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Purpose: Late major bleeding is one of the main complications after transcatheter aortic 
valve replacement (TAVR). We aimed to develop a risk prediction model based on deep 
learning to predict major or life-threatening bleeding complications (MLBCs) after TAVR.
Patients and Methods: This was a retrospective study including TAVR patients from West 
China Hospital of Sichuan University Transcatheter Aortic Valve Replacement Registry 
(ChiCTR2000033419) between April 17, 2012 and May 27, 2020. A deep learning-based model 
named BLeNet was developed with 56 features covering baseline, procedural, and post-procedural 
characteristics. The model was validated with the bootstrap method and evaluated using Harrell’s 
concordance index (c-index), receiver operating characteristics (ROC) curve, calibration curve, and 
Kaplan–Meier estimate. Captum interpretation library was applied to identify feature importance. 
The BLeNet model was compared with the traditional Cox proportional hazard (Cox-PH) model 
and the random survival forest model in the metrics mentioned above.
Results: The BLeNet model outperformed the Cox-PH and random survival forest models 
significantly in discrimination [optimism-corrected c-index of BLeNet vs Cox-PH vs random 
survival forest: 0.81 (95% CI: 0.79–0.92) vs 0.72 (95% CI: 0.63–0.77) vs 0.70 (95% CI: 
0.61–0.74)] and calibration (integrated calibration index of BLeNet vs Cox-PH vs random 
survival forest: 0.007 vs 0.015 vs 0.019). In Kaplan–Meier analysis, BLeNet model had great 
performance in stratifying high- and low-bleeding risk patients (p < 0.0001).
Conclusion: Deep learning is a feasible way to build prediction models concerning TAVR 
prognosis. A dedicated bleeding risk prediction model was developed for TAVR patients to 
facilitate well-informed clinical decisions.
Keywords: deep learning, transcatheter aortic valve replacement, major or life-threatening 
bleeding complications, prediction model

Introduction
Transcatheter aortic valve replacement (TAVR) has emerged as an alternative treatment 
option for severe aortic stenosis patients in the last decade.1,2 However, bleeding is still 
the main post-procedure complication that largely affects patients’ short- and long-term 
prognoses.1,3,4 Early bleedings that occur immediately after TAVR were mainly related to 
procedural factors, and the rate of this type of bleeding had gradually decreased with 
technical advances.1,3–5 Late-onset bleeding (bleeding occurs 30 days after the proce
dure), however, has a close relationship with patients’ risk profile, such as age, co- 
existing comorbidities, and antithrombotic regimens.5,6

The difficulty of balancing bleeding risk against thrombotic risk after TAVR 
requires clinicians to be more rigorous in deciding on the antithrombotic plans. 
A few attempts have been made to predict post-TAVR bleeding. Honda et al7 had 
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applied the HAS-BLED score, which was initially 
designed for patients with atrial fibrillation, to predict 
bleeding in the TAVR population. Navarese et al8 devel
oped a 6-item bleeding risk score, mainly targeting early 
bleeding after TAVR, with great discriminative power. 
However, there still lacks a specifically designed risk 
model for late major bleedings, whose risk profile is con
sidered to be different from early bleedings post-TAVR.

Machine learning has drawn significant attention in 
clinical prediction models in recent years, due to its ability 
to effectively model linear and non-linear relationships and 
interactions.9 These techniques have been applied to pre
dict in-hospital outcomes,10,11 short-term prognoses12,13 

and long-term mortality14 after TAVR. Despite the great 
performance of traditional machine learning methods 
(naive Bayes, random forest, support vector machine, 
etc) in predicting category outcomes (eg dead or alive), it 
is challenging for them to deal with time-to-event out
comes as in survival analysis.

Deep learning (DL)15 is a branch of machine learning 
methods that transform information through multiple 
layers of nodes to learn intricate patterns and connections. 
DL can more flexibly process high-dimensional datasets 
and perform time-to-event analysis. Multiple networks, 
such as Cox-nnet16,17 and DeepSurv,18 have been proposed 
to predict survival outcomes from various forms of input 
data. Therefore, we hypothesized that a properly trained 
DL model could also accurately predict late major bleed
ing risk after TAVR from a comprehensive set of clinical 
features. In this study, we developed and internally vali
dated a DL model named BLeNet to evaluate patients’ late 
major bleeding risk after TAVR. We compared our model 
with two standard survival analysis models, the traditional 
Cox proportional hazard (Cox-PH) and the random survi
val forest models. The study was conducted in accordance 
with the Transparent Reporting of a Multivariable 
Prediction Model for Individual Prognosis or Diagnosis 
(TRIPOD) statement.19

Patients and Methods
Study Population
The study population was drawn from West China Hospital 
of Sichuan University Transcatheter Aortic Valve 
Replacement Registry (WATCH, ChiCTR2000033419). 
This was a prospectively designed registry that sequentially 
recruited all aortic stenosis patients undergoing TAVR in 
West China Hospital. Eligibility for TAVR was evaluated in 

all patients by the multidisciplinary heart team. The valves 
were chosen according to the availability at the time of 
treatment. Follow-up was scheduled at 30 days, 3 months, 
6 months, 12 months, and yearly thereafter at clinic visits or 
telephone interviews. Unscheduled visits at the hospital due 
to adverse events were also recorded. Data were collected 
and managed through case record form (CRF) and electronic 
data capture system. A dedicated data management group 
was responsible for verifying the data.

