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Purpose: Diabetes, as a group of metabolic diseases, can elevate blood glucose, thus leading 
to the development of life-threatening complications. It is difficult to define the outcome for 
diabetics with different BMI. This review will illustrate the adipose tissue macrophage- 
derived exosome in the diabetics with different BMI.
Patients and Methods: Insulin resistance in peripheral tissues can cause diabetes. The 
peripheral tissues include liver, muscle, or the adipose depots. Communication between these 
organs is fatal to the maintenance of glucose homeostasis. This review will illustrate this 
communication. Obesity is closely linked with diabetes. There are different changes in fat 
distribution in diabetic patients. Adipose tissue macrophages can secrete various hormones, 
including adiponectin, leptin, resistin and other classical cytokines, such as TNF-α and IL-6. 
Studies illustrated that exosomes from the adipose tissue, can modulate inter-organ cross-talk 
by regulating gene expression in other tissues.
Results: Adipose tissue macrophages exosomes links thin and fat individuals in the devel
opment of diabetes.
Conclusion: The molecular pathways initiated by exosomes such as miRNA in the situations of 
metabolic stress could help us gain a deeper knowledge of the pathophysiology of diabetes.
Keywords: BMI, obesity, macrophage, exosome, diabetes

Introduction
Obesity and T2D
Diabetes mellitus (DM) is the common metabolic disorders due to insufficiency in 
insulin secretion or action or both of them. The incidence of diabetes and its complica
tions increases year by year. The international diabetes federation estimates that 
diabetes patients may rise to 629 million in 2045.1 It is now widely accepted that 
there are two primary types of diabetes, type 1 diabetes (T1D) caused by an auto
immune reaction. The body’s immune system attacks the insulin-producing beta cells 
in the islets of the pancreas gland in T1D. Type 2 diabetes (T2D) is the result of an 
inadequate production of insulin. The insulin is insufficient in T2D, as the result of 
insulin resistance.2,3 Because aging population growing, obesity because of low phy
sical activity, urbanization in developed countries, the prevalence of T2D has been 
increasing in the last few years and will continue to increase in the next few years.4–6

It is increasing of obesity over decades in both adults and children, and the number 
of severe or morbid obesity has increased to a greater extent than overweight and mild 
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obesity recently.7 Body mass index (BMI), which is defined 
as weight in kilograms divided by height in meters squared. 
For adults, overweight is defined as BMI of 25.0 to 29.9 kg/ 
m2. Obese is defined as BMI of 30 kg/m2 or higher.8 

Obesity is an established risk factor for metabolic and car
diovascular diseases and is defined as excessive lipid accu
mulation in the adipose tissue.9–11 Numerous adverse effects 
of overweight and obesity on health such as major cardio
vascular (CV) risk factors, including blood pressure, plasma 
lipids, glucose, inflammation, insulin resistance, all of which 
are the risk factors of T2D.12–14 Among them, insulin resis
tance is the most part of the process which can be illustrated 
in many studies (Figure 1). Our previous study found that 
compared with non-diabetic metabolic syndrome (MetS) 
patients, patients with diabetes had higher long-term major 
adverse cerebral cardiovascular events. Patients without 
MetS and diabetes were associated with lower incidence of 
long-term major adverse cerebral cardiovascular events after 
coronary artery bypass graft.15

Numerous studies illustrated that overweight or obesity 
can lead to higher mortality of cardiovascular disease.16,17 

Meta-analysis also revealed that the risk for total mortality 
and hospitalization was highest in patients with chronic heart 
failure who were underweight defined as low BMI, whereas 
risk for cardiovascular mortality and hospitalization was 
lowest in overweight subjects.18 In the patients accepting 

carotid artery stenting or carotid endarterectomy for sympto
matic carotid artery stenosis, BMI is not a periprocedural 
risk of stroke or death; however, overweight patients were 
associated with lower post procedural risk than that in nor
mal weight group.19 Obesity was associated with lower risks 
in cardiac surgery, as showing a “U-shape” association 
between mortality and BMI classes which was observed in 
the cohort study including 557,720 patients.20

