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Abstract: Chronic obstructive pulmonary disease (COPD) is heterogenous in its clinical manifestations and disease progression.
Patients often have disease courses that are difficult to predict with readily available data, such as lung function testing. The ability to
better classify COPD into well-defined groups will allow researchers and clinicians to tailor novel therapies, monitor their effects, and
improve patient-centered outcomes. Different modalities of assessing these COPD phenotypes are actively being studied, and an area
of great promise includes the use of quantitative computed tomography (QCT) techniques focused on key features such as airway
anatomy, lung density, and vascular morphology. Over the last few decades, companies around the world have commercialized
automated CT software packages that have proven immensely useful in these endeavors. This article reviews the key features of
several commercial platforms, including the technologies they are based on, the metrics they can generate, and their clinical
correlations and applications. While such tools are increasingly being used in research and clinical settings, they have yet to be
consistently adopted for diagnostic work-up and treatment planning, and their full potential remains to be explored.
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Introduction
Despite advances in symptomatic management of chronic obstructive pulmonary disease (COPD) with new combination
inhalers and in therapeutic options for patients with severe emphysema such as endobronchial valves, patients with
COPD still have significant morbidity and mortality.1 Patients newly diagnosed with early COPD tend to have variable
disease courses that remain difficult to predict even with readily available in-office spirometry.2 The healthcare burden of
COPD in the US is significant and exacerbations account for $18 billion in direct costs annually.3 Thus, there is a
pressing need to define clinically meaningful subtypes in COPD that better categorize patients with vastly different
disease trajectories to identify those at risk for accelerated lung function decline and, ultimately, improve disease
outcomes with targeted therapies.

The Fleischner Society published a statement in 2015 detailing computed tomography (CT) subtypes based on visual
and quantitative evaluation of images to classify emphysema as well as other important features such as airway wall
thickening, inflammatory small airways disease, interstitial abnormalities, and bronchiectasis.4 The combination of visual
assessment and quantitative metrics can further help identify COPD phenotypes and provide information on disease
progression and mortality.5 Commercially available software using novel radiographic features has become increasingly
available to further aid in COPD subtyping. The use of quantitative CT (QCT) imaging has been harnessed by several
companies discussed in detail in this review. These software packages can assess changes in airway architecture, vascular
morphology, and parenchymal density on inspiratory and expiratory scans to measure the extent of emphysema, air
trapping, and functional small airways disease (fSAD).
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Search Strategy and Selection Criteria
The intention of this review is to present an overview of commercial platforms that provide quantitative CT applications
for improving COPD subtyping. While there are many software platforms that offer this capability, those described here
were selected based on our experience and communications with members of the COPDGene and SPIROMICS studies
as well as with clinicians from other institutions. We searched published articles reported on the websites of VIDA,
Imbio, Thirona, FLUIDDA, 4D Medical, and CoreLine, the companies that produce the platforms we review. We also
searched terms such as “COPD” and “computed tomography,” company names (“VIDA,” “Imbio,” “Thirona,”
“FLUIDDA,” “4D Medical,” “CoreLine”), and different combinations of these terms for all fields on PubMed and
Web of Science before December 4, 2021. Only clinical studies using non-contrast QCT were included in this review; as
such, the terms “preclinical” and “contrast enhanced” were used for exclusion criteria. All articles were published in
English and related to COPD, QCT, and clinical studies. We excluded some articles whose resources were not available.
We evaluated reviews and original research in this area, then cited relevant articles.

Quantitative Analysis of Computed Tomography
X-ray CT, with its high spatial resolution and air-soft tissue contrast, is used extensively in the clinical management of
COPD patients. For radiographic assessments, thoracic radiologists routinely use the extensive array of analytical
techniques that have been developed to improve the diagnostic and prognostic value of QCT.6,7 Measurements of low
attenuation areas are by far the most extensively used readouts for quantifying obstructive regions of the lungs. When
applying a threshold of <950 Hounsfield Units (HU) to CT scans acquired at inspiration (ie, full inflation), this
quantitative index, presented as the relative volume of the lung parenchyma, has been pathologically validated as a
measure of emphysema.8,9 Similar strategies have been applied to expiratory CT scans to assess the extent of air trapping,
a hallmark of small airways disease (SAD).10 Spatially aligned paired CT scans acquired at different inflation levels have
provided readouts of ventilation, ventilation heterogeneity, and quantification of SAD when emphysema is present.11–13

The high air-tissue contrast on the inspiration CT scan has also been exploited to develop methods for airway and vessel
measurements, as well as fissure completeness.14–17 Combined, these analytical techniques provide detailed quantitative
information on airway and vessel remodeling and alterations in local parenchyma.