From the registry, we included patients who underwent 
TAVR from April 17, 2012 to May 27, 2020 and followed 
up till January 30, 2021. Exclusion criteria include 1) 
patients who were died within 30 days after the procedure 
and 2) patients who were lost to follow-up within the 6 
months after the procedure. The study was conducted in 
accordance with the Declaration of Helsinki and approved 
by the Ethics Committee on Biomedical Research of West 
China Hospital.

Endpoint Definition
The primary endpoints were major or life-threatening 
bleeding complications (MLBCs), which were defined 
according to the Valve Academic Research Consortium-2 
(VARC-2)20 definition and restricted to life-threatening 
and major bleeding events that occurred after 30 days. 
Bleeding events that occurred within 30 days after the 
procedure were recorded as postoperative complications. 
The multidisciplinary heart team was responsible for adju
dicating the bleeding events.

Data Collection and Preparation
From the West China Hospital of Sichuan University 
Transcatheter Aortic Valve Replacement Registry, we col
lected the patients’ baseline characteristics, imaging fea
tures, procedural details, post-procedural complications, 
and discharge antithrombotic medications. Lab tests were 
obtained from the electronic West China Laboratory 
Information System. Candidate chemical indicators were 
chosen according to previous studies6,21 and those summar
ized in clinical practice. Society of Thoracic Surgeons (STS) 
scores and New York Heart Association (NYHA) class were 
measured within 1 week before the procedure. All other 
preprocedural features were obtained within 1 week before 
the procedure, and postprocedural features were obtained 
within 1 week after the procedure. Variables with more 
than 20% of missingness were excluded from the analysis.

Categorical and ordinal variables were coded with dis
crete values. For continuous variables, the original values 
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were retained. Missingness was imputed with missForest 
algorithm.22 After data coding and imputation, each 
patient’s characteristics were summarized as a multi- 
dimensional vector.

Overall, a triplet value xi; ei; tið Þ; i ¼ 1; 2; 3 . . . ; nf gwas 
used to represent a patient’s complete information. Here n 
indicates the total number of patients, xi 2 Rd, which repre
sents the d-dimensional vector containing the whole clinical 
features of the patient i. ei represents the endpoint event 
(MLBCs is 1 and no MLBCs is 0), and ti represents the time 
when patient i encountered MLBCs or became censored.

Finally, we adopted the synthetic minority over-sampling 
technique (SMOTE)23 to preprocess the highly imbalanced 
data and Z-score normalization to normalize the input features.

BLeNet Model
In this study, a deep learning model, namely BLeNet, was 
proposed to estimate the risk of MLBCs after TAVR, as 
illustrated in Figure 1. The proposed BLeNet model con
sisted of an input layer, two fully connected feed-forward 
hidden layers, and an output layer. Each of the first three 
layers was followed by a batch-normalization layer and 
a Tanh activation function. The output layer consisted of 
a single node to estimate the risk index, which corre
sponded to the log hazard ratio in the Cox-PH model. To 
train the proposed BLeNet model, we adopted the partial 
likelihood function as the loss function:

L wð Þ ¼ ∑
n

i¼1
δi wXi � log ∑

j:tj�ti
ewXj

 !

1ð Þ

where n is the number of patients, Xi indicates the feature 
vector of patient i, ti is the survival time, δi indicates patient 
i‘s status (0 = no MLBCs, 1 = MLBCs) at time ti, and j 
indicates patients who had longer MLBCs-free time than 
patient i. In this loss function, w is the hyperparameter that 
the network needs to learn, and wXi is the output risk index.

The training of the BLeNet model is to optimize the loss 
function by using the Adam optimization algorithm24 with 
a learning rate of 10−3 and a weight decay of 10−4. Besides, 
the training epoch and batch size are 100 and 64, respectively.

In an attempt to better interpret the BLeNet model, we 
applied the model interpretability library Captum25 to 
identify feature importance.

