stress, 
protecting mitochondrial integrality in obese and diabetic 
mice. The absence of parkin partially inhibits mitochon
drial autophagy, and increases lipid accumulation and 
exacerbates diastolic dysfunction.17 Inhibition of Sirt3- 
Foxo3A-Parkin signal-mediated down-regulation of mito
chondrial autophagy may play an important role in the 
occurrence and development of diabetic cardiomyopathy 
in STZ (streptozocin)-induced diabetes mellitus accompa
nying cardiac dysfunction mouse model.18 Although the 
parkin/PINK1 axis is the main regulator of mitophagy, the 
process can also take place independent of parkin, suggest
ing that parkin is not unique.19 However, it is likely that 
PINK1 and parkin may have value in the treatment of 
metabolic heart failure, a hypothesis that requires further 
investigation. Contrary to the current opinion about the 
central role of parkin in the ubiquitination of mitochon
drial proteins, in the Drp1KO heart, mitochondrial ubiqui
tination is independent of parkin, and the absence of Drp1 
and parkin aggravates heart defects.20 Several ubiquitin 
ligases have been demonstrated as key players in the 
targeting process for mitophagy. These ubiquitin ligases 
include MUL1 and Mitsugumin 53 (MG53). MUL1 is 
a resident ubiquitin E3 ligase that is inserted into the 
mitochondrial outer membrane, which can stabilize 
Drp1.21,22 Several studies demonstrated that MUL1 not 
only plays a role as a ubiquitin ligase but also as 
a mitophagy receptor by binding with E3 ligases or E2 
box enzymes.23,24 As a ubiquitin ligase, the complex 
MUL1-ubiquitin-conjugating enzyme E2 E3 (Ube2E3) 
associates with gamma aminobutyric acid receptor- 
associated protein (GABARAP, a protein of LC3 family) 
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in HeLa cells. As a mitophagy receptor,25 it has the ability 
to recruit the mitophagy machinery directly into mature 
neurons.26,27 MG53, primarily expressed in striated mus
cle, is another ubiquitin ligase related to pathogenesis of 
MetS. Studies regarding the role of MG53 in MetS yielded 
conflicting results. Several studies have shown that over
expression of MG53 triggers muscle insulin resistance and 
MetS.28–30 Cardiac-specific transgenic expression of 
MG53 induces severe diabetic cardiomyopathy in mice, 
accompanied by insulin resistance, increased lipid accu
mulation, myocardial hypertrophy, fibrosis, and cardiac 
dysfunction,31 whereas others claimed that it has therapeu
tic applications, such as protecting injured mitochondria 
and inducing muscle regeneration.32,33 Mitophagy ubiqui
tin ligases appear to have complex functions, and a single 
ligase may not modulate every form of mitophagy, but the 
process of mitophagy and the formation of phagosomes 
are likely mediated and regulated by networks of these 
proteins.

BNIP3 and NIX/BNIP3L
BNIP3 is fundamental to the removal of mitochondria 
during the maturation of erythrocytes34,35 and may play 

a role in tumor suppression and heart disease.36,37 BNIP3L 
and NIX, two types of apoptotic proteins, function by 
binding to LC3B (microtubule-associated protein 1A/1B 
light chain 3B)38–40 or to GABARAP.41,42 Both BNIP3 
and BNIP3L/NIX interact with LC3 and p62 during 
hypoxic stress,39–41 forming the LC3-p62 complex, 
which is partially involved in the process of mitophagy. 
Like many Bcl-2 family proteins, BNIP3 is also involved 
with mitochondrial outer membrane permeability.43 

Upregulation of BNIP3 leads to a series of reactions, like 
decreased mitochondrial potential and increased ROS 
species.44 Moreover, BNIP3 can not only induce cell 
death but also aid in cell survival. Although few studies 
have been conducted on the clinical role of BNIP in heart 
disorder, it represents a potential target for therapeutic 
intervention requiring further investigation.

FUNDC1
FUNDC1 is another mitophagy receptor that has been 
intensely studied and is associated with LC3B. It can be 
positively or negatively modulated by phosphorylation, 
similar to BNIP3 and NIX/BNIP3L.19 In its basal state, 
FUNDC1 can be inhibited by phosphorylation, while 