Study showed that BMI ≥40.0 was an independent risk 
factor for longer length of stay. Infection was a potential risk 
factor.21 The other study also found underweight patients 
had the highest costs per patient while the obese and over
weight patients had the lowest ones, which is presented as 
obesity paradox.22 Professor Del Prete concluded that 
30 day mortality rates and early outcomes of obese patients 
who underwent CABG were similar to those of non-obese 
patients.23 For diabetes mellitus patients, professor Hällberg 
found that survival of diabetes mellitus patients deteriorated 
few years after operation when assessing the postoperative 
effects of metabolic syndrome and diabetes mellitus on the 
16 year survival rate.24 Our previous study also found BMI 
of the diabetic patients undergoing CABG had no influence 
on the prognosis of survival and MACCEs. The gender 
differences in treatment may be important and affect the 
outcome in diabetes patients.25 For diabetes patients, which 
BMI is better is still a great question for us to study.

Figure 1 Adverse effects of overweight and obesity on health such as major cardiovascular (CV) risk factors, including blood pressure, plasma lipids, glucose, inflammation, 
insulin resistance. Overweight is defined as BMI of 25.0 to 29.9 kg/m2. Obese is defined as BMI of 30 kg/m2 or higher.
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Insulin Resistance
Reaven et al was first to provide a physiological mechan
ism for insulin resistance (IR), manifesting as hyperinsu
linemia and found that it was the risk factor for the 
development of dyslipidemia, elevated blood pressure 
and glucose metabolism.26,27 IR is a systemic disorder 
affecting many organs by insulin-regulated pathways. 
The effects of insulin on target organs are different from 
the effects on traditional target organs. Insulin causes 
vasodilation by enhancing endothelial nitric oxide produc
tion by activating the phosphatidylinositol 3-kinase path
way. In insulin-resistant states, this pathway is impaired 
and the mitogen-activated protein kinase pathway further 
stimulates vasoconstriction. That is the mechanism of IR 
induced hypertension. The strong association of salt- 
sensitive arterial hypertension with insulin resistance 
indicates the kidney participating in the insulin resistance 
syndrome.28

In addition to the kidney, insulin receptors also involve 
in the liver, skeletal muscle and white adipose tissue. In 
skeletal muscle, insulin promotes glucose utilization and 
storage with the help of increasing glucose transport and 
net glycogen synthesis. In liver, insulin activates glycogen 

synthesis by increasing lipogenic gene expression and 
decreasing gluconeogenic gene expression. Insulin sup
presses lipolysis and increases glucose transport and lipo
genesis in white adipocyte tissue (WAT),29,30 (Figure 2).

Recent studies illustrated that BMP4 prevented prevented 
obesity in adult mice by improving insulin sensitivity inde
pendent of weight reduction. The BMP antagonist Noggin 
was increased in WAT in obesity, while lack of brown adi
pocyte tissue.31

However, the insulin resistance importance in the 
pathogenesis of T2D is strengthened by prospective stu
dies that have revealed insulin resistance may become the 
best predictor of future T2D diagnosis.32

Adipose Tissue and Hormones Secretion
Adipose tissue is an organ, which can perform lots of 
significant physiological functions. Its excess in the body 
may result in pathological states in the organs and systems. 
Adipose tissue is different in both morphologically and 
physiologically.33 The human body adipose tissue can be 
divided into two main depots, subcutaneous adipose tissue 
(SAT) and visceral adipose tissue (VAT). VAT in turn can 
be further classified into intrathoracic, abdominal and so 

