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Abstract: Gestational diabetes mellitus (GDM) refers to different degrees of glucose metabolism abnormalities that occur or be first
discovered during pregnancy. It is closely related to many adverse pregnancy outcomes. Placenta-specific exosomes are one kind of
extracellular vesicles which are only produced by the placenta. These exosomes participate in many physiological and pathological
processes of the body through the contained RNA, lipids, proteins, and DNA. In gestational diabetes, the placental exosomes play an
important role in the occurrence and development of gestational diabetes through regulating insulin resistance, inflammatory factors,
and endothelial cell dysfunction. In this review, we will discuss the generation, changes, and mechanism of placenta-specific exosomes
in GDM, as well as their prospects as a predictive and therapeutic target for gestational diabetes.
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Introduction
Gestational Diabetes Mellitus (GDM) refers to different degrees of glucose metabolism abnormalities that occur or be
first discovered during pregnancy.1 It is generally considered to be insulin resistance caused by pancreatic β-cell
dysfunction.2 The frequency of gestational diabetes mellitus at collaborating centers was 17.8% according to the
International Association of Diabetes in Pregnancy Study Group criteria.3 GDM not only increases the risk of gestational
hypertension, premature delivery, premature rupture of membranes, fetal malformations, dystocia, cesarean section, etc.,
but also increases the risk of metabolic syndrome, type 2 diabetes, and cardiovascular disease in offspring.4–6 Early
diagnosis, intervention, and treatment can improve the prognosis of gestational diabetes. At present, the pathogenesis of
gestational diabetes is not fully understood. Possible mechanisms include genetics, insulin resistance, autoimmunity, and
the release of inflammatory factors.7–9 Clarifying the pathogenesis of gestational diabetes is of great significance to its
diagnosis and treatment. During pregnancy, the placenta participates in the regulation of the endocrine system by
secreting a variety of substances including exosomes. The role of placenta-derived exosomes in the etiology and
progression of complications of pregnancy is still in a formative stage. This article summarizes the research progress
of placenta-derived exosomes and GDM for providing new ideas for the pathogenesis and prevention of GDM.

Placenta and GDM
The placenta is an important organ for the exchange of substances between the fetus and the mother. The placental barrier
can also shield the fetus from harmful substances; In addition, the placenta synthesizes a variety of enzymes, hormones,
and cytokines to maintain normal pregnancy.10 It is estimated that 69% of all human proteins are expressed in the
placenta and most of them are associated with pregnancy, estrogen biosynthetic, and metabolic pathways.11 During
pregnancy, the placenta secretes many insulin-resistant hormones such as placental prolactin, estrogen, progesterone, and
adrenal cortex hormones.12 As pregnancy progresses, the secretion of placental hormones gradually increases, making
pregnancy a physiological insulin resistance state. Glucose metabolism is characterized by increased glycogen production
and decreased utilization of glucose by tissues, which smooths the transfer of nutrition to the fetus.13–16 When facing
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insulin resistance, normal pregnant women can secrete enough insulin to supply the body’s needs, while a small number
of pregnant women with defective β cell function cannot secrete so much insulin, unable to overcome insulin resistance,
leading to gestational diabetes. At the same time, maternal hyperglycemia affects the structure of the placenta and the
distribution of blood vessels and increases maternal and fetal complications.17–20 Therefore, the placenta plays an
important role in the occurrence and development of gestational diabetes.

Exosomes
Exosomes are one kind of extracellular vesicles (EVs). Extracellular vesicles are derived from membranes in almost all cells
and participate in the regulation of human functions through the contained RNA, lipids, proteins, and DNA. Based on their
source, morphology, and the way they are released into the extracellular environment, extracellular vesicles are divided into
three types including apoptotic bodies, exosomes, and microvesicles (MV).21,22 Exosomes are 50–120 nm in diameter and
can uniquely reflect the phenotype of their parent cell. They were first discovered in 1981 by Trams et al.23 In 1984, Harding
and Stahl described the release of small vesicles and tubules from rat reticulocytes.24 Exosomes are present in almost all
biological fluids such as blood, saliva, lymph, amniotic fluid, milk, lachrymal, and mammary gland secretions etc.25 Methods
to isolate exosomes include differential centrifugation, density gradient centrifugation, size exclusion chromatography,
filtration, polymer-based precipitation, immunological separation, and isolation by sieving.26–28 As an important intercellular
signal transduction carrier, exosomes work by interacting with the recipient cells.29 After being taken up, exosomes release
their contents into the new host cells and exert their biological functions. The endocytosis process is achieved through
phagocytosis or receptor and raft-mediated endocytosis.30–33 Adhesion is another form of interaction between exosomes and
target cells, which is facilitated by the transmembrane proteins on the surface of the exosomes.34,35 Through these methods,
exosomes participate in the regulation of a variety of normal physiology and diseases.