Commercial Platforms
FLUIDDA
FLUIDDA, founded in 2005 and based primarily in Belgium, has harnessed the power of functional respiratory imaging (FRI)
through the Broncholab platform. Using high-resolution CT (HRCT), FRI can create 3-dimensional airway models for
computational fluid dynamics simulations.18 In addition to FRI, Broncholab provides additional QCT-based metrics that
include lobe volumes and densities, emphysema scores, and pulmonary airway and vascular measurements (Figure 1).

Researchers have demonstrated how FRI can be used to understand the heterogeneity of COPD. Among studies of
exacerbations, van Geffen et al19 and Hajian et al20 used FRI to assess regional heterogeneity by looking at hyperinfla-
tion, airway diameter, and resistance, both during a COPD exacerbation and after resolution. Improvements in hyperin-
flation and airway resistance correlated to improved quality-of-life and pulmonary function testing (PFT) metrics,
suggesting that therapy should focus on decreasing airway resistance, mostly distally, during exacerbations. FRI could
further visualize variability in ventilation and airway resistance among subjects during exacerbations. In addition, FRI
revealed changes in airway structure and volume in different regions of the lungs, including both central and distal
airways,21 after inhaling a combination of a long-acting beta agonist (LABA) and inhaled corticosteroid (ICS).22 De
Backer et al23 later demonstrated that administration of inhaled extra fine beclomethasone/formoterol with a lower ICS
dose improved lung function and hyperinflation. Furthermore, FRI identified regional changes in medication deposition
not detected by spirometry. More recently, this group found the combination long-acting muscarinic antagonist (LAMA)
glycopyrrolate and LABA formoterol improved airway volumes and resistance, as measured by FRI, as well as forced
expiratory volume in 1 second (FEV1), inspiratory capacity (IC), and hyperinflation. These findings support the use of
dual bronchodilator therapy in patients with moderate-to-severe COPD.24,25 Orally administered roflumilast further
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reduced areas of hyperinflation, suggesting its ability to redistribute ventilation, which could enhance concomitant inhaler
use.26 FRI parameters also predicted COPD exacerbations using machine learning algorithms in a cohort of 62 patients.27

Eleven baseline FRI parameters, specifically further decreases in airway volumes leading to higher airway resistances in
chronically narrowed airways, could predict an impending exacerbation. No other clinical data, notably PFTs, had this
predictive power.27 Most recently, Cahn et al28 showed that the phosphoinositide 3-kinase δ (PI3Kδ) inhibitor nemir-
alisib, combined with standard of care, helped patients recover from exacerbations and led to improved respiratory
parameters, including FEV1 and distal-specific imaging airway volume, over a 28-day period and was well tolerated.

Figure 1 Representative clinical report of blood vessel density with coronal image and summary statistics from a COPD patient,courtesy of FLUIDDA.
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Apart from studies of COPD exacerbations, FRI is also being used to assess whether non-invasive ventilation (NIV)
has the long-term benefit of improving oxygenation and/or chronic hypercarbia in patients with severe COPD.29 In
patients treated with at least 6 months of NIV, mass flow was redistributed to areas of the lung with better perfusion and
less emphysema to improve ventilation-perfusion matching and recruit previously occluded small airways. Patients had
improved gas exchange, 6-minute walk distance (6MWD), and anxiety.30 These results suggest that patients with SAD
may benefit from long-term NIV use. In patients with severe COPD with secondary pulmonary hypertension, inhaled
nitric oxide caused pulmonary vasodilation as measured by increases in vessel volume through FRI. While subjective
improvements in dyspnea were seen, long-term data is not yet available.31

VIDA Diagnostics
VIDA Diagnostics Inc., founded in 2004 and headquartered in Coralville, IA, has developed the Apollo Pulmonary
Evaluation Software, their flagship QCT application. VIDA provides advanced algorithms for airway wall measurements,
ventilation maps, and disease probability maps (DPM) obtained from the spatial alignment of paired CT scans at varying
inflation levels, and Topographic Multi-Planar Reformat (tMPR) that displays an optimized view of non-overlapping
airways in context with surrounding tissue (Figure 2). VIDA, using Apollo, serves as the image analysis core for
COPDGene (Genetic Epidemiology of COPD), ECLIPSE (Evaluation of COPD Longitudinally to Identify Predictive
Surrogate Endpoints), SPIROMICS (SubPopulations and InteRmediate Outcome Measures in COPD Study), SARP
(Severe Asthma Research Group), and the MESA (Multi-Ethnic Study of Atherosclerosis) Lung Study.