Figure 2 Insulin receptors in the kidney, liver, skeletal muscle and white adipose tissue. In skeletal muscle, insulin promotes glucose utilization and storage with the help of 
increasing glucose transport and net glycogen synthesis. In liver, insulin activates glycogen synthesis by increasing lipogenic gene expression and decreasing gluconeogenic 
gene expression. Insulin suppresses lipolysis and increases glucose transport and lipogenesis in white adipocyte tissue. In kidney, insulin participate in the RAAS, SNS 
activation, and the balance of sodium retention and renin activation.
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on. Intrathoracic adipose tissue can be classified into epi
cardial adipose tissue (EAT) and pericardial adipose tissue 
based on its location within or outside the human pericar
dium respectively.34,35 They include anatomical, cellular, 
molecular, clinical and prognostic differences. The adipo
cytes, with their endocrine function, lipolytic activity, can 
response to insulin and other hormones between subcuta
neous adipose tissue (SAT) and visceral adipose tissue 
(VAT). Macrophages are more prevalent in visceral com
pared with subcutaneous fat. However, this was not found 
consistent by all researchers.36–38

Mammalian adipose tissue is traditionally divided into 
white and brown based on their function and morphology. 
White adipose tissue serves as energy storage while brown 
adipose tissue acts as the heat generator to maintain the 
core body temperature.39,40

Adipose tissue not only store fat but also play 
a protective role. It is an important endocrine organ 
which can generate and integrate signals to different tis
sues. It is also an enormously active endocrine organ, 
which can secrete various hormones, such as adiponectin, 
leptin, resistin and visfatin, in addition to the classical 
cytokines, including interleukin-6 (IL-6) and tumor necro
sis factor-alpha (TNF-α). Human epicardial adipose tissue 
(EAT) act locally on myocardium, atria and coronary 
arteries involving genes is omentin (ITLN1), which is the 
upregulated gene and secreted adipokine in EAT. Among 
EAT enriched genes, different patterns vary depending on 
adipose tissue distribution. We found a beige expression 
phenotype in EAT. Periventricular EAT highly expressed 
uncoupled protein 1 with genes overexpression in 
pericoronary.

EAT were implicated in proliferation, biosynthesis, and 
metabolism. Periatrial EAT expressed an atypical pattern 
with genes implicated in cardiac muscle contraction, and 
intracellular calcium signaling pathway.41

Previous studies illustrated that adipocytokine played 
significant roles in regulation of glucose, lipid and meta
bolism energy metabolism, which mediated insulin resis
tance in cardiovascular disease of type 2 diabetes.42,43 The 
other major adipokine except adipocytokine is leptin. 
Leptin levels increase in obesity. Subcutaneous fat has 
been a major source of circulating leptin levels. The effect 
of leptin is to inhibit appetite, enhance fatty acid oxidation, 
decrease glucose, stimulate thermogenesis, and reduce 
body weight. RBP4, chemerin, A-FABP, FGF21, fetuin- 
A, myostatin, IL-6, are the other adipokines, all of which 
may play significant roles in insulin sensitivity.44,45 Gut 

microbiome and metabolomics are the potential future 
directions of new biological markers for measuring insulin 
resistance. Leptin/adiponectin and Angiotensin II imbal
ance may be important risk mediators of developing type 2 
diabetes mellitus in cardiovascular diseases associated 
with abdominal obesity46 (Figure 3).

The Inflammatory Response
Obesity normally be associated with a state of chronic, 
low-grade inflammation.47 Being a chronic low-grade 
inflammatory state, it is associated with increased plasma 
levels of inflammatory markers. Weight reduction is asso
ciated with decrease in CRP level. For every 1 kg of 
weight loss, CRP levels dip by 0.13 mg/L.48 Exercise 
training is associated with a decrease in CRP levels 
regardless of the age or sex; however, greater improve
ments in CRP level occur with a decrease in BMI.49

Macrophages are the professional mononuclear phago
cytes which can maintain tissue homeostasis and function by 
scavenging pathogens, debris, and apoptotic or necrotic cells. 
Circulating monocytes can differentiate into diverse resident 
macrophages in almost all tissues including liver (Kupffer 
cells), lung (alveolar macrophages), spleen, brain (microglia), 
bone (marrow macrophages) and fat (adipose tissue macro
phages). Each macrophage phenotype has a specialized func
tion and maintains the local tissue microenvironment. 
Macrophages can display heterogeneous phenotypes as 
demonstrated within adipose tissue macrophages (ATM).