Model Validation and Evaluation
To fully evaluate the performance of the proposed BLeNet 
model, we compared it with two survival analysis meth
ods. One was the traditional Cox-PH model, and the other 
was the random survival forest model. Feature selection 
was performed using the least absolute shrinkage and 
selection operator (LASSO), starting with all candidate 
variables. We also did a comparison study with these two 
models retaining all the features as in the BLeNet model.

All models were evaluated in the following metrics. 
Harrell’s concordance index (c-index) and receiver operat
ing characteristics (ROC) curve were used to evaluate the 
discriminative performance. Sensitivity and specificity 
were calculated based on the cutoff point on the ROC 
curve. Calibration curve was used to evaluate the agree
ment between predicted risk and observed risk,26,27 in 
which integrated calibration index (ICI) and E50 were 

Figure 1 Overview of study design and the architecture of BLeNet model. Input data included TAVR patients’ baseline characteristics, lab tests, CT characteristics, 
echocardiographic features, procedural details and antithrombotic medications. After data preparation, each patient information was summarized as a triplet value 

xi; ei; tið Þ; i ¼ 1; 2; 3 . . . ; nf g, where xi indicates the vector containing the clinical features of thei patient (grey dots), ei indicates the outcome event (yellow dots), ti 
indicates the time when patienti encountered MLBCs or became censored (Orange dots). The diagonal striated grey dots indicate the missing data. The BLeNet model has 
a hierarchical structure of an input layer, two fully connected feed-forward hidden layers and an output layer with one neuron to estimate the risk index. We evaluated the 
model’s performance using optimism-adjusted c-index, ROC curve, calibration curve and K-M curve. 
Abbreviations: CT, computerized tomography; K-M, Kaplan–Meier; MLBCs, major or life-threatening bleeding complications; ROC, receiver operating characteristics; 
TAVR, transcatheter aortic valve replacement.
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used as numerical measures. ICI indicates the weighted 
difference between observed and predicted probabilities, 
and E50 indicates the median percentile of absolute 
difference.27 Hosmer–Lemeshow test was also used to 
test the goodness of fit. We then stratified the patients 
into high- and low-bleeding risk groups according to the 
best cutoff point in the ROC curve. Kaplan–Meier estimate 
was performed to analyze the cumulative incidence of 
MLBCs in these two groups, and the Log rank test was 
used to compare the difference.

All of these models were validated by bootstrapping,28,29 

which was recommended by the TRIPOD statement as 
a preferable validation method in small datasets.19 The key 
concept of bootstrapping is to approximate the variation in 
the general population by the variation in bootstrap samples. 
This method yields an optimism-adjusted estimate of the 
overall accuracy through multiple re-sampling process.

Statistical and Technical Specifications
In univariate statistical analysis, continuous variables were 
expressed as mean ± SD or median (interquartile range) 
and compared using Student’s t test or Wilcoxon rank-sum 
test. Categorical variables were expressed as numbers 
(percentages) and compared using the chi-square test or 
Fisher’s exact test. Two-tailed p-values were reported, 
with the p-value <0.05 being considered statistically 

significant. The above analyses were performed using 
Stata/SE version 15.1.

Features were standardized with the Z-score normal
ization method. The time-to-event outcome was analyzed 
based on our available follow-up data using the Kaplan– 
Meier estimate and compared using the Log rank test. 
ROC curve was drawn based on the true- and false-posi
tive rates. The above analyses were performed using the 
python package “sklearn”. The calibration curve was per
formed based on the predicted risk against the observed 
risk, with Hosmer–Lemeshow test applied to test the good
ness of fit, and this was done using the python package 
“lifelines”.

Results
Baseline Characteristics and Univariate 
Analysis
A total of 718 TAVR patients were retrospectively enrolled in 
the study, 31 patients (4.32%) died within the first month, 19 
patients (1.59%) were lost to follow-up within the 6 months 
after the procedure, and these patients were excluded from the 
analysis (Figure 2). In the final study cohort of 668 patients, 64 
patients (9.58%) died within a median follow-up time of 25 
months (interquartile range: 12.7–39.9 months; cardiovascular 
death: 24 patients), of which 3 patients died from life-threaten
ing bleeding events (intracranial hemorrhage).

Figure 2 Flow chart of the study population. 
Abbreviations: MLBCs, major or life-threatening bleeding complications; TAVR, transcatheter aortic valve replacement.
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Forty patients (5.99%) were presented with MLBCs 
within the follow-up period. The median time to the 
occurrence of MLBCs was 5.5 months (interquartile 
range: 2.25–14.75 months). Gastrointestinal bleeding was 
the most frequent type of bleeding (n=32, 80%). Others 
included intracranial bleeding, intraocular bleeding, and 
subcutaneous bleeding.