Placenta-Derived Exosomes (PdE)
Many exosomes are only expressed in the human placenta, the so-called placenta-derived exosomes. These placenta-
derived exosomes carry signals in the form of RNA,36,37 proteins,38–40 lipids,41 and DNA.42 During pregnancy, exosomes
are released from the placenta into the maternal blood circulation and participate in placental development and maternal
immune tolerance.CD63 is a widely accepted exosomal marker. Placenta-derived exosomes can be differentiated from
other exosomes by the presence of placenta-specific proteins or miRNAs such as placental alkaline phosphatase
(PLAP).43 The total amount and the specific placenta-derived exosomes could be determined by quantum dots coupled
with CD63 and PLAP antibodies, respectively.44 The exosomes are identified in maternal plasma as early as 6 weeks of
pregnancy. The number of exosomes and the concentration of placenta-derived exosomes in maternal circulation
increased significantly with the progression of pregnancy, with maximum numbers at term.45–47 Some miRNA clusters
are specific to trophoblasts.36,48 The placenta-specific miRNA clusters are C19MC and C14MC. Morales-Prieto et al37

explored that 34 of 46 miRNAs belonging to C14MC were downregulated in the third-trimester trophoblasts, while 46
out of 47 miRNAs belonging to C19MC were upregulated. The known function of placental exosomes in normal
pregnancy are as follows:

Maternal-Fetal Communication
High levels of miRNAs can be found in the maternal blood during pregnancy and rapid decline in the first 24h
postpartum, which suggests that there is a miRNA-based maternal-fetal communication.49,50 One study showed that
placental miRNA can traffic to the maternal circulation with compartment-specific expression and that maternal miRNA
can traffic to the placenta and even into the fetal compartment.51 Exosomal trafficking and function were also demon-
strated by injecting fetal cell-derived fluorescently labeled exosomes into pregnant mice and by using genetically
engineered mice in which fetal and maternal exosomes could be distinguished.52,53 These studies suggest that
miRNAs are involved in the communication between the placenta and the fetal-maternal compartment.
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Transfer Gene Information to Target Cells
Exosomes include many kinds of molecules, of which miRNAs are the most concerned. It is estimated that more than
half of human gene expression is regulated by miRNAs.54 C19MC-derived miRNAs are expressed in human placental
trophoblasts and secreted into the maternal circulation via exosomes where they can target maternal tissues.55,56 Fetal
exosomes can also reach maternal gestational tissues. Foetal lung-derived C4BPA plays a role in birth timing determina-
tion. C4BPA can bind to CD40 of placental villous trophoblast to promote p100 processing to p52 and then activate the
NF-κB pathway in the placenta, which contribute to the timing of birth.57,58 Bioinformatic analysis suggests that
MIR517A is possibly participating in tumor necrosis factor-mediated signaling.56 The exosomal miR-512-3p participates
in human trophoblast functions by targeting PPP3R1, encoding a regulatory subunit of calcineurin.59 BeWo exosomal
miR-517a-3p was internalized into Jurkat cells and subsequently suppressed the expression of PRKG1 in recipient Jurkat
cells.60 Besides miRNAs, transfer RNAs (tRNA) have been identified in syncytiotrophoblast-derived extracellular
vesicles which alter gene expression in target cells. Most tRNAs within syncytiotrophoblast extracellular vesicles were
5’-tRNA halves.61 This suggests a novel mechanism for maternal-fetal signaling in normal pregnancy.