Macrophages are immune cells in the adipose tissue.50 

Following studies demonstrated the significant role of 
adipose tissue macrophages in metabolic disorder asso
ciated with obesity.51 Macrophages can secrete proinflam
matory cytokines such as IL-6 and TNF-alpha. The 
macrophages and apoptotic cells co-culturing were found 
to increase pro-inflammatory cytokines such as IL-6, IL- 
1β, and MIP-2.52,53 However, several studies have shown 
that the apoptotic cells or phagocytosis do not induce 
inflammation. Human macrophage phagocytosed aged 
neutrophils without inflammatory responses.54

Obesity and diabetes can alter immune function and 
adipocyte size by several mechanisms. Adipokine can 
affect adipocyte size, with increase in adipocyte size and 
increase secretion of macrophage inflammatory protein 1β, 
IL-1RA, CCL2.55 Obesity is associated with adipocyte 
hypertrophy, with decrease in miRNAs in subcutaneous 
adipose tissue by attenuating CCL2 production.56 

Adipocytes release exosome-like vesicles taken up by 
monocytes where they promote differentiation into 
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inflammatory macrophages and promote insulin 
resistance.57 Adipocytes and hepatocytes can secrete reti
nol binding protein 4 (RBP4), increased in obese and 
insulin resistant subjects by inducing proinflammatory 
cytokines (TNF-α, IL-6, CCL-2, IFN-γ, GM-CSF) through 
JNK and TLR-4 pathways in macrophages.58 Activation of 
TLR4 signaling pathway requires mineralocorticoid recep
tors in bone marrow macrophages.59

Adipose Tissue Macrophages (ATMs)
Macrophages (M0) were differentiated by human periph
eral blood monocytes and then polarized to M1 and M2 
phenotypes by using LPS/IFN-γ and IL-4/IL-13 
respectively.60

“M0” macrophages were originated from bone marrow- 
derived monocytes. ‘M0ʹ macrophages can differentiate into 
several subsets depending on the stimuli. 
Lipopolysaccharide (LPS) can stimulate “M1” macro
phages, expressed interferon (IFN)-tumor necrosis factor 
a (TNF-a) in vitro experiments, displaying the marker 
CD11c besides F4/80 and CD11b, by producing pro- 
inflammatory mediators like IL-6, IL-1β, TNF-a, and nitric 
oxide (NO). “M2” macrophages possess anti-inflammatory 
phenotype and glucocorticoids stimulation by expressing the 
cell-surface markers CD11b, F4/80, CD301 and CD206, and 
secreting IL-4, IL-10 and IL-1 receptor antagonist (IL-1Ra).

M2 macrophages can be divided into three major var
iants by different stimuli. M2a was elicited by IL-13 or IL-4. 

Figure 3 The human body adipose tissue can be divided into two main depots, subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT). VAT in turn can be 
further classified into intrathoracic, abdominal and so on. Intrathoracic adipose tissue can be classified into epicardial adipose tissue (EAT) and pericardial adipose tissue 
based on its location within or outside the human pericardium respectively. Adipocytokine played significant roles in regulation of glucose, lipid and metabolism energy 
metabolism, which mediated insulin resistance in cardiovascular disease of type 2 diabetes including leptin. RBP4, chemerin, A-FABP, FGF21, fetuin-A, myostatin, IL-6, are the 
other adipokines, all of which may play significant roles in insulin sensitivity.
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M2b was obtained by triggering Fc gamma receptors in the 
presence of a Toll receptor. M2c was elicited by IL-10, TGF- 
b or glucocorticoids. In obese patients, metabolic factors (eg 
high insulin, high glucose, oxidized phospholipids, free fatty 
acids, oxidized LDL give rise to a population of metabolic 
activated or oxidized macrophages61 (Figure 4).