Demographic, echocardiographic, computerized tomo
graphic (CT), biochemical, procedural features and comor
bidities of patients stratified according to the occurrence of 
MLBCs within 3 years are shown in Tables 1 and 2. 
Univariate analyses in our study population had indicated 
that patients who developed MLBCs within 3 years were 
more likely to be of older age (p = 0.003), and had prior 
peripheral vascular disease (PVD) (p = 0.010) and percuta
neous coronary intervention (PCI) history (p = 0.007). They 
also had relatively lower peri-procedural hemoglobin level 
(pre-procedural: p = 0.033; post-procedural: p <0.001), 
higher creatine level (p = 0.046) and higher post-procedural 
aortic valve (AV) maximal velocity (p = 0.002).

BLeNet Model Performance
After data preparation and imputation, 56 variables were 
selected to build the model (Tables 1 and 2). All variables 
had less than 20% of missing rate. The details of missing 
data are shown in Supplementary Figure 1. In total, 24 
variables (42.8%) and 173 patients (25.9%) had at least 
one missing value.

The proposed BLeNet model achieved great perfor
mance both in discrimination and calibration. In terms of 
discrimination, the optimism-corrected c-index of the 
BLeNet model was 0.81 (95% CI: 0.79–0.92) (Table 3), 
and the AUC of this model was 0.84 (95% CI: 0.76–0.91) 
(Figure 3). In terms of calibration, the predicted risks of 
BLeNet were largely consistent with the actual results with 
an ICI of 0.007 and E50 of 0.005 (Figure 4). Then, we 
stratified the patients into high- and low-risk groups. The 
cumulative incidence of MLBCs incrementally increases in 
the high-risk group compared with that in low-risk patients 
stratified by the BLeNet model (p < 0.0001) (Figure 5A).

To interpret the BleNet model, we applied the Captum 
interpretation library for pytorch to evaluate feature impor
tance. The top 10 features identified by the Captum inter
pretation network were cancer history, preprocedural 
platelet level, post-procedural international normalized 
ratio (INR), coronary artery disease, preprocedural INR, 
postprocedural AV mean gradient, postprocedural aortic 
regurgitation, postprocedural LV ejection fraction, and 

preprocedural activated partial thromboplastin time 
(APTT). The average feature importance of all variables 
is shown in Supplementary Figure 2.

Comparison of BLeNet Model with 
Cox-PH and Random Survival Forest 
Model
We compared the BLeNet model with the Cox-PH and 
random survival forest models in the metrics mentioned 
above. Feature selection was performed using LASSO 
regression for these two models, and the selected predic
tors are listed in Table 4.

The results demonstrated that the proposed BLeNet 
model outperformed the Cox-PH and random survival 
forest models significantly. In terms of discrimination, 
BLeNet reached a higher c-index (BLeNet: 0.81; Cox- 
PH: 0.72; random survival forest: 0.70) (Table 3) and 
higher AUC (BLeNet: 0.84; Cox-PH: 0.72; random survi
val forest: 0.70) than other two models (Figure 3). In terms 
of calibration, BLeNet was better calibrated than Cox-PH 
and random survival forest models with smaller ICI and 
E50 (BLeNet: ICI = 0.007, E50 = 0.005; Cox-PH: ICI = 
0.015, E50 = 0.011; random survival forest: ICI = 0.019, 
E50 = 0.041) (Figure 4). BLeNet model also achieved 
better performance than the Cox-PH model in stratifying 
patients into high- and low-risk groups, as represented in 
the Kaplan–Meier estimate (Figure 5). In comparison with 
Cox-PH and random survival forest models built with all 
candidate features without selection, the BLeNet model 
also had better performance (Supplementary Figure 3).

Discussion
We developed and internal validated a DL bleeding risk model 
to accurately evaluate TAVR patients’ late and major bleeding 
risk after the procedure. The results of our study demonstrated 
that deep learning might be a promising method to develop 
prognostic models from readily available clinical data. This 
model had incorporated baseline, procedural and post-proce
dural characteristics to give a comprehensive evaluation of 
patients’ bleeding susceptibility after TAVR. It outperformed 
the Cox-PH and random survival forest models significantly in 
discrimination and calibration, and may serve as a useful tool 
for major bleeding risk evaluation after TAVR.

