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Purpose: Although considerable progress has been made in basic and clinical research on nasopharyngeal carcinoma (NPC), the
biomarkers of the progression of NPC have not been fully studied and described. This study was designed to identify potential novel
biomarkers for NPC using integrated analyses and explore the immune cell infiltration in this pathological process.

Methods: Five GEO data sets were downloaded from gene expression omnibus database (GEO) and analysed to identify differentially
expressed genes (DEGs), followed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment
analyses. The four algorithms were adopted for screening of novel and key biomarkers for NPC, including random forest (RF)
machine learning algorithm, least absolute shrinkage and selection operator (LASSO) logistic regression, support vector machine-
recursive feature elimination (SVM-RFE), and weighted gene co-expression network analysis (WGCNA). Lastly, CIBERSORT was
used to assess the infiltration of immune cells in NPC, and the correlation between diagnostic markers and infiltrating immune cells
was analyzed.

Results: Herein, we identified 46 DEGs, and enrichment analysis results showed that DEGs and several kinds of signaling pathways
might be closely associated with the occurrence and progression of NPC. DTL was recognized as NPC-related biomarker. DTL, also
known as retinoic acid-regulated nuclear matrix-associated protein (RAMP), or DNA replication factor 2 (CDT?2), is reported to be
correlated with the cell proliferation, cell cycle arrest and cell invasion in hepatocellular carcinoma, breast cancer and gastric cancer.
Immune infiltration analysis demonstrated that macrophages M0, macrophages M1 and T cells CD4 memory activated were linked to
pathogenesis of NPC.

Conclusion: In summary, we adopted a comprehensive strategy to screen DTL as biomarkers related to NPC and explore the critical
role of immune cell infiltration in NPC.
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Introduction
Nasopharyngeal carcinoma (NPC) is a type of head and neck tumor with high invasion and metastasis originating from
nasopharyngeal epithelial tissue. Although originating from similar cell or tissue lineages, NPC is significantly different
from other epithelial head and neck tumors, characterized by early cervical lymph node metastasis and invasion of the
base of the skull, with significant ethnic and geographic specificity, and the highest incidence of distant metastasis of
NPC in head and neck tumors.'

Unfortunately, early-stage cancers can be asymptomatic, so biomarkers such as circulating cell-free Epstein—Barr
virus (EBV) DNA are used to detect NPC in populations at risk for the disease.* Subjects with elevated plasma
biomarkers are assessed by nasopharyngeal endoscopic examination. Those with an abnormality suspicious of NPC
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undergo endoscopic-guided biopsy for histological confirmation of NPC, whereas those without a suspicious abnormality
are considered to have had a false-positive blood test. However, small tumors hidden in the pharyngeal recess, adenoid or
beneath the mucosa can be missed on endoscopic examination and the number of such tumors in populations screened for
NPC is unknown.”® Some studies had found that neoplastic spindle cells have features of epithelial mesenchymal
transition (EMT) and cancer stem cells (CSCs), and should be considered as the more aggressive subtype in NPC, and the
predictors of tumor cell dissemination and metastasis of patients.”'® Although considerable progress has been achieved
in basic and clinical research on NPC, the biomarkers of the progression of NPC is not fully studied and described. Thus,
further investigation is beneficial, especially for identification of potential biomarkers to improve survival in patients for
whom the NPC is in its early-stages.

With the development of sequencing technologies and microarray, we can easily screen the expression level of
thousands of genes simultaneously in the human genome.'' Comprehensive analysis of multiple datasets provides the
capabilities to properly identify and assess the pathways and genes that mediate the biological processes associated with
NPC. Machine learning (ML) is a rapidly advancing field of artificial intelligence (Al) that enables computer technology
to learn from data to identify patterns and make predictions without explicit programming.'> ML does not describe
a single specific algorithm, but rather contains a variety of approaches that have to be modified to the addressed issue and
data set. ML methods are typically classified as supervised learning, unsupervised learning, and reinforcement learning.
The input file can be text, images, or anything that is digitally stored.'> AI/ML techniques have been applied to various
fields of biomedicine including novel target identification, understanding of target-disease associations, drug candidate
selection, protein structure predictions, molecular compound design and optimization, understanding of disease mechan-
isms, development of new prognostic and predictive biomarkers, biometrics data analysis from wearable devices,
imaging, precision medicine, and more recently clinical trial design, conduct, and analysis.'*'> To this end, we used
microarray datasets of gene expression to assess the differentially expressed genes (DEGs) between NPC and normal
nasopharyngeal tissue, then ML algorithm was used to screen biomarkers in DEGs for early identification of NPC.
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Materials and Methods