Figure 1 Mitophagy disequilibrium acts as a prominent pathological mechanism in metabolic heart diseases. Hypoxia and subsequent metabolic disorders contribute to 
oxidative stress injury and abnormal mitophagy in heart. Drp1 induces the fission of damaged mitochondria (in pink) from healthy mitochondria (in blue); Parkin and PINK 
response to the stimuli of ROS produced by damaged mitochondria and induce mitophagy; Receptors locating at the OMM, like BNIP3, NIX, FUNDC1 and AMBRA1, bind 
with LC3 proteins to mediate autophagosome formation; Ubiquitin ligases of MUL1 and MG53 recruit more phagophore to assist in mitophagy implement; mTOR plays 
a negative effect to regulate phagophore formation. In addition, ferroptosis has recently been found to be involved in and interact with mitophagy. Abnormalities of above 
molecules and pathways of mitophagy become critical nodes of heart dysfunction occurrence and development. Restoring mitochondrial homeostasis by modulating these 
targets may be an important strategy worthy of in-depth study and then accelerate the development of novel therapies for mitochondria-related metabolic heart diseases.

Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy 2021:14                                               https://doi.org/10.2147/DMSO.S336882                                                                                                                                                                                                                       

DovePress                                                                                                                       
4633

Dovepress                                                                                                                                                                 Li et al

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


during severe hypoxia, it can mediate mitophagy by bind
ing with LC3B.45–48 FUNDC1 deficiency often leads to 
mitochondrial quality control disorders and mitochondrial 
redox imbalance,45 which, can lead to cell death in myo
cardial infarction.49 Moreover, FUNDC1 deficiency can 
also regulate ferroptosis leading to cardiac remodeling 
and dysfunction.50 Thus, maintaining the function of 
FUNDC1 plays an essential role in the treatment of meta
bolic heart diseases.51 Tong et al illustrated that mitophagy 
serves an essential role in maintaining cardiac function and 
that preserving or activating mitophagy can protect against 
HFD-induced diabetic cardiomyopathy.17 A similar 
method was used by Wu et al52 and Ren et al53 in a high 
fat diet-induced FUNDC1-deficient mouse model and 
FUNDC1−/− mice to demonstrate that FUNDC1 deficiency 
can promote obesity, insulin resistance, MetS, myocardial 
remodeling, and even cell death due to mitochondrial 
quality control dysregulation, suggesting a vital role for 
FUNDC1 in cardiac function in obese patients with MetS. 
However, consistent with previous findings, loss of 
FUNDC1 merely impaired hypoxia-induced mitophagy 
but had no influence on autophagy as a whole.54 These 
findings show that FUNDC1-mediated mitophagy is a key 
regulator of mitochondrial function, especially in response 
to hypoxia-mediated mitochondrial damage, which often 
occurs in cardiac metabolic disorders.

CTSD
Cathepsin D (CTSD), a major lysosomal protease that 
induces autophagosome removal and increases autophagic 
flux, is involved in heart failure. It has been shown that 
CTSD can prevent myocardial remodeling, which fre
quently occurs in patients with hypertension, a type of 
long-term MetS.55–59 Wu et al60 demonstrated in CTSD+/ 

+ but not CTSD± mice that decreased autophagy can lead 
to restrictive cardiomyopathy, and protracted MetS can 
also cause heart failure.60,61 Overall, studies have shown 
that up-regulation of CTSD in the myocardium is an 
adaptive adjustment that protects the heart, at least in 
part by promoting mitophagy against cardiac remodeling 
and heart failure. Although CTSD has a clear role in 
several heart diseases associated with chronic MetS, 
a direct association with MetS has not yet been shown. 
Because of its function during autophagy,62–68 alterations 
in CTSD expression in the myocardium may potentially be 
used as an indicator of autophagic activity.

Drp1
Overexpression of Drp1 leads to increased mitochondrial 
number.69 Wada et al70 showed that Drp1 plays an impor
tant role during mitophagy in MetS, particularly in patients 
with diabetes. Smirnova et al71 showed that Drp1 is essen
tial for mitochondrial fission using cells transiently trans
fected with mutant Drp1, which leads to an increase in the 
number of mitochondria. Thus, restricting Drp1 can pre
vent apoptosis and protect myocardial mitochondria from 
damage.72,73 While in contrast, studies from Xue et al74 

argued that reduced oxidative damage and increased ATP 
generation may be triggered by decreasing cyclin- 
dependent protein kinase (CDK)-p-Drp1 protein levels in 
MetS mouse model.