Macrophages are essential to the innate immune 
response to pathogens.62 As antigen presentation cells, they 
regulate T cells of adipose tissue. Macrophages were the 
predominant immune cell type in obese adipose tissue, 
accounting for 30–50% of the nonadipocyte cell 
fraction.63,64 Greater number of macrophages in VAT than 
in SAT in both mice and humans, not seen in all studies.65–69 

Visceral adipose cell had higher macrophage counts than 
abdominal subcutaneous adipose cell in gestational diabetes 
mellitus (GDM) pregnancies during cesarean delivery.

In the development of diabetes, macrophages contribute 
to the development of diabetic neuropathy. CD11b-positive 
microglia/macrophages gradually grow over the 28 days of 
testing after streptozocin injection which could cause dia
betes. Flow cytometry showed that the infiltration of periph
eral macrophages began to increase in 2 weeks (P < 0.001) 
and reached a maximum at 4 weeks.70 Studies reported that 

in diabetic nephropathy macrophage cyclooxygenase-2 
(COX-2) played a role in polarization and maintenance of 
a macrophage tissue-reparative M2 phenotype.71

Adipocytes are important in the control of macrophage 
phenotype in adipose tissue.72,73 In healthy individuals, 
adiponectin secreted by adipocytes stimulates inducing 
M2-like polarization, suppression of ROS and ROS- 
related genes.74 In obesity, decreased adiponectin produc
tion may favor prevalence of M1-like polarized 
macrophages.75,76 M1 macrophages were upregulated by 
glucose transporter GLUT1 that enhanced glucose 
consumption.77,78 ROS, produced in diabetes is increased 
in both endothelial cells and monocytes/macrophages 
which can result in activation of pro-inflammatory path
ways and macrophage/endothelial cell interactions.79 

Activated endothelial cells can increase the expression of 
adhesion molecules such as vascular cell adhesion mole
cule (VCAM) and intercellular adhesion molecule 
(ICAM); TNF-α and macrophage colony stimulating fac
tor (MCSF), and macrophage chemoattractant protein-1 
(MCP-1).80 Upregulation of adhesion molecules and che
mokines promotes macrophage recruitment to the endothe
lium and their transmigration which maintains the 

Figure 4 Macrophages (M0) were differentiated by human peripheral blood monocytes and then polarized to M1 and M2 phenotypes by using LPS/IFN-γ and IL-4/IL-13 
respectively. Macrophages from lean adipose tissue are M2 phenotype, whereas in obese adipose tissue macrophages is M1 phenotype, expressing F4/80+CD11c+ and form 
crown-like structures (CLS) surrounding the adipocytes. M1 macrophages mediate the metabolic complications, both in adipose tissue and by infiltration into other 
metabolic organs such as skeletal muscle. M2 macrophages can be divided into three major variants by different stimuli. M2a was elicited by IL-13 or IL-4. M2b was obtained 
by triggering Fc gamma receptors in the presence of a Toll receptor. M2c was elicited by IL-10, TGF-b or glucocorticoids. M2 macrophages express lower levels of 
inflammatory cytokines and higher levels anti-inflammatory cytokines. It participate in the lean adipose tissue insulin sensitive by the regulation of adiponectin, leptin and Il- 
10.
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inflammation in diabetic vascular dysfunction. 
Macrophage infiltration in diabetic nephropathy of db/db 
mice correlated with expression of MCP-1, macrophage 
migration inhibitory factor (MIF) and M-CSF in 
glomeruli.71

Upon activation, macrophages release cytokines and 
chemokines which initiate an inflammatory response. Toll- 
like receptors (TLR) are evolutionarily conserved patho
gen-associated molecular pattern receptors.81

Macrophages in lean adipose tissue are M2 phenotype, 
whereas M1 phenotype is in obese adipose tissue, expres
sing F4/80+CD11c+ and form crown-like structures sur
rounding the adipocytes.82,83 M1 macrophages mediate the 
metabolic complications, both in adipose tissue and by 
infiltration into other metabolic organs such as skeletal 
muscle.84 In mice, obesity induces M2 to M1 phenotype. 
M1 macrophages induce IR by inflammatory mediators, 
such as TNF-α, IL-6 and nitric oxide. M2 macrophages 
maintain insulin sensitivity by IL-10 and activator of tran
scription 3 (STAT3)61 (Figure 4).