Data Collection and Data Processing

Data sets of our study were all from the Gene Expression Omnibus (GEO) public database, and five sets of gene
expression profiling Chips (GEPC) are selected, including GSE12452, GSE13597, GSE61218, GSE64634 and
GSE53819'%? (Table 1). NPC tissues and normal nasopharyngeal tissues were collected. GSE12452, GSE13597,
GSE61218 and GSE64634 were used as training group data sets, GSE53819 was used as verification group data set.
The need for further ethics approval was waived by the Ningbo First Hospital Ethics Committee.

Screening of Differentially Expressed Genes (DEGs)

For the microarray dataset (GSE12452, GSE13597, GSE61218 and GSE64634), background correction and normal-
ization were performed by applying the combat algorithm. The limma package® of R language was applied for
standardization of expression matrix and screening of differential expressed genes (DEGs), and then the volcano plot
and heatmap were drawn to present the differential expression of DEGs. The DEGs with an adjusted p < 0.05 and |
log2FC| >2 were considered statistically significant.

Functional Enrichment Analysis

The GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment analysis of DEGs were
implemented by the clusterProfiler package in R.>* Gene set enrichment analysis (GSEA) was performed on the gene
expression matrix through the “clusterProfiler” package and “c2.cp.kegg.v7.4.symbols.gmt” was selected as enrichment
analysis gene set to run GSEA software.>> Enrichment results with a p-value <0.05 and false discovery rate (FDR) <0.05
were considered statistically significant.

Screening Characteristic Related Biomarkers via the Comprehensive Strategy

The four algorithms were adopted for screening of novel and key biomarkers for NPC, including random forest (RF)
machine learning algorithm,?® least absolute shrinkage and selection operator (LASSO) logistic regression,?’ support
vector machine-recursive feature elimination®® (SVM-RFE), and weighted gene co-expression network analysis
(WGCNA). WGCNA is a systematic biological method used to describe the gene association modes among different
samples, and it can be used to identify gene sets with highly synergistic variation and identify candidate biomarkers or
therapeutic targets based on the coherence of gene sets and the correlation between gene sets and phenotypes.?’ The RF
is widely used in medicine as a machine learning algorithm based on decision-tree theory for solving classification
problems. RF produces randomly numerous independent tress as an ensemble to avoid overfitting and sensitivity to
training data configuration, the predictive performance of RF has similar performance as the best-supervised learning
algorithms, RF efficiently estimates the test error without incurring the cost of repeated model training associated with
cross-validation, RF is flexible and has very high accuracy. SVM-RFE was a machine learning algorithm based on
a support vector machine used to find the best variables by deleting feature vectors generated by SVM, SVM module was
established to further identify the diagnostic value of these biomarkers in NPC by e1071 package.* Receiver operating
characteristic (ROC) curves were established to evaluate the diagnostic significance of NPC-related biomarkers using the

Table | Characteristics of mMRNA Expression Profiles of Nasopharyngeal Carcinoma (NPC)

GEO Series Expression Type Platform Sample Number Reference
Normal Tumor

GSE12452 mRNA GPL570 10 31 Dodd et al; Sengupta et al; Hsu et al'®™'®
GSE 13597 mRNA GPL96 3 25 Bose et al'?

GSE61218 mRNA GPL19061 6 10 Fan et al®®

GSE64634 mRNA GPL570 4 12 Bo et al?'

GSE53819 mRNA GPL6480 18 18 Bao et al??
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pROC package in R, and the area under the ROC curve (AUC) indicated the magnitude of diagnostic efficiency.’’ P<0.05
was considered to indicate a statistically significant difference. The input files of the ML model was the expression files
of the differential genes in all samples. X-axis label was set to the expression level of the differential genes, y-axis set to
the type of the sample. RF, LASSO and SVM were chosen as ML methods. The validation method was performed
according to the cross validation. ML model parameters were set as follows: randomForest (ntree=500); LASSO
cvfit=cv.glmnet (family="binomial”, alpha=1, type.measure="deviance”, nfolds=10); SVM=rfe (functions=caretFuncs,
method="cv”’, methods="svmRadial”). Characteristic genes with the minimum cross-validation error were used as output
files.