Inhibition of Maternal Immune Tolerance
During pregnancy, the maternal immune system needs to be in a state of tolerance to maintain the survival and growth of
trophoblasts. The placenta-derived exosomes are immunosuppressive and promote fetal allograft survival by influencing
many mechanisms.62 Decidual macrophages play an important role in this process. Trophoblasts produce a variety of
components to induce decidual macrophages to differentiate into M2 types. Trophoblast-derived exosomes increased
monocyte migration and produced large amounts of cytokines such as interleukin (IL)-1β, IL-6, Serpin-E1, granulocyte
colony-stimulating factor, granulocyte/ monocyte colony-stimulating factor, and TNF-α.63 Fas-induced T cell apoptosis is
the main mechanism of immune tolerance. Exosomes from term-delivering pregnancies are significantly higher and
exhibit greater suppression of CD3-zeta and JAK3.64 These placenta-derived membrane fragment isolates are capable of
inducing FasL-mediated apoptosis and down-regulating CD3-zeta expression, which may contribute to the immune
tolerance of the fetu.65,66 Placental exosomes carrying Fas ligand (FasL) and TRAIL mediate the immune privilege of the
fetus by transmitting apoptosis signals during pregnancy.67 The increase in th2 cell secretion and the decrease in th1
cytokine secretion can also protect the fetus from the maternal immune system. Exosomes derived from villous
cytotrophoblasts (VCT) reduced the production of Th1 cytokines in PBMCs, which was mediated by exosome-
associated syncytin-2.68 NK cell receptor NKG2D was expressed and secreted via placental exosomes, which down-
modulated the cognate receptor expression and might be a possible fetal immune escape mechanism.69,70 These results
indicate that trophoblast-derived exosomes play an important role in maternal adaptation to pregnancy and fetal immune
tolerance.

Regulate Angiogenesis and Endothelial Cell Migration
Remodeling of uterine spiral arteries by extravillous trophoblast cells is fundamental for pregnancy. This process requires
invasion and differentiation of trophoblast cell.71,72 Placenta-derived exosomes contain biologically active proteins that
can interact with the maternal endothelium and regulate their function.73,74 These exosomes can also induce extravillous
cytotrophoblast cell invasion and proliferation in a time-and dose-dependent manner.46 It has been reported that
trophoblast-derived MMP-12 mediates elastolysis, induces disruption of uterine vascular smooth muscle cell architecture,
and favors extravillous trophoblast invasion during uterine spiral artery remodeling.75,76 Exosomes derived from human
term placental tissue mesenchymal stem cells stimulated both endothelial tube formation and migration and enhanced
angiogenesis-related gene expression.77 These changes induced by exosomes are critical for the normal growth and
development of the fetus.

Placental Barrier
Placenta is the primary barrier between the maternal and fetus, which can protect the fetus from virus infection in the
mother’s body.78 The specific mechanism is not fully elucidated. The exosomes produced and released by placental
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trophoblasts play an important role.79 The microRNAs contained in placental exosomes restrict viral infections in
autocrine and paracrine manners without depending on type III IFN signaling.80–83 Autophagy is a conserved vacuole/
lysosome-mediated degradation pathway for clearing and recycling cellular components, which is involved in limiting
inflammation signals upon virus invasion.84–86 When the placenta is infected with a certain type of virus, placental
trophoblasts release a large number of exosomes, which deliver their miRNAs to maternal, fetal, or placental cells to alter
gene expression, eventually inducing autophagy, followed by virus degradation.87–89 At least three members of the
C19MC family (miR517-3p, miR516b-5p, miR512-3p) exhibit these potent antiviral effects against RNA and DNA
viruses through strongly inducing autophagy.80 Based on this antiviral feature, vitro-constructed miRNAs have been used
as a vaccine or therapeutic target against SARS-CoV-2.90,91