The contradictory phenomenon above may be attribu
ted to the phosphorylation of two different sites in Drp1, 
and the modification of one of them leads to both activa
tion and inhibition of mitophagy. Failure to remove or 
antagonize Drp1 affects mitophagy, leading to abnormal 
ATP production, and may ultimately cause aseptic myo
carditis, heart failure, and other disorders.75

mTOR
mTOR is a central modulator that promotes cellular 
growth and the synthesis of protein as well as regulating 
mitophagy. It responds to signals from growth factors, 
nutrients, energy levels, and stress. Experimental data 
from Zhang et al76 in mice showed that mTOR may inter
rupt autophagic flux. It regulates autophagy, especially 
inhibiting autophagy vesicle formation by Beclin.77 

mTOR signaling also cross-talks with pathways modulated 
by branched-chain amino acids, insulin, oxidative stress, 
and the endoplasmic reticulum.78,79 mTORC1 is essential 
for adaptive cardiac hypertrophy in response to mechan
ical overload. And mTORC2 is required to maintain nor
mal cardiac physiology and works for the survival of 
cardiomyocytes after pressure is overloaded.80 The pro
gress of myocardial hypertrophy is often accompanied by 
excessive oxidative stress and chronic activation of 
mTOR. Empagliflozin application significantly alleviated 
myocardial hypertrophy and some other heart disorders in 
diet-induced obesity mice by activating AMPK and inhi
biting Akt and mTOR.81 Studies have shown that vitamin 
D deficiency is closely related to metabolic cardiovascular 
diseases, and the protective effect of 1,25-(OH)2-D3, the 
active form of vitamin D, against cardiac hypertrophy and 
fibrosis in diabetic cardiomyopathy is also exerted by 
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regulating the PARP1/SIRT1/mTOR signaling pathway.82 

The mechanism of high protein diet-induced atherosclero
sis and cardiovascular risk in mouse model was partially 
constituted by mTORC1-dependent inhibition of mito
phagy, accumulation of dysfunctional mitochondria, and 
mitochondrial apoptosis.83 Okuno et al84 used mouse liver 
tumors with metabolic syndrome characteristics, found 
that mTOR activation suppressed mitophagy and apopto
sis, which may cause tumorigenesis. The clinical trials 
carried out by De Matteis et al85 in 70 hepatocellular 
carcinoma (HCC) patients with MetS illustrated a close 
relationship between high levels of mTOR and poor prog
nosis, and listed mTOR as a potential target for the treat
ment of advanced-stage HCC. Khamzina et al86 

demonstrated a relationship between mTOR activity and 
obesity-linked insulin resistance. Hyperglycemia inhibits 
the formation of cardiac autophagosomes and autolyso
somes by regulating the mTOR-ULK1 signal. 
Antagonists of mTOR were previously used to ameliorate 
obesity in DahlS. Z-Leprfa /Leprfa (DS/obese) rats, 
a model of MetS.87 Alterations of autophagy activity also 
affect mitochondrial biosynthesis in diabetic heart. 
Maintaining mitophagy by inhibiting mTOR has become 
one of the most important strategies for the therapy of 
metabolic cardiac dysfunctions. What deserves our atten
tion is that the role of mTOR in myocardial ischemia/ 
reperfusion (MI/R) injury under diabetes has dual, cardio
toxic and cardioprotective effects. mTORC1 can be acti
vated and increase the susceptibility to MI/R injury in 
obese and diabetic animals. While the cardioprotective 
effects mediated by mTOR are partly dependent on the 
activation of mTORC2, they are conducive to the survival 
of cardiomyocytes against MI/R injury and chronic 
ischemic remodeling.80

Ferroptosis
Myocardial cell death is the decompensated manifestation 
and the terminal stage of cardiac dysfunction. Loss of 
cardiomyocytes can be induced by ferroptosis. The study 
by Chen et al88 confirmed that overly activated autophagy 
and ferroptosis promote heart failure by inducing the loss 
of cardiomyocytes. Regulating ferroptosis is an important 
guarantee for maintaining the normal function of mito
phagy receptors, such as FUNDC1. Pei’s study just indi
cates that FUNDC1 deficiency can activate cardiac 
remodeling and dysfunction through the regulation of 
ferroptosis.50 Mitophagy and ferroptosis can impact 
each other through lipid peroxidation and the parkin- 

dependent pathway.89,90 Some studies have also indicated 
ferroptosis as an autophagic cell death process, especially 
in metabolic heart diseases.91,92 Lee et al93 found that 
ferroptosis can be triggered by obesity or increased calo
ric intake, and inhibited by energy stress. Furthermore, 
ferroptosis is prominent in obese patients as well as those 
with insulin resistance and other diseases like rhabdo
myolysis and radiation syndrome. Also, some heart dis
orders in diabetes mellitus have close relationships with 
ferroptosis and mitophagy. The study of Li et al94 showed 
that ferroptosis aggravates diabetes myocardial ischemia/ 
reperfusion (I/R) injuries and was more serious in rat 
diabetes mellitus+ I/R or cell high-glucose+ hypoxia 
reoxygenation models. And the study carried out by 
Wang et al95 in diabetes mice further proved that diabetes 
aggravates myocardial I/R injuries through an AMPK- 
dependent pathway, which leads to ferroptosis. 
Ferroptosis is a key factor leading to I/R injury, and its 
chelator protects the heart against ex vivo I/R injuries, 
which was proved in mice.96,97 Obesity and type 2 dia
betes mellitus-related cardiomyopathy can be contributed 
by palmitic acid (PA)-induced myocardial injury, and an 
underlying mechanism is that PA induces ferroptosis by 
decreasing the levels of ferroptosis inhibitive proteins, 
which was proved in a recent study by Wang et al.98 