Exosomes and Exosomal miRNAs
Exosomes are endosome-derived organelles (50–100nm) 
which are actively secreted through an exocytosis path
way. Recent studies have demonstrated that exosomes can 
mediate intercellular cross-talk under both in normal and 
pathological conditions.85,86 Although communication 
between adipose tissue and immune cells appears to be 
important in the interconnection between obesity and 
inflammation with the development of diabetes, research 
into the signals underlying this communication has, for the 
most part, been limited to analysis of the roles of cytokines 

and chemokines. Exosomes from adipose tissue of ob/ob 
mice can induce macrophage activation in a TLR4- 
dependent manner and that the RBP4 incorporated in 
these exosomes plays a role in the induction of macro
phage activation.87

Previous study found that isolated exosomes from adi
pose tissue of leptin-deficient ob/ob mice was injected into 
C57BL/6j wild type male mice and fed a high fat diet for 3 
months. Exosomes obtained from the ob/ob mice can 
induce circulating levels of TNFα and IL-6 and increased 
monocyte activation compared with exosomes from wild 
type mice. Injection of exosomes into wild-type C57BL/6 
mice can result in the development of insulin resistance. 
When the exosomes were intravenously injected into 
TLR4 knockout B6 mice, the levels of glucose intolerance 
and insulin resistance were lower. RBP4 is enriched in the 
exosomes. Bone marrow–derived macrophages preincu
bated with recombinant RBP4 can lead to the attenuation 
of exosomes mediated induction of IL-6 and TNF-α87 

(Figure 5). Exosomes from ob/ob mice also increased 
macrophage tissue infiltration and thus impaired insulin 
signaling. Similar results examining differences in exo
somes isolated from obese and lean mice have also been 
described.88,89

The possibility that adipose tissue–derived exosome-like 
vesicles are involved in this process and act as a mode of 
systemic communication has not been explored to any great 
extent. The biogenesis of exosomes is considered to be 
initiated in endosomes, and it is conceivable that the proteins 
contained in exosomes may influence the effects of the exo
somes on the cells in terms of the type of response they elicit 
and the magnitude of the response. Exosomes contain 

Figure 5 MiR-155 is one of the miRNAs overexpressed in obese ATM Exos, miR-29a increased in obese ATMs derived exosomes. Administration of obese ATMs-Exos 
impairs insulin sensitivity of lean mice.
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molecular cargo including RNAs (mRNA, microRNAs and 
long noncoding RNAs), DNA.90–94

Studies have found that BMI correlates with exosomes 
concentration in pregnant women and aging cohort.95,96 

Furthermore, significant higher levels of exosomes (mea
sured subtypes included TMP, platelet-derived microparti
cles (PMP), P-selection+, endothelial cells microparticles 
(EMP), leukocyte-derived MPs (LMP), and tissue factor 
(TF)+) were found in obese individuals compared to nor
mal weight controls.97 In addition, procoagulant activity 
was measured the clotting time of the exosomes. Which 
was significantly shorter for obese individuals compared to 
controls, indicating a higher procoagulant activity of exo
somes from obese individuals. After a one year follow up 
period, the obese individuals who lost weight through diet/ 
exercise or through bariatric surgery had no significant 
change in exosomes levels compared to baseline levels.98 

This contrasts with a previous report that showed that 
weight loss reduced exosomes levels.99 And exosomes 
participate in cell-to-cell communication in obesity.100