Late major bleeding has long been identified as 
a severe post-TAVR complication. Previous studies6,21,30 

found that MLBCs are associated with a two- to fivefold 
increase in overall mortality, which suggested that 
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Table 1 Baseline Characteristics Stratified According to the Occurrence of MLBCs Within 3 Years

All (n=668) MLBCs (n=40) No MLBCs (n=628) P value

Baseline characteristics

Male sex, % 393 (58.83%) 25 (62.50%) 368 (58.60%) 0.627

Age, y 73.70 ± 6.83 76.80 ± 6.31 73.50 ± 6.82 0.003
BMI, kg/m2 22.60 ± 3.43 22.97 ± 2.98 22.57 ± 3.46 0.476

STS score 6.69 ± 4.73 8.06 ± 5.39 6.60 ± 4.68 0.061
NYHA class I 1 (0.15%) 0 (0.00%) 1 (0.16%)

II 115 (17.27%) 9 (22.50%) 106 (16.93%)

III 322 (48.35%) 16 (40.00%) 306 (48.88%)
IV 228 (34.23%) 15 (37.50%) 213 (34.03%) 0.486

Cerebral vascular disease 140 (20.96%) 8 (20.00%) 132 (21.02%) 0.878

Cancer 19 (2.84%) 0 (0.00%) 19 (3.03%) 0.264
Hypertension 306 (45.81%) 19 (47.50%) 287 (45.70%) 0.825

Diabetes 127 (19.01%) 10 (25.00%) 117 (18.63%) 0.320

Chronic kidney disease 58 (8.68%) 5 (12.50%) 53 (8.44%) 0.377
Peripheral vascular disease 226 (33.83%) 21 (52.50%) 205 (32.64%) 0.010

COPD 301 (45.06%) 20 (50.00%) 281 (44.75%) 0.517

Coronary artery disease 230 (34.43%) 17 (42.50%) 213 (33.92%) 0.268
Myocardial infarction 14 (2.10%) 1 (2.50%) 13 (2.07%) 0.854

Atrial fibrillation 110 (16.47%) 2 (5.00%) 108 (17.20%) 0.044

PCI history 78 (11.68%) 10 (25.00%) 68 (10.83%) 0.007

CT measurements

Annulus perimeter, mm 80.56 ± 40.20 79.19 ± 9.64 80.65 ± 41.39 0.828

Annulus area, mm2 479.77 ± 220.15 479.19 ± 115.45 479.81 ± 225.25 0.990

Pre-procedural echocardiography

LV volume, mL 52.97 ± 9.59 51.62 ± 9.83 53.05 ± 9.57 0.364
LV ejection fraction, % 54.87 ± 14.96 57.05 ± 13.30 54.73 ± 15.06 0.347

AV peak velocity, m/s 4.75 ± 0.87 4.57 ± 0.97 4.76 ± 0.87 0.168

AV mean gradient, mmHg 57.87 ± 20.22 56.49 ± 20.58 57.95 ± 20.21 0.669
Aortic regurgitation Mild 227 (33.98%) 16 (40.00%) 211 (33.60%)

Moderate 147 (22.01%) 7 (17.50%) 140 (22.29%)

Severe 76 (11.38%) 3 (7.50%) 73 (11.62%) 0.823
Mitral regurgitation Mild 263 (39.37%) 18 (45.00%) 245 (39.01%)

Moderate 103 (15.42%) 6 (15.00%) 97 (15.45%)

Severe 10 (1.5%) 0 (0.00%) 10 (1.59%) 0.955

Pre-procedural chemical test

Hemoglobin, g/L 126.14 ± 20.51 119.45 ± 21.96 126.56 ± 20.36 0.033

WBC, 109/L 6.55 ± 2.41 6.39 ± 2.52 6.56 ± 2.41 0.667

Platelets, 109/L 153.47 ± 56.11 162.50 ± 61.71 152.90 ± 55.74 0.290
Albumin, g/L 40.56 ± 4.55 40.96 ± 4.22 40.54 ± 4.57 0.570

PT, s 12.56 ± 2.79 11.89 ± 1.07 12.61 ± 2.86 0.120

APTT, s 31.07 ± 11.17 29.55 ± 4.11 31.16 ± 11.47 0.377
INR 1.10 ± 0.25 1.03 ± 0.10 1.10 ± 0.26 0.085

NTproBNP, pg/mL 2160 (765, 6524) 1695 (779, 6187) 2203.5 (756, 6531) 0.515

Creatinine, μmol/L 97.35 ± 59.00 115.65 ± 110.70 96.19 ± 54.06 0.046

Note: Variables are expressed as mean ± standard deviation, frequency (%), or median (interquartile range). 
Abbreviations: APTT, activated partial thromboplastin time; AV, aortic valve; BMI, body mass index; COPD, chronic obstructive pulmonary disease; INR, international 
normalized ratio; LV, left ventricular; MI, myocardial infarction; NTproBNP, N-terminal pro-brain natriuretic peptide; NYHA, New York Heart Association; PCI, 
percutaneous coronary intervention; PT, prothrombin time; STS, Society of Thoracic Surgeons; WBC, white blood cell.

https://doi.org/10.2147/CLEP.S333147                                                                                                                                                                                                                                 

DovePress                                                                                                                                                                    

Clinical Epidemiology 2022:14 14

Jia et al                                                                                                                                                                Dovepress