Validation of the Diagnosis-Related Gene Signature

GSES53819 was used as verification group data set. To validate whether the candidate genes have important diagnostic
value in patients with NPC, we also measured the candidate genes’ differential expression, ROC curve value and AUC
value in the validation set.

Evaluation and Correlation Analysis of Infiltrating Immune Cells

The CIBERSORT algorithm was used to analyze the normalized gene expression data obtained previously, and the
proportions of 22 kinds of immune cells were determined.’” A correlation heatmap was produced to detect the
associations of each of the immune cells with the others in NPC samples via the “corrplot” package.>® The “ggstatsplot”
package was used to perform the Spearman correlation analysis on diagnostic markers and infiltrating immune cells, and
the “ggplot2” package was used to visualize the results.

Results

Although previous studies have reported biomarkers associated with NPC, the relationship between the immune
infiltration characteristics and these biomarkers of NPC remains unclear. In this study, we performed a comprehensive
analysis of ML algorithms to screen potential biomarkers associated with NPC, including RF, LASSO, SVM-RFE,
WGCNA. By using CIBERSORT algorithm, we found the difference of immune infiltration between cancer and normal
tissue of 22 subpopulations of immune cells in NPC. Ultimately, DTL has been screened as candidate NPC-related
biomarker and immune infiltration characteristics of DTL were analyzed.

Screening of DEGs in Different Datasets

The DEGs of integrated data chip (GSE12452, GSE13597, GSE61218 and GSE64634) were identified by limma
package. According to the criteria (adjusted p-value < 0.05 and |log2FC| > 2), a total of 46 DEGs were identified in
the integrated data chip, including 11 up-regulated and 35 down-regulated genes. The DEGs data were processed by
“pheatmap” and “ggrepel” packages in the R program to draw a heatmap and volcano plot of the significantly changed
genes (Figure 1A and B).

Functional Enrichment Analyses of DEGs

GO enrichment analysis shows the top five GO terms. Biological process (BP) enrichment showed that the common
DEGs were enriched in neutrophil degranulation, neutrophil activation involved in immune response, neutrophil
mediated immunity, antimicrobial humoral response, and neutrophil activation. The cellular component (CC) part is
mainly enriched in secretory granule lumen, cytoplasmic vesicle lumen, vesicle lumen, specific granule lumen and
microvillus membrane. GO molecular function (MF) showed that the up-regulated DEGs were remarkably enriched in
glycosaminoglycan binding, chemokine activity, serine-type endopeptidase activity, chemokine receptor binding and
heparin binding (Figure 2A). KEGG pathway analysis revealed that the DEGs were mainly enriched in the IL-17
signaling pathway, viral protein interaction with cytokine and cytokine receptor, ovarian steroidogenesis, arachidonic
acid metabolism and TNF signaling pathway were highly related to NPC pathology (Figure 2B). The GSEA analysis
results showed that B cell receptor signaling pathway, metabolism of xenobiotics by cytochrome P450, retinol metabo-
lism, tyrosine metabolism and drug metabolism cytochrome P450 were highly active in normal nasopharyngeal tissue,
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Figure | DEGs in the integrated dataset of NPC. (A) The volcano plots of DEGs, the red and green dots represent up-regulated and down-regulated genes, respectively.
(B) The heatmap of DEGs.
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Figure 2 Functional enrichment analysis of DEGs. (A) Results of GO functional enrichment analysis of the DEGs, including BP, MF and CC. (B) KEEG enrichment analysis
revealed signaling pathways highly associated with NPC. (C) The top five signaling pathways in normal nasopharyngeal tissue based on GSEA are shown. (D) GSEA showed
that the top five signaling pathways were most related to NPC.
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while cell cycle, DNA replication, small cell lung cancer, ECM receptor interaction and P53 signaling pathway were
highly active in NPC tissue (Figure 2C and D).