In a study of current or former smokers with preserved spirometry who were symptomatic as measured by the COPD
Assessment Test (CAT), VIDA software detected submillimeter increases in airway wall thickening compared to asympto-
matic current and former smokers.32 Differences in airway anatomy on CT scans from the MESA Lung Study and
SPIROMICS were associated with COPD development and subjects with the accessory sub-superior airway, the most
common airway branch variant, were at higher risk.33 Those with the second most common variant, absence of the right
medial-basal airway, had a familial FGF10 gene inheritance pattern, and were at increased risk of developing COPD,

Figure 2 Representative clinical report (left) and tMPR (Topographic Multi-Planar Reformat; right) with air trapping map, courtesy of VIDA Diagnostics, Inc.
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dyspnea, and smaller airway lumens. Central airways collapse greater than 50% of the airway lumen during exhalation, ie,
expiratory central airway collapse (ECAC), was associated with worse St. George’s Respiratory Questionnaire (SGRQ) and
Medical Research Council Scale (mMRC) scores in smokers with and without COPD in the COPDGene Study.34

Emphysema affects subsegmental airway anatomy and airflow obstruction, likely related to loss of airway tethering,35 and
these changes in wall area correlated to the chronic bronchitis phenotype.36 Kirby et al37 quantified degree of fSAD using
DPM in the longitudinal Canadian Chronic Obstructive Lung Disease (CanCOLD) study by registering full inspiration and
expiration CT images to classify each voxel as emphysematous, gas trapping, or normal. DPM measurements were
associated with PFTs, bronchodilator response, and symptoms, particularly dyspnea, as measured by the mMRC.

Kirby’s team has also used VIDA’s airway segmentation tool to evaluate total airway count (TAC), airway inner
diameter, and wall area in CT scans from the CanCOLD Study.38 GOLD I and GOLD II subjects had reduced TAC and
thinner airway walls with narrower lumens than never smokers and at-risk individuals. Since airway remodeling can be
associated with declining lung function, such changes may serve as biomarkers to predict individuals at risk for
accelerated disease progression. In two other cohorts –one from SARP and another from SPIROMICS– differences in
airway structures of asthma and COPD subjects with post-bronchodilator FEV1 <80% were assessed.39 COPD patients
had more severe emphysema, SAD, and reduced tissue fraction and regional lung deformation compared to asthmatics,
with greatest differences in upper and middle lobes.

For patients with advanced emphysema undergoing interventional procedures, Apollo was used to evaluate fissure
completeness in subjects undergoing bronchoscopic thermal vapor ablation, an alternative to valve placement due to
collateral ventilation.40 Apollo showed that a target lobe volume reduction (TLVR) of about 50% would give patients
improved quality of life and lung function following endoscopic valve therapy.41 Apollo software revealed QCT
characteristics, such as low attenuation cluster (LAC) that reflect the size of the “emphysematous holes,” predictive of
subjects who would respond positively to lung volume reduction with coils42 and valves.43 Beyond airway analysis,
Apollo was used for vessel segmentation in the MESA study to demonstrate that peripheral total pulmonary vascular
volume was greater after long-term black carbon exposure, suggesting air pollution could affect vascular remodeling,
and, ultimately, gas exchange.44

Thirona
Thirona, headquartered in Nijmegen, Netherlands, and founded in 2014, develops artificial intelligence software products
focusing on thoracic CT imaging. Thirona’s commercial software LungQ is capable of quantifying anatomical volumes,
disease distribution, airway and vascular morphology, and fissure completeness.