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


Table 2 Procedural and Post-Procedural Characteristics Stratified According to the Occurrence of MLBCs Within 3 Years

All (n=668) MLBCs (n=40) No MLBCs (n=628) P value

Procedural characteristics

Anesthesia General 193 (30.11%) 13 (35.14%) 180 (29.80%)

Local 448 (69.89%) 24 (64.86%) 424 (70.20%) 0.492
Valve size, mm 26.56 ± 2.52 27.00 ± 2.87 26.53 ± 2.49 0.258

Valve type CoreValve 36 (5.45%) 2 (5.13%) 34 (5.48%)
SAPIEN 33 (5.00%) 2 (5.13%) 31 (4.99%)

LOTUS 32 (4.85%) 2 (5.13%) 30 (4.83%)

MicroPort 27 (4.09%) 4 (10.26%) 23 (3.70%)
TaurasOne 56 (8.48%) 4 (10.26%) 52 (8.37%)

Venus-A 474 (71.82%) 25 (64.10%) 449 (72.30%)

VitaFlow II 2 (0.30%) 0 (0.00%) 2 (0.32%) 0.611
Pre-dilatation 575 (88.19%) 32 (84.21%) 543 (88.44%) 0.433

Post-dilatation 300 (45.11%) 18 (45.00%) 282 (45.12%) 0.988

Post-procedural complications

Permanent pacemaker 127 (23.43%) 7 (20.59%) 120 (23.62%) 0.686
Vascular complication 52 (7.78%) 3 (7.50%) 49 (7.80%) 0.999

Bleeding, <30d 43 (6.52%) 3 (7.50%) 40 (6.45%) 0.739

Stroke, <30d 7 (1.06%) 1 (2.50%) 6 (0.97%) 0.356

Post-procedural echocardiography

AV peak velocity, m/s 2.36 ± 1.02 2.86 ± 3.61 2.33 ± 0.52 0.002

AV mean gradient, mmHg 13.31 ± 6.91 13.13 ± 5.17 13.32 ± 7.01 0.871

LV ejection fraction, % 56.12 ± 12.76 56.77 ± 13.64 56.07 ± 12.71 0.742
Aortic regurgitation Mild 175 (26.28%) 9 (22.50%) 166 (26.52%)

Moderate 6 (0.90%) 1 (2.50%) 5 (0.80%)

Severe 1 (0.15%) 0 (0.00%) 1 (0.16%) 0.548
Mitral regurgitation Mild 222 (33.48%) 15 (38.46%) 207 (33.17%)

Moderate 43 (6.49%) 3 (7.69%) 40 (6.41%)

Severe 5 (0.75%) 1 (2.56%) 4 (0.64%) 0.279

Post-procedural chemical test

Hemoglobin, g/L 110.65 ± 18.60 100.30 ± 19.02 111.32 ± 18.39 <0.001

WBC, 109/L 10.44 ± 3.59 9.51 ± 3.00 10.50 ± 3.62 0.091

Platelets, 109/L 117.88 ± 51.25 118.40 ± 49.18 117.85 ± 51.42 0.947
Albumin, g/L 35.19 ± 3.92 34.50 ± 4.23 35.24 ± 3.90 0.247

PT, s 13.11 ± 3.10 13.05 ± 1.58 13.12 ± 3.17 0.890

APTT, s 32.99 ± 12.11 34.34 ± 13.84 32.90 ± 12.00 0.441
INR 1.14 ± 0.28 1.13 ± 0.16 1.14 ± 0.29 0.718

NTproBNP, pg/mL 1648.5 (814.5, 3823.5) 1855.5 (1008.5, 3870.0) 1638.5 (810.0, 3823.5) 0.625

Discharge antithrombotic medication

SAPT 69 (10.33%) 5 (12.50%) 64 (10.19%) 0.451
DAPT 474 (70.96%) 29 (72.50%) 445 (70.86%) 0.660

Warfarin 95 (14.22%) 3 (7.50%) 92 (14.65%) 0.209
NOAC 30 (4.49%) 3 (7.50%) 27 (4.30%) 0.343

Note: Variables are expressed as mean ± standard deviation, frequency (%), or median (interquartile range). 
Abbreviations: APTT, activated partial thromboplastin time; AV, aortic valve; DAPT, dual-antiplatelet therapy; INR, international normalized ratio; LV, left ventricular; 
NOAC, novel oral anticoagulants; NTproBNP, N-terminal pro-brain natriuretic peptide; PT, prothrombin time; SAPT, single-antiplatelet therapy; WBC, white blood cell.
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controlling bleeding is an important area of improving 
post-TAVR management.