Changes and Mechanisms of pdE in GDM
It was reported that the plasma concentration of total and placenta-derived exosomes was higher in GDM compared
with the normal pregnancy matched by gestational age even during early pregnancy. However, the ratio of placental
exosomes to total exosomes was lower in GDM pregnancies.92 Hyperglycemia and hypoxia are risk factors for
metabolic complications during pregnancy. In order to test the effect of extracellular glucose concentration on
exosomal signaling, first-trimester primary trophoblast cells were incubated under different concentrations of glucose
and oxygen. The results showed that glucose (25 mM) significantly increased the release of exosomes from
trophoblast cells at all oxygen tensions tested. The released exosomes significantly increased the release of all
cytokines from human umbilical vein endothelial cells except IL-2 and IL-10.93 High glucose increased the release of
exosomes from HUVECs, and the increased exosomes mimicked some of the effects of high glucose.94 Hypoxia (ie
1% O2) promotes the release and activity of cytotrophoblast- exosomes, thereby promoting extravillous trophoblasts
invasion and proliferation.46,95 Hypoxia also increases the release of exosomes from placental mesenchymal stem
cells, placental microvascular endothelial cells migration, and tube formation.96 These changes may contribute to
placental vascular adaptation to low oxygen tension under both physiological and pathological conditions. The
number of exosomes in the maternal blood circulation is closely related to BMI. 12–25% of exosomes in the
maternal circulation come from the placenta. The contribution of placental exosomes to the total exosomal population
decreases with higher maternal BMI across gestation. This study established that maternal BMI is an important factor
affecting exosomal changes.97 Obesity increases the expression of some exosomal miRNAs in mice, including miR-
192, miR-122, miR-27a-3p, and miR-27b-3p. Exosomes isolated from obese mice induce glucose intolerance and
insulin resistance in lean mice.98 Adipose tissue exosomes in GDM increased the expression of glucose metabolism-
related genes in placental cells. The up-regulated genes are associated with glycolysis, gluconeogenesis, glycogen
production, and degradation. These suggested adipose tissue mediated the changes in placental function in GDM by
inducing placental exosomes.99 The studies of placental exosomes in GDM are shown in Table 1.

Functions and Mechanisms of pdE in GDM
Exosomes contain numerous RNAs and transfer them between cells or organs, thereby establishing intercellular or interorgan
communication. It has been identified that many mRNAs, lncRNA, and circRNAs are differentially expressed in umbilical
cord blood exosomes of GDM patients.100 Bioinformatic analysis showed that the exosomal proteins in GDM are mainly
associated with energy production, inflammation, and metabolism.101 The protein-protein interaction network revealed that
the differentially expressed mRNAs were associated with the glucagon signaling pathway. Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) biological pathway analyses demonstrated that exosomal circRNAs and
lncRNAs parental genes are involved in the regulation of the metabolic process, growth, and development were significantly
enriched in umbilical cord blood of GDM. Most of the exosomal circRNAs and lncRNAs harbored GDM-related microRNA
binding sites. These results showed that exosomal mRNAs, lncRNAs, and circRNAs are aberrantly expressed in the
umbilical cord blood of GDM patients and play potential roles in GDM development and fetus growth.102–104
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Placental Exosomes and Insulin Resistance
Ten miRNAs (miR‒122-5p; miR‒132-3p; miR‒1323; miR‒136-5p; miR‒182-3p; miR‒210-3p; miR‒29a-3p; miR‒29b-3p;
miR‒342-3p, and miR-520h) showed significantly higher levels in placenta of GDM cases. Bioinformatics analysis showed
that these miRNAs are involved in insulin secretion/regulation and glucose transport in pregnant women.105 Exosomes
isolated from placental explants from normal and GDM pregnancies show different miRNA profiles. Placental exosomes
from GDM pregnancies decreased insulin-stimulated migration and glucose uptake in primary skeletal muscle cells
obtained from normal pregnancies. However, placental exosomes from NGT increase migration and glucose uptake in
skeletal muscle of diabetic subjects. Placental exosomes might have a role in the changes in insulin sensitivity in normal
and GDM pregnancies.106 Mice infused with GDM small extracellular vesicles (sEVs) have attenuated glucose-stimulated
insulin secretion, muscle basal insulin signaling, and insulin responsiveness, and are more likely to develop glucose
intolerance. This result suggests sEVs can regulate maternal glucose homeostasis in pregnancy and contribute to the
development of GDM.107 Tu et al108 reported that miR-409-5p was highly expressed in the serum of GDM patients and it is
positively correlated with insulin resistance index (HOMA-IR). Qi et al109 found that the expression of miR-185 was down-
regulated in serum and placenta of GDM patients and is negatively correlated with HOMA-IR. miR-140-3p overexpression
also contributes to the defective placental IR signaling in patients with GDM.110 Dipeptidyl peptidase IV (DPPIV) can
regulate glucose-dependent insulin secretion by breaking down GLP-1. DPPIV-bound syncytiotrophoblast-derived extra-
cellular vesicles were significantly increased in the circulation of GDM pregnancies.111 The cytokine tumor necrosis factor-
alpha (TNF-alpha) has been implicated in the pathogenesis of insulin resistance in Type 2 diabetes mellitus via regulating
glucose, lipid metabolism, and insulin resistance.112 Placental tissues from patients with GDM release greater amounts of
TNF-alpha under conditions of high glucose,113 which may be related to the placental miRNA.114 The expression of miR-
143, mitochondrial complexes were significantly decreased in A2GDM (controlled by medication) placentae, while human
placental lactogen levels, expression of glycolytic enzymes, GLUT1, and mTOR signaling were significantly increased
compared with A1GDM (controlled by diet).115 Overexpression of miR-494 improved insulin secretion and total insulin
content, while in GDM, the miR-494 level was significantly decreased.116 These results suggest that placental exosomes
promote the occurrence and development of GDM by regulating insulin resistance.