Early studies using Thirona’s technology included work by Boueiz et al45 that evaluated lobar distribution of emphysema
in the COPDGene cohort. They found that subgroups of smokers with upper-lobe predominant emphysema had greater
disease progression over a 5-year period, gas trapping, and dyspnea. Thirona’s LungQ segmentation protocol was used in a
separate study of COPDGene subjects to approximate the total lung capacity-adjusted lung density at the 15th percentile of
predicted (TLC-PD15) as a means of monitoring disease progression.46 In smokers at risk for developing COPD, LungQ
showed that lung tissue density increased over 5 years, suggesting ongoing inflammation and airway remodeling. In contrast,
end-stage COPD patients (GOLD III or IV) had loss of TLC-PD15 over time, thus displaying a more classic picture of
progressive emphysema and tissue destruction. Over the same 5-year period, smokers with and without COPD had increased
evidence of emphysema and air trapping, but these radiographic findings accounted for less than half the decline in FEV1 in
GOLD stages II–IV.47 The role of inflammation in airway wall thickening was validated by Charbonnier et al,48 who found
that, in the COPDGene cohort, higher airway wall thickness (Pi10) was associated with worse lung function, 6MWD, and
SGRQ scores in all GOLD stages. Further, subjects who quit smoking had lower Pi10 between their first visit and at 5-year
follow-up; in contrast, Pi10 increased in subjects who started smoking, suggesting a reversible component of smoking-
related inflammation. Most recently, Bodduluri et al49 confirmed that progressive airway narrowing and remodeling in COPD
could be quantified by the CT imaging-derived ratio of airway luminal surface area to volume (SA/V) using Thirona’s airway
quantification software. SA/V increased with airway narrowing and decreased with airway loss. Overall, subjects with
predominantly airway loss had worse survival, although both changes were associated with increased respiratory morbidity.
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In the therapeutic sphere, Thirona’s LungQ software for evaluating fissure completeness was used to identify the
TLVR for bronchoscopic lung volume reduction with endobronchial valves, similar to VIDA’s technology. This study
found that a minimal difference of –563 mL in a patient provided a clinical benefit.50 Measurements of lobar oxygen
uptake also helped identify the least functional, and therefore target lobe for valve placement.51 Patients from the Lung
Volume Reduction Coil Treatment in Patients with Emphysema (RENEW) Trial with significant hyperinflation (residual
volume >200% predicted) had the best clinical outcomes when QCT analysis was used to identify lobar treatment
location and adequate emphysema (>20%) for endobronchial coil treatment.52

Imbio
Imbio, a Minneapolis, US-based medical imaging software company founded in 2012, uses imaging biomarkers to
enhance personalized medicine. Imbio’s Lung Density Analysis (LDA) software identifies key functional information
from CT scans in COPD patients. The functional LDA image analysis tool maps regions of functionally healthy lung, air
trapping, and emphysema. LDA uses parametric response mapping (PRM) to produce a voxel-wise map to pair
inspiratory and expiratory CT scans to quantify fSAD (Figure 3). In addition to PRM, LDA includes other QCT metrics
such as emphysema scores and lobe volume and density measurements.

Various studies have evaluated the efficacy of PRM as an accurate readout of SAD. These radiographic regions of
fSAD pathologically correspond to areas of lung tissue with loss of terminal bronchioles, airway lumen narrowing, and
obstruction identified by microscopic examination of resected lung. PRM is the only technique that has been histologi-
cally validated to date.13 An early study using PRM (2012), which analyzed data from 194 COPD subjects from
COPDGene, showed that this technology can provide regional information on disease activity and, notably, that fSAD
often preceded the development of emphysema.11 This association was more evident in subjects in the COPDGene cohort
with mild- to moderate-stage COPD, where worsening PRM-derived fSAD (PRMfSAD) was also associated with
declining FEV1 and diffusing capacity for carbon monoxide (DLCO).53,54 PRM metrics have been proven to be strongly
associated with both the development and severity of COPD when compared to other biomarkers of emphysema,
including expiratory-to-inspiratory ratio of mean lung density (MLD), an indirect measure of air trapping, and Perc15
(the Hounsfield Units [HU] where less than 15% of the voxels on an inspiratory CT are found).55