Ferroptosis can not only cause cell death but iron can 
trigger a variety of protective cellular cascades. Iron 
around the infarct zone is an important factor for rever
sing left ventricle remodeling, which is important for 
preventing heart failure after myocardial infarction.96 

The management of iron in mitochondria may contribute 
to an effective treatment of myocardial I/R injury.99 

Excessive production of ROS in diabetes mellitus 
enhances ferroptosis100 and mitophagy, the cell- 
protective progress against ROS. In return, mitophagy 
inhibits ROS production and thus inhibits ferroptosis, 
playing a protective role. While to some extent, mito
phagy is triggered by energy stress,93 a withholder to 
ferroptosis can alleviate energy stress itself. The different 
functions of mitophagy under different conditions need to 
be further explored. Research on cardiomyocyte survival 
regulated by mitophagy and ferroptosis may be 
a potential tendency in the foreseeing future.

Other Regulators
Damaged mitochondria are transported to and fused with 
phagosomes and lysosomes, a process that is mediated by 
Beclin-1 and other molecules. Beclin-1 represents 
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a “protein platform”, providing a framework to regulate 
the increase of mitophagy flux after myocardial fibrillation 
and is indispensable during autophagy.101,102 Liang et al103 

found that, in yeast, Beclin-1 may facilitate mitochondrial 
fusion through binding with mammalian HOPS and 
UVRAG.104 Additionally, the LC3B-I/LC3B-II ratio and 
the total levels of LC3B-II can be used as markers of 
enhanced mitophagy in the myocardium after 
fibrillation.105 LC3 drives autophagosome vesicles into 
phagocytose fragments of mitochondria and subsequently 
fuses with lysosomes through LC3-I and LC3-II.106–108 

Based on a short half-life, LC3B-II can be lysed and 
converted back to its original isoform, LC3-I.104 Recent 
studies in ob/ob mice found that an autophagy enhancer 
can promote the conversion from LC3-I to LC3-II without 
inhibiting mTOR, which suggests that autophagy enhance
ment may represent a therapeutic strategy to treat MetS.109 

Autophagy and Beclin-1 regulator 1 (AMBRA1) is 
another receptor associated with Bcl2 that can induce 
mitophagy. AMBRA1 participates in the formation of 
Beclin-class-III-PI3K, a complex that protects against 
ROS dopaminergic cell death, as shown in SH-SY5Y 
cells.110 Unfortunately, although molecules such as 
Beclin, AMBRA1, and LC3B play key roles in mitophagy, 
there are few studies that have elucidated their roles in 
MetS.

Conclusion
The remodeling of cellular energy metabolism is 
a prominent manifestation of heart failure in MetS and 
finding the central regulatory points in such a complex 
unbalanced state is key to exploring its pathogenesis. 
Mitochondria are the central hub of the cellular metabolic 
network. The final stages of all carbohydrate, lipid, and 
protein metabolism are oxidized in the mitochondria 
through the tricarboxylic acid cycle. In addition to energy 
metabolism, mitochondria are also important organelles 
for regulating oxidative stress, autophagy, and apoptosis. 
Thus, mitochondria have become a reliable target to 
explore the central pathogenesis of multiple metabolic 
abnormalities, especially heart failure. Mitophagy is 
responsible for maintaining a healthy population of mito
chondria and preventing the mismatching of oxygen and 
mitochondria number, which may lead to hypoxia and 
trigger the occurrence and development of heart disease. 
Mitochondrial quality control largely depends on the sta
bility of mitophagy. Sufficient research evidence, as shown 
above from in vivo, in vitro, animals and clinical, indicates 

that mitophagy disequilibrium interferes with basic heart 
metabolic pattern. Regulators like parkin, BINP3 and 
FUNDC1 were shown to play remarkable roles in the 
regulation of mitophagy. Restoring mitochondrial home
ostasis by modulating these key factors becomes an impor
tant strategy worthy of in-depth study. Drug development 
by targeting these candidates may accelerate to prevent 
and treat the mitochondria-related heart diseases.
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