Placental Exosomes and Inflammation
Placental exosomes may contribute to maternal systemic inflammation during pregnancy. The exosomes of obese women
increased the release of IL-6, IL-8, and TNF-α from endothelial cells.97 Exosomes isolated from GDM pregnancies can
also significantly increase the release of proinflammatory cytokines from endothelial cells.92 Utilizing the BeWo cell line
and whole placental explants, Holder et al117 demonstrated that macrophage exosomes were actively transported into the
human placenta and induced the placenta to release proinflammatory cytokines. Exosome-encapsulated miR-6869-5p is
significantly downregulated in placenta-derived macrophages of GDM patients, which may contribute to maintaining
placental microenvironment balance by preventing inflammation.118 MiR-657 can promote the generation of inflamma-
tory cytokines (IL-6 and TNF-α) and activation of NF-κB. The expression of miR-657 was increased in patients with
GDM, which contributes to the pathogenesis of GDM via the IL-37/NF-κB signaling axis.114 The expression levels of
miR-875-5p are downregulated in patients with GDM.119 Fu et al120 found that miR-875-5p regulated IR and inflamma-
tion by targeting TXNRD1 in GDM rats. Trophoblast-derived exosomes have been demonstrated to induce macrophages
to synthesize and release pro-inflammatory factors through fibronectin.121 Upregulation of miR-518d may contribute to
the pathology of the development of GDM, via an effect on the regulation of proliferator-activated receptor-α (PPARα)
expression.122 We also found that miR-518d negatively regulates the expression of PPARα and triggers the nuclear
transport process of NF-κB and phosphorylation of pathway-associated proteins leading to an inflammatory response and
the development of GDM.123

Placental Exosomes and Endothelial Cell Dysfunction
Placental exosomes can also regulate placental and fetal membrane endothelial dysfunction in gestational diabetes
mellitus.124 High glucose increased endothelial wound healing and the expression of P~Ser1177-eNOS, hCAT-1,
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Table 1 The Studies of Placental Exosomes in Gestational Diabetes Mellitus

Reference Target Tissue Results

[92] PLAP+ EVs Plasma Presence of high levels of placental exosomes in GDM
[106] PLAP+ EVs Placenta Placental exosomes were associated with skeletal muscle

insulin sensitivity

[107] PLAP+ EVs Placenta PdE regulates glucose homeostasis
[111] PLAP+ EVs Placenta STB-EVs from GDM perfused placentae show greater

DPPIV activity

[125] PLAP+ EVs Placenta ExGDM increased L-arginine transport, hCAT-1 and
eNOS expression and activity, and p44/42mapk

activation

[140] PLAP+ EVs Plasma Placental-derived exosomes increased ~2.1-fold in GDM
compared to normal through gestation