PRM, as part of the LDA platform, was used to analyze CT scans from the SPIROMICS study. In a 3-year follow-up of
1,105 COPD subjects from SPIROMICS, those who suffered from exacerbations during this time had greater small airways
abnormalities as defined by PRMfSAD.56 As subjects progressed in their disease courses, emphysema increased as expected;
however, this change was associated with a decrease in mean PRMfSAD values, suggesting that fSAD may be a transitional
period between normal lung parenchyma and development of irreversible emphysema. fSADmay, therefore, offer a promising
indicator for early, directed treatment.57 Of note, aging in and of itself, in both smokers and ever-smokers without airflow
obstruction, was found to increase PRMfSAD in an analysis of 580 SPIROMICS subjects.58 This PRM approach was also
successfully used in smokers without COPD, where it showed that these metrics can identify unique patterns of progression,
and that both PRMfSAD and PRMEMPH, ie, PRM-derived emphysema, can independently predict future development of
emphysema.59,60 Bronchiectasis was also found to be associated with increased emphysema in smokers and those with both
bronchiectasis and emphysema had lower FEV1 and 6MWD.17 In current or former smokers, the low attenuation area on low-
dose CT imaging ordered as part of routine lung cancer screening may be able to detect quantitative emphysema and diagnose
subjects with early COPD, allowing clinicians to monitor patients closely and perhaps initiate appropriate treatment when
needed.61 These findings suggest that PRM could allow clinicians to further understand the variable disease progression of
COPD, resulting in better-tailored treatments.

Coreline
Coreline, based in Seoul, Korea and founded in 2012, has developed the AI-based technology AVIEW COPD. This
commercial platform includes quantitative analyses and visualization software that performs automated segmentation to
evaluate emphysema, SAD, pulmonary vasculature and airways, and fissure integrity.

At the 2018 annual meeting of the Radiological Society of North America, Coreline presented a voxel-by-voxel
segmentation using a 2.5D convolutional neural net and compared it to their gold standard semi-automated algorithm,
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which uses the airway segmentation module of AVIEW and requires additional processing by research assistants. This AI
technology, AVIEW Metric, was found to be practical and reliable when tested on inspiratory CT scans of both healthy
subjects and subjects with COPD from the Korean Obstructive Lung Disease (KOLD) study.62 By fully automating

Figure 3 Representative clinical report that contains PRM images in all orientations and summary statistics from a COPD patient, courtesy of Imbio.
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various image analysis algorithms, AVIEW Metric segmented all airways in a few minutes and allowed for inspiratory
and expiratory lung registration. Researchers have also shown the potential of AVIEW technology for classifying COPD
phenotypes. Kwon et al63 assessed how ambient air pollution may predispose subjects to different phenotypes in a study
of a Korean cohort of 457 subjects with and without COPD. Using AVIEW software to measure spirometry (FEV1, FVC
[forced vital capacity]), degree of emphysema, airway wall thickness, and fSAD, this group evaluated the association of
these measurements to the average concentration of environmental particulate matter less than or equal to 10 µm (PM10)
in diameter and nitrogen dioxide (NO2). While imaging phenotypes were not associated with NO2, increased exposure to
PM10 was associated with lower FVC, increased emphysema, and airway wall thickness. AVIEW software revealed no
associations between fSAD and air pollutants. Elsewhere, use of QCT emphysema air-trapping composite (EAtC) maps
from AVIEW segmentation software correlated to GOLD staging and lung function, which researchers are studying as a
potential biomarker of disease progression.64 Most recently, AVIEW has been used to analyze longitudinal changes over
a 6-year period in pulmonary vascular parameters obtained from CT images in 288 COPD patients.65 Degrees of
emphysema were classified as five subtypes based on Hounsfield Units and used to assess severity on inspiratory and
expiratory scans. Total and small vessel numbers per lung surface area (LSA) were obtained and shown to decrease as
COPD progressed. However, these markers had weaker correlations to PFTs. COPD can be distinguished by the
emphysema versus bronchitis phenotypes, and these vascular parameters demonstrated that total and small vessel
numbers per LSA were higher in the SAD/bronchitis phenotype, confirming that changes in the pulmonary vasculature
were more prominent for subjects with predominantly emphysema.

4DMedical
4DMedical, founded in 2012 and based both in Melbourne, Australia and Los Angeles, CA, uses X-ray Velocimetry
(XV) Technology to capture simultaneous X-ray images from different acquisition angles to measure the motion of lung
tissue at multiple locations during various breath stages. XV then creates colored heat maps of ventilation
measurements.66,67 The limited angles from which images are acquired by XV allows for much lower radiation doses
than are used for conventional CT scans. XV Lung Ventilation Analysis Software (XV LVAS) is an FDA-approved
software that generates reports of areas of high and low ventilation in all phases of breathing.