MLBCs arise from all kinds of complex situations after 
TAVR. Both the unique hemodynamic features of TAVR 
patients and the special technical features of TAVR have 
a role in the pathogenesis pathways.5,31 Previous studies 
have identified possible risk factors associated with 
MLBCs after TAVR, such as age, female, chronic kidney 
disease, paravalvular leak, baseline hemoglobin, atrial 
fibrillation.6,21,30,32,33 Marion et al revealed CT-ADP, 
a marker of vWF multimeter proteolysis, as a strong pre
dictor of early and late bleeding events after TAVR. 
However, the application of CT-ADP is still in the research 
stage and has not routinely tested in most hospitals yet. 
Navarese et al8 recently developed a 6-item bleeding risk 
score named PREDICT-TAVR, mainly targeting early 
bleedings after TAVR. This score consists of hemoglobin, 
serum iron, anticoagulation and dual antiplatelet therapy, 
common femoral artery, and creatinine clearance. It had 

good discriminative power for early bleedings with an 
AUC of 0.80. However, the risk profile of late major 
bleedings is not quite the same as early bleedings, and 
evaluation of such risk is crucial to determine the long- 
term management plan.

To the best of our knowledge, the BLeNet model is the 
first model developed with the DL algorithm to analyze 
the late major bleeding risk after TAVR. We adopted the 
time-to-event outcome as the prediction target rather than 
simple classification, which enable the model to give 
a more accurate quantification of patients’ late major 
bleeding risk. The model assimilated risk factors identified 
by previous studies and combined a large set of peripro
cedural characteristics, so that a more comprehensive eva
luation could be obtained.

Machine learning has drawn great attention in TAVR 
field in these years. Different types of machine learning 
techniques have been applied to predict in-hospital 

Table 3 Comparison of Cox-PH Model and Random Survival Forest Model with the BLeNet Model

3-Year Sensitivity 3-Year Specificity Optimism-Adjusted c-Index [95% CI]

Cox-PH 0.75 0.56 0.72 [0.63, 0.77]
Random survival forest 0.60 0.55 0.70 [0.61, 0.74]

BLeNet 0.67 0.89 0.81 [0.79, 0.92]

Note: Sensititity and specificity were calculated according to the best cutoff point in the ROC curve. 
Abbreviations: CI, confidential interval; Cox-PH, Cox proportional hazard model.

Figure 3 Receiver operating characteristics curve based on 3-year incidence of 
MLBCs. Compared with the Cox-PH model (Orange line) and random survival 
forest model (green line), the proposed BLeNet model (blue line) reached a higher 
AUC (0.84, 95% CI: 0.76–0.91), indicating that this model had better discriminative 
performance than the Cox-PH and random survival forest models. 
Abbreviations: AUC, area under the curve; Cox-PH, Cox proportional hazard; 
RSF, random survival forest.

Figure 4 Calibration curve for 3-year incidence of MLBCs after TAVR. The calibration 
curve demonstrates the agreement between predicted risk (x-axis) and observed risk 
(y-axis). The diagonal line demonstrates perfect calibration. BLeNet model (blue line) 
was better calibrated than the Cox-PH model (Orange line) and random survival forest 
model (green line) with a calibration curve closer to the perfect line. ICI indicates the 
weighted difference between observed and predicted probabilities, and E50 indicates 
the median percentile of absolute difference. The bar histogram indicates the counts of 
patients with predicted risk on the x-axis. 
Abbreviations: Cox-PH, Cox proportional hazard; ICI, integrated calibration 
index; RSF, random survival forest.
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outcomes,10,11 short-term prognosis12,13 and long-term 
mortality14 after TAVR. Evidences have shown that 
machine learning outperformed traditional linear regres
sion models in these classification tasks. However, most 
of the traditional machine learning classifiers were not 
designed to handle risk estimation in right-censored survi
val data. DL possesses more flexibility in dealing with 
time-to-event outcomes, as it was already been applied 
for survival analysis in the cancer research field. She et al34 

had combined the Cox-PH model with the DL algorithm to 
predict survival of non-small cell lung cancer (NSCLC) 
patients from 127 features. It showed significantly better 
performance than the traditional TNM (tumour, node, 
metastases) model. Matsuo et al35 compared the DL algo
rithm with the Cox-PH model to predict progression-free 
survival and overall survival in cervical cancer patients 
and got exceedingly good results. The astonishing perfor
mance of the DL method may be explained by its inherent 
advantages. DL can process the raw clinical data directly 

without the need for complex feature engineering. It can 
extract intricate patterns and non-linear interactions 
through multiple layers of transformation and abstraction, 
and allow more flexible relationships between the vari
ables and outcomes.15,36 This method can be further 
extended by combining multi-modality input data. For 
example, the CT measurements and echocardiographic 
features in our model can be replaced by raw CT images 
and echocardiographic videos with sufficient computa
tional power, and surprising findings might be found.