Screening Characteristic-Related Biomarkers via the Comprehensive Strategy

We utilized LASSO logistic regression algorithm to identify 7 genes from DEGs as biomarkers for NPC (Figure 3A). Six
genes were recognized as vital biomarkers with RF algorithm (Figure 3B and C). Six genes were detected from DEGs
using the SVM-RFE algorithm as diagnostic markers (Figure 3D). To identify sets of genes that are highly correlated in
their expression modules, we performed hierarchical clustering on a batch-controlled, rlog transformed expression data
using WGCNA. The soft threshold power 5 was chosen to define the adjacency matrix based on the criterion of
approximately scale-free topology. Then, we set MEDissThres as 0.25 to merge similar modules, and a total of 8
modules were identified. The hub genes in brown and turquoise module were highly expressed in tumor samples
(Figure 4A—C). Finally, we obtained DTL that was significantly associated with NPC by the four algorithms were
overlapped (Figure 5A and B).

Validation of the Diagnosis-Related Gene Signature
In order to further verify the potentials of DTL as diagnostic markers of NPC, we conducted ROC analysis of these genes
in the expression data set GSE53819 and drew the ROC curve (AUC>0.900, P<0.01) (Figure 6A and B).

Analysis of Infiltrating Immune Cells

The infiltration abundance matrix of 22 kinds of immune cells in integrated data sets was calculated using CIBERSORT
algorithm (Figure 7A). The violin plot showed that the immune infiltration of macrophages M0, macrophages M1 and
T cells CD4 memory activated was more, while that of B cells naive, B cells memory and T cells CD4 memory resting
was less (Figure 7B). Correlation heatmap of the 22 types of immune cells revealed that monocytes and eosinophils had
a significant positive correlation. B cells naive were positively correlated with T cells follicular helper, and NK cells
activated and monocytes also positively correlate. While mast cells resting were negatively associated with mast cells
activated, macrophages M1 and B cells memory also negatively correlate (Figure 7C).

Correlation Analysis Between Related Biomarkers and Infiltrating Immune Cells
Correlation analysis showed that DTL was positively correlated with macrophages M1 (» = 0.461, p < 0.01), neutrophils
(r=0.289, p <0.01) and T cells CD4 memory activated (» = 0.402, p < 0.01). DTL was negatively correlated with B cells
memory (r = —0.606, p < 0.01) and T cells CD4 memory resting (r = —0.367, p < 0.01) (Figure 8).

Discussion

Early diagnosis of some NPC patients is very difficult, and the number of candidate biomarkers for NPC is very few
according to current studies. Therefore, further study on biomarkers for the diagnosis of NPC is important. In this study,
we identified DTL as candidate NPC-related biomarker based on ML method and immune cells differentially distributed
between NPC tissue and normal nasopharyngeal tissue. Furthermore, we explored the correlations between DTL and
immune cells.

We identified 46 significant DEGs using limma package, including 11 up-regulated genes and 35 down-regulated
genes. GO analysis showed that DEGs were mainly concentrated in antimicrobial humoral response, neutrophil
degranulation, neutrophil activation involved in immune response, neutrophil-mediated immunity, and neutrophil activa-
tion. The KEGG analysis results showed that IL-17 signaling pathway was highly related to NPC pathology. The
interleukin-17 (IL-17) family is a subset of cytokines consisting of IL-17A-F that play crucial roles in autoimmune
disease and tumor progression. IL-17A has been demonstrated to be upregulated in a wide variety of biologically distinct
cancers, including kidney cancer, gastric cancer, breast cancer, cervical cancer and lung cancer.”*>® IL-17A has been
reported to control various processes involved in the malignant transformation of cells, such as cell proliferation, one of
the major causes of mortality in cancer.’”*® IL17A stimulation increased the proliferation of human NPC cells in vitro.*
Besides, the top five KEGG terms with inverted gene set enrichment included viral protein interaction with cytokine and
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Figure 3 Screening characteristic related biomarkers via comprehensive strategy. (A) The LASSO logistic regression algorithm was performed to retain the most predictive
features. (B) Screening biomarkers based on random forest (RF) machine learning algorithm. (C) Results of screening biomarkers based on RF. (D) Results of screening
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cytokine receptor, ovarian steroidogenesis, arachidonic acid metabolism and TNF signaling pathway were also related to
NPC pathology. The enrichment pathways of GSEA showed that cell cycle, DNA replication, ECM receptor interaction
and P53 signaling pathway were highly active in NPC tissue, and the hyperactivity of these pathways may be associated
with the development and progression of NPC.