MicroRNAs (miRNA) are small non-coding RNA mole
cules that regulate gene expression by binding to messenger 
RNA. MiRNA-155 is released by macrophages in response 
to danger signals such as TLR ligands and LPS.101 MiRNA- 
155 represses SOCS leading to JAK signaling and increase 
inflammation. Pro-inflammatory miRNA from macrophages 
are balanced by anti-inflammatory cytokines such as protec
tin. Protectin is synthesized by M2 macrophages and is 
involved in the resolution of inflammation and tissue 
healing.102 M2 macrophages express lower levels of inflam
matory cytokines and higher levels anti-inflammatory cyto
kines. M2 macrophages also secrete transforming growth 
factor (TGF)-β, which promotes collagen expression and 
fibrosis but also have a crucial role in tissue repair103 

(Figure 4). Treatment of lean mice with exosomes isolated 
from obese one could induce glucose intolerance and insulin 
resistance. Moreover, administration of control exosomes 
transfected with obesity-associated miRNA mimics strongly 
induces glucose intolerance in lean mice and results in central 
obesity and hepatic steatosis. This study found several 
miRNAs that may mediate these effects including miR-122, 
miR-192, miR-27a-3p, and miR-27b-3p.104

MiR-127 is an important regulator in the determination 
of macrophage phenotype in vivo and in vitro, regulating 
the key mechanisms that orchestrate protective immunity 
and inflammation. This miRNA promotes the development 
of M1 macrophage profile and simultaneously represses the 
transcription of gene markers of M2 phenotype.105 Studies 

illustrated that overexpression of miR-127 in macrophages 
significantly reduced the production of LPS induced proin
flammatory cytokines.106 M2 macrophages induced by adi
pose-derived stem cells (ADSC) derived exosomes not only 
expressed high levels of tyrosine hydroxylase responsible 
for catecholamine release, but also promoted ADSC prolif
eration and lactate production by favoring WAT beiging and 
homeostasis in response to high fat challenge. Studies have 
found that ADSC derived exosomes attenuate diet-induced 
obesity and metabolic disorders in HFD-fed mice. 
Administration of ADSC derived exosomes led to 
a resistance to sustain weight gain in HFD-fed mice during 
the later period of intervention, which was independent of 
food intake. For both visceral and subcutaneous white fat 
pads, HFD feeding caused dramatic increases in the percen
tages of fat weight to body weight, whereas exosomes 
significantly decreased these percentages.107 This study 
indicate that these strategies may hold promise for future 
therapies to combat obesity.

Previous studies found that miR-143 has been reported 
to be significantly upregulated in the mesenteric fat of 
obese mice, and obesity-induced over expression of this 
miRNA has been associated with impairment of glucose 
homeostasis.108,109 MiR-143 was more abundant in exo
somes from non-activated than LPS-activated macro
phages, suggesting that a proinflammatory state reduces 
the concentration of it. Treatment with TNF-α can down 
regulate miR-143 expression in adipocytes, suggesting that 
obesity-associated inflammation could deregulate the 
expression of miR-143, which may be one of the mechan
isms that impair TNF-α-induced pre-adipocyte differentia
tion in obese subjects.110

Expression of miR-145 was found to be attenuated in 
the omental adipose tissue of obese patients and diabetics 
with greater Arf6 expression, illustrating the role of miR- 
145 in regulating macrophage-mediated inflammation 
targeting Arf6. By reducing the expression of Arf6 and 
subsequent signal transduction via NF-kappa, miR-145 
plays a role in inhibiting the secretion of inflammatory 
factor. MiR-145 might be one of the candidates for anti- 
inflammatory treatment for metabolic diseases.111

Adipose Tissue 
Macrophage-Derived Exosomal 
miRNAs Insulin Sensitivity
Chronic inflammatory diseases such as insulin resistance, 
Type 2 diabetes, neurodegenerative diseases etc, are 
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shown to be caused due to imbalanced activation states of 
macrophages.112