Reports consist of coronal and axial images rendered in 4-dimensional animation, where red depicts regions of low
ventilation, green depicts average ventilation regions, and blue depicts regions of high ventilation (Figure 4). Once the
report is generated, it is saved directly onto a hospital’s Picture Archiving and Communication System (PACS). New
versions of these reports are actively being developed, and include contrast-free pulmonary angiography, ventilation-
perfusion reports, and airway flow and expiratory quantification. Researchers at Johns Hopkins School of Medicine are
actively studying XV Technology to validate the clinical benefit of XV LVAS, with the goal of detecting earlier changes
in airway function, ventilation defects, and disease progression than clinically available spirometry data and CT images
can provide.68 At Vanderbilt University, researchers are comparing the degree of hyperinflation in COPD subjects, as
measured by XV image analysis software, to traditional PFTs. This study will also compare lobar expiratory time
constraints with fissure completeness measured by StratX software (https://pulmonx.com/stratx/) with the goal of
improving the ability to evaluate patient outcomes after endobronchial valve placement (4D Medical X-ray
Velocimetry for Bronchoscopic Lung Volume Reduction Targeting, ClinicalTrials.gov ID NCT04786171).

Discussion
The commercial platforms reviewed here provide regional functional and anatomic information that enhances our
understanding of the heterogeneity of COPD and aids clinicians and researchers in assessing which patients are more
likely to experience disease progression and respond to tailored treatments. These novel markers can be harnessed to
individualize patient care, moving beyond the widely accepted global metrics obtained from PFTs and patient-reported
symptoms. FLUIDDA’s FRI technology highlights key alterations in both airway structure and resistance during COPD
exacerbations and with medication use. VIDA’s QCT software Apollo provides similar information by looking at airway
remodeling with its airway segmentation tool. Both FLUIDDA and VIDA also explore vessel segmentation. Thirona’s
LungQ software has been used to quantify lung volumes and disease distribution, and, more recently, to evaluate fissure
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completeness, similar to VIDA’s technology. Imbio’s unique capability lies in its PRM maps that can quantify the area of
SAD in the lungs to show how these regions evolve with disease progression. Recently, Coreline’s AI-based technology
AVIEW COPD has used automated segmentation software to evaluate many of the same key structures, including
pulmonary vasculature, fissures, and regions of emphysema and SAD. Lastly, 4DMedical’s XV Technology relies instead
on composite X-ray images to create ventilation maps and thereby requires lower radiation doses than the conventional
CT scans used by other companies. Of note, this review is based on published literature and online resources, and a full
description of each platform and its capabilities would only be attainable through direct contact with the vendor.

Conclusion
The companies discussed in this review have developed a wide array of novel imaging modalities that have already
moved the QCT field forward and will allow researchers and clinicians additional insight into the complex disease
process of COPD. These imaging biomarkers have demonstrated the ability to predict disease progression earlier and
inform the contributions of airway remodeling, air trapping, and emphysema to airflow obstruction and altered
pulmonary biomechanics. The geographic distribution of these changes as visualized by automated software has also
been validated and could signal accelerated lung function decline not yet captured by global PFT metrics. Such tools also
hold the promise of assisting clinicians in advanced bronchoscopic procedures, such as lung volume reduction via coil
treatments and endobronchial valves in the appropriate patient population. More importantly, many of the metrics have
been correlated to patient symptoms and clinically meaningful outcomes. Even in subjects without airflow obstruction as
measured on PFTs, these imaging markers were sensitive to abnormalities that could predict which subgroups were more
likely to progress and become symptomatic. This leaves ample opportunity for research focused on key populations,

Figure 4 Representative clinical report of lung ventilation with coronal map, histogram showing specific ventilation and quantitation of ventilation heterogeneity, courtesy of
4D Medical.
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where early intervention and monitoring could change the course of a potentially irreversible disease process with
significant life-limiting morbidity and mortality.

Abbreviations
COPD, chronic obstructive pulmonary disease; FRI, functional respiratory imaging; fSAD, functional small airways
disease; PFT, pulmonary function testing; PRM, parametric response mapping; QCT, quantitative computed tomography.
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