WGCNA is a prevalent systems biology tool used to construct gene co-expression networks, which can be used to
detect disease-associated gene clusters and identify therapeutic targets. In order to improve the usability of NPC-related
biomarkers for pre-screening purposes, several different approaches were used, including RF, LASSO logistic regression
and SVM-RFE. We performed explorative LASSO logistic regression, which performs automatic variable selection and
penalizes regression coefficients to decrease overfitting. RF can deal with classification problems with unbalanced,
multiclass, and small sample data. Variable selection is performed by means of Support Vector Machine Recursive
Feature Elimination (SVM-RFE) for non-linear kernels. To develop biomarkers associated with diagnosis of NPCS, we
combined the intersection of four algorithms.*’ Finally, DTL was selected as biomarkers to identify NPC.
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DTL, also known as retinoic acid-regulated nuclear matrix-associated protein (RAMP), or DNA replication factor 2

(CDT2), is reported to be correlated with the cell proliferation, cell cycle arrest and cell invasion in hepatocellular

carcinoma, breast cancer and gastric cancer.*' DTL is a substrate receptor for the CRL4 ubiquitin ligase, serving as a key

regulator of the cell cycle and genomic stability. Along with the substrate receptor DTL, the CRL4 ubiquitin ligase

promotes the ubiquitin-dependent degradation of several proteins essential for cell cycle progression as well as for DNA

replication and repair.*? The expression level of DTL was found to be elevated in human malignancies including breast

cancer and ovarian cancer. Besides, its potential as a prognostic biomarker in gastric cancer and Ewing sarcoma has been
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Figure 7 Immune cells infiltration analysis. (A) Pattern of infiltration of 22 kinds of immune cells in normal and tumor groups. (B) The violin plot showed the difference in 22
infiltrating immune cells between NPC and normal nasopharyngeal tissue. (C) The correlation heatmap was drawn to display the correlations of 22 types of infiltrated
immune cells. The size of color square represents correlation intensity, red represents the positive correlation, and blue represents the negative correlation.

reported. Furthermore, data from TCGA revealed that patients with melanoma with higher DTL expression exhibit
shorter disease-free survival (DFS) and overall survival (OS).*>™*® Previous studies have shown that DTL might make
cancer cells become addicted. This phenomenon has been termed “non-oncogene addiction” in reference to the increased
dependence of cancer cells on the normal cellular functions of certain genes, which themselves are not classical
oncogenes. Research has demonstrated that DTL depletion can induce apoptosis in different cancer cell lines without
affecting non-cancer cell lines. Consequently, the ‘“non-oncogene addiction” feature facilitates DTL signalling as
a potential therapeutic target.*”*°

To quantify the relative proportions of infiltrating immune cells from the gene expression profiles in NPC,
a bioinformatics algorithm called CIBERSORT was used to calculate immune cell infiltration. CIBERSORT has been
increasingly used to estimate the infiltration of immune cells due to its favourable performance.’*>' We used CIBERSORT to
further evaluate the immune infiltration of NPC to explore the role of immune cell infiltration in NPC, and analyzed the
correlation between related biomarker and infiltrating immune cells. We discovered that the expression of DTL was
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Figure 8 Correlation between DTL and infiltrating immune cells. The lower the p-value, the more green the color, and the higher the p-value, the yellow the color.

positively correlated with macrophages M1, neutrophils and T cells CD4 memory activated levels in NPC group. While was
negatively correlated with B cells memory and T cells CD4 memory resting. In addition, we found higher immune infiltration
levels of macrophages MO, macrophages M1 and T cells CD4 memory activated in NPC group. Although studies have
shown that changes in immune microenvironment are closely related to the occurrence and development of NPC, the specific
mechanism remains unclear,”*”> 4-mRNA signature (U2AF1L5, TMEM265, GLBIL and MLF1), immune subtypes and
constitutive activation of the NF-kB inflammatory pathways were considered as possible mechanisms.>*>® Although more
research is needed, we speculated that changes in immune microenvironment caused by overexpression of DTL might be one
of the mechanisms of NPC based on the results of this study. The limitation of this study is that the conclusion has not been
verified by immunohistochemistry. In the future study, we will scrupulously design experiments and collect nasopharyngeal
cancer samples for immunohistochemistry to verify the conclusion of this study.

Conclusions

In summary, we found that DTL was biomarker associated with NPC. Macrophages M0, macrophages M1 and T cells
CD4 memory activated are related to NPC occurrence. Further research on biomarkers of NPC will help us to understand
the internal mechanism of the occurrence and development of NPC, while help us to diagnose NPC early so that more
NPC patients can obtain a better prognosis.
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