MicroRNAs which are transcriptional/post- 
transcriptional regulators of gene expression drive several 
pathophysiological processes including macrophage polar
ization. However, the functional role of microRNAs in 
regulating inflammation induced insulin resistance is ill 
defined. Studies observed that the expression of miR-712 
reduced in macrophages exposed to LPS and IFN-γ. 
Ectopic expression of miR-712 in mouse macrophages 
impaired the expression of iNOS protein and secretion of 
pro-inflammatory cytokines such as TNF-α, IL-6 and IFN- 
β, all of which in turn led to improved insulin stimulated 
glucose uptake in co-cultured L6 myoblasts. Studies iden
tified that miR-712 targeted the 3ʹUTR of a potent inflam
matory gene LRRK2 and dampened the phosphorylation 
of p38 and ERK1/2 kinases. The regulatory role of miR- 
712 can restore insulin stimulated glucose uptake by myo
blasts through down-regulating macrophage mediated 
inflammatory responses.113

MiR-155 is one of the miRNAs overexpressed in 
obese ATM Exos, and earlier studies have shown that 
PPARγ is a miR-155 target. Following studies showed 
that miR-155 KO animals are insulin sensitive and glu
cose tolerant compared to controls. Furthermore, trans
plantation of WT bone marrow into miR-155KO mice 
mitigated this phenotype. ATMs secrete exosomes con
taining miRNA cargo. These miRNAs can be transferred 
to insulin target cell types by mechanisms of paracrine or 
endocrine regulation with effects on cellular insulin 
action, in vivo insulin sensitivity, and overall glucose 
homeostasis.89 Studies showed that miR-29a increased in 
obese ATMs derived exosomes (ATMs-Exos) and can be 
transferred into adipocytes, myocytes and hepatocytes 
causing insulin resistance in vitro and in vivo. 
Administration of obese ATMs-Exos impairs insulin sen
sitivity of lean mice. Knockdown miR-29a level in obese 
ATM-Exos blunts this effect. PPAR-δ is identified to 
function as downstream target of miR-29a in regulating 
insulin resistance. PPAR-δ agonist GW501516 partially 
rescued the insulin resistance induced by miR-29a114 

(Figure 5).

BMI and Abdominal Adipose Tissue
Studies have found that women with impaired glucose 
metabolism (IGM) had higher BMI/fat mass. BMI was 
the best discriminator of normal glucose tolerance (NGT) 
versus IGM. Waist-to-height ratio and adipocyte volume 

were most strongly associated with HOMA-IR.115 

Compared with BMI, abdominal adipose tissue was the 
novel cardiovascular risk biomarker.116 Another study illu
strated that total macrophage numbers in subcutaneous 
adipose tissue increased with (BMI), with a similar 
increase seen in the proportion of phagocytic CD14 
+CD16+CD36 high macrophages. There was an inverse 
correlation between anti-inflammatory CD14+CD16- 
CD163+ macrophages and BMI. These correlations disap
peared after excluding obese subjects (BMI ⩾30 kg/m2) 
from the analysis. None of these subpopulations were 
significantly related to BMI in visceral adipose tissue. 
Obesity per se is associated with distinct, highly phagocy
tic macrophage accumulation in human subcutaneous adi
pose tissue.117

Conclusion
In summary, we showed that BMI and its prognosis in 
diabetes individuals. We found that the subtypes of macro
phages and its relationship with different adipose tissue, 
especially the SAT and VAT. Different adipose depots 
contribute different macrophages and exosomal miRNAs 
to the circulation. We also showed that these adipose- 
derived exosomal miRNAs can have systemic effects, 
including regulating of insulin resistance in lean and obe
sity. As a product of different adipose depots, these exo
somal miRNAs could also change in level in diseases with 
altered fat mass, such as obesity, or altered adipose dis
tribution and function, such as diabetes and aging. Which 
BMI is better for diabetes is not an easy question which 
covers the proportion of adipose tissue and it is not just the 
ratio of weight to height squared. Adipose-derived exoso
mal miRNAs can act as regulators of metabolism in dis
tant tissues providing a new mechanism of cell-cell 
crosstalk.
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