[116] miR-494 Placenta MiR-494 downregulated
[118] miR-6869-5p Placenta MiR-6869-5p promoted M2 macrophage polarization and

thus restrain inflammation

[122] miR-518d Placenta MiR-518d was higher in the placenta of GDM and was
negatively correlated with the levels of PPARα protein

[123] miR-518d Placenta MiR-518d negatively regulates the expression of PPARα
and triggers the nuclear transport process of NF-κB

[152] miR-516-5p, miR-517-3p, miR-518-5p, miR-222-3p, miR-

16-5p

Urinary All the miRNAs examined were downregulated in

patients with GDM

[33] miR-508-3p, miR-27a, miR-9, miR-137, miR-92a, miR-33a,
miR-30d, miR-362-5p, miR-502-5p

Placenta 29 differently expressed miRNA in the array, 9 replicated
by qPCR.miR-508-3p upregulated and the rest, down-

regulated

[150] miR-223, miR-23a Serum AUC 0.91, sensitivity of 90%, specificity of 94%
[115] mir-143 Placenta 50% reduction in A2GDM (controlled by medication) but

not A1GDM(controlled by diet)

[110] miR-140 Placenta MiR-140-3p overexpression contributes to the defective
placental IR signaling in patients with GDM

[148] miR-132, miR-29a, miR-222 Serum The expression levels of three miRNAs were significantly

decreased in GDM women
[147] miR-126-3p, miR-155-5p, miR-21-3p, miR-146b-5p, miR-

210-3p, miR-222-3p, miR-223-3p, miR-517-5p, miR-518a-

3p, miR-29a-3p

Plasma Circulating early-mid-pregnancy miRNAs are associated

with GDM, particularly among women who are

overweight/obese pre-pregnancy or pregnant with male
offspring

[143] miR-16-5p, miR-17-5p, miR-20a-5p Plasma AUC 0.92, 0.88, and 0.74 sensitivity 41.6%, 21.4% and

17.8% specificity 95.8%, 95.4% and 95.4%
[127] miR-101 Umbilical

cord vein

GDM impairs HUVEC function via miR-101 upregulation

[119] hsa-miR-371a-5p, hsa-miR-374b-5p, hsa-miR-609, hsa-miR
-875-5; hsa-miR-365a-3p, hsa-miR-146b-3p, hsa-miR-568;

hsa-miR-574-3p, hsa-miR-325, hsa-miR-520e, hsa-miR-145-

5p, hsa-miR-583

Plasma MiRNAs are mostly up-regulated and hsa-miR-145-5p
and hsa-miR-875-5p targets the most genes

[149] miR-16-5p, miR-29a-3p, miR-134-5p Serum AUC 0.687, sensitivity of 72.5%, specificity of 57.5%

[114] miR-657 Placenta Dysregulation of miR-657 contributes to the

pathogenesis of GDM via IL-37/NF-κB signaling axis
[108] miR-409-5p Serum MiR-409-5p is highly expressed in the serum of patients

with GDM, and it is positively correlated with the insulin

resistance index
[109] miR-185 Serum

placenta

The down-regulation of miR-185 expression in serum

and placenta of pregnant women with GDM is negatively

correlated with HOMA-IR

(Continued)
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VEGF, and ICAM-1 by increasing the release of exosomes from HUVECs. Exosomes were isolated from HUVECs
incubated with basal glucose reverted the effect of high glucose on endothelial cells.94 Rocío Salsoso found that ExN
(Normal pregnancy -exosomes) and ExGDM (GDM-exosomes) cargo have differential effects in HUVECs. ExN restores
GDM-reduced wound recovery but ExGDM delays wound recovery in normal pregnancies. ExN restores GDM-
upregulated L-arginine/NO/p44/42mapk signaling but ExGDM increase it and ROS in normal pregnancies.
Foetoplacental endothelium-derived exosomes maintain a GDM phenotype in HUVECs.125 The cell adhesion molecules
(CAMs) promote attachment and trans-endothelial migration of leukocytes. Díaz-Pérez et al126 identified a reduction of
ICAM-1 protein in fetoplacental endothelial cells in GDM pregnancy, which may be a kind of protection to avoid
leukocyte transmigration into the placenta.MiR-101 is up-regulated by hyperglycemia and contributes to some of the
defects of the umbilical cord vein (HUVECs) through the target gene EZH2 in GDM.127 These studies show that
placental exosomes are associated with fetoplacental endothelial dysfunction in gestational diabetes mellitus.