Although interpretation of DL models has always been 
challenging, we made an attempt with the Captum inter
pretation library, and some unexpected factors were dis
covered. Apart from those predictors that have already 
been found (platelet level, postprocedural AR), cancer 
history, coronary artery disease and postprocedural ejec
tion fraction were identified as high weight features. 
However, how specifically these factors contribute to the 
MLBCs after TAVR still requires further research, both in 
the clinical aspects and in the interpretation of DL models.

In comparing studies with Cox-PH and random survi
val forest models, we applied LASSO regression to select 
high-weight features. Interestingly, atrial fibrillation (AF) 
was found to be negatively related to MLBCs in this 
cohort. We speculated that this resulted from the extra 
attention we paid to those AF patients, since anticoagula
tion therapy was an established risk factor for bleeding. 
These patients had a more frequent follow-up schedule, 
with their antithrombotic regimen consistently adjusted.

Compared with the 6-item PREDICT-TAVR bleeding 
score,8 the BLeNet model has a comparable performance 
(optimism-corrected AUC of PREDICT-TAVR vs BLeNet: 
0.79 vs 0.84). The major potential utility of this model lies in 

Table 4 Variables Selected to Build Cox-PH Model and Random 
Survival Forest Model

Multivariable 
Adjusted HR

95% CI P value

Age 1.06 1.01–1.12 0.024

Peripheral vascular disease 1.84 0.97–3.49 0.062

Atrial fibrillation 0.27 0.06–1.12 0.072

PCI history 2.37 1.14–4.90 0.020

Post-AV peak velocity 1.11 1.01–1.21 0.036

Post-hemoglobin 0.97 0.96–0.99 0.003

Note: Variables were selected using least absolute shrinkage and selection opera
tor (LASSO) starting with all candidate variables. 
Abbreviations: AV, aortic valve; HR, hazard ratio; PCI, percutaneous coronary 
intervention.

Figure 5 Cumulative incidence of MLBCs in high- and low-risk patients stratified by BLeNet, Cox-PH and random survival forest model. (A) Cumulative incidence of 
MLBCs in high- and low-bleeding risk patients stratified by BLeNet model according to the best cutoff point in the ROC curve. (B) Cumulative incidence of MLBCs in high- 
and low-bleeding risk patients stratified by Cox-PH model according to the best cutoff point in the ROC curve. (C) Cumulative incidence of MLBCs in high- and low- 
bleeding risk patients stratified by random survival forest model according to the best cutoff point in the ROC curve. 
Abbreviations: Cox-PH, Cox proportional hazard; MLBCs, major or life-threatening bleeding complications; ROC, receiver operating characteristics.
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the accurate quantification of patients’ bleeding risk. The 
output of the model corresponds to the log hazard ratio in 
the Cox-PH model, which makes the results interpretable to 
clinicians. This model can also more accurately stratify low 
bleeding risk patients than the Cox-PH model, even using 
a relatively crude stratification method based on the cutoff 
point in the ROC curve. For these low-bleeding risk patients, 
dual-antiplatelet therapy or vitamin K antagonist could be 
considered to reduce the rate of thromboembolic events.

Limitations and Expectations
Our study was based on a single-center registry. Though the 
West China Hospital of Sichuan University Transcatheter 
Aortic Valve Replacement Registry represents the largest sin
gle-center registry in China, we still need more centres’ parti
cipation to update and external validate our model. We also 
recognized that this was a retrospective observational study. 
Further validation from prospective studies is required to fully 
evaluate the model’s utility. There is still room for improve
ment of this model by expanding the dataset, including more 
patients with the region and background diversity, and incor
porating more potential predictors. We also intend to conduct 
prospective studies to validate the clinical utility of this model.

Conclusion
Deep learning is a feasible way to build prediction models 
concerning TAVR prognosis. Based on the largest single- 
center TAVR registry in China, we developed and internally 
validated a deep learning risk model named BLeNet to 
comprehensively evaluate patients’ late major bleeding risk 
after TAVR. This model outperformed the traditional Cox- 
PH and random survival forest models in discrimination and 
calibration. It may serve as a useful evaluative tool to facil
itate well-informed clinical decisions.

Abbreviation
AUC, area under the curve; AV, aortic valve; CI, confi
dential interval; Cox-PH, Cox proportional hazard; DL, 
deep learning; HR, hazard ratio; ICI, integrated calibration 
index; MLBCs, major or life-threatening bleeding compli
cations; NYHA, New York Heart Association; ROC, recei
ver operating characteristics; STS, Society of Thoracic 
Surgeons; TAVR, transcatheter aortic valve replacement.
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