Placental Exosomes and Fetus Growth
15–45% of newborns of women with gestational diabetes mellitus (GDM) are macrosomia. We know that the main cause
of macrosomia in GDM is hyperglycemia and the increased insulin resistance of the mother,128 but the molecular
mechanism is not very clear.MicroRNAs have been identified to regulate placental development and fetal growth.129,130

There was a significant positive correlation between the ratio of placental-derived to total exosomes and birth weight
percentile. The contribution of placental exosomes to the total exosome concentration was significantly decreased in FGR
cases compared to controls.131 143 miRNAs were differentially expressed in the plasma samples from pregnant women
with fetal macrosomia compared with the controls.132 Li et al133 demonstrated that miR-508-3p was up-regulated and
may contribute to macrosomia through enhancing the EGFR-PI3K-Akt signaling pathway. Jiang et al134 showed that the
expression level of placental miR-21 was significantly upregulated in serum samples of macrosomia. High levels of
miR21 expression and low levels of miR143 expression could predict the risk for macrosomia.135,136 The interaction of
two miRNAs affects the risk of macrosomia through the mitogen-activated protein kinases signaling pathway. The low
expression of miR-16 and miR-21 in the placenta is associated with small gestational age (SGA) status.137 MiR-17-92
clusters contribute to macrosomia development by regulating the cell cycle pathway and can also be used as a predictive
biomarker for macrosomia.138 Some lncRNAs were aberrantly expressed in the umbilical cord blood from GDM
macrosomia, which suggested lncRNAs might also play a role in fetal development.139 The functions and mechanisms
of placenta-derived exosomes in GDM are shown in Figure 1.

Table 1 (Continued).

Reference Target Tissue Results

[105] miRNA profiles Serum Ten miRNAs showed significantly higher levels
[145] miRNA profiles Serum Total of 32 miRNAs, 12 were significantly upregulated

and 20 were significantly downregulated in GDM

[103] miRNAs lncRNAs Umbilical
cord

blood

84 mRNAs and 256 lncRNAs as differentially expressed

[139] lncRNA profiles Umbilical
cord vein

Total of 8814 lncRNAs, 349 were significantly
upregulated and 892 were significantly downregulated in

GDM

[104] Circular RNA profiling Placenta Total of 48,270 circRNAs, 227 were upregulated and 255
down-regulated

[102] Circular RNA profiling Umbilical
cord

blood

Total of 88,371 circRNAs. 229 circRNAs were up-
regulated and 278 circRNAs were down-regulated

[151] Cell-free DNA Serum CfpDNA multiples of the median (MoMs) were lower in
women who later developed GDM

Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy 2022:15 https://doi.org/10.2147/DMSO.S363226

DovePress
1397

Dovepress Liu and Qiu

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


PdE as Predictive Markers and Therapeutic Targets for GDM
Placental exosomes were significantly higher in pregnancies complicated by GDM than in normal pregnancies,
Gestational age and pregnancy outcomes were the main factors of exosome concentration. Maternal body mass index,
glucose concentration, and fetal body weight were also correlated with the concentration of placental exosomes,
suggesting that exosomes may be involved in maternal metabolic adaptation to pregnancy.140,141 Rahimi et al142 detected
dysregulation of Drosha, Dicer, and DGCR8 in GDM patients which are major enzymes in the miRNA biogenesis
process. Therefore, they favor the hypothesis that miRNAs are involved in the development of GDM. Cao et al143 found
that the expression of plasma microRNA-16-5p, −17-5p, −20a-5p from GDM women were significantly upregulated
compared with non-GDM women. From these studies, it can be concluded that miRs are involved in the pathogenesis of
GDM and have potential as diagnostic biomarkers for disease development.144–146 It is reported that circulating early–
mid-pregnancy (range 7–23 weeks of gestation) miR-155-5p and −21-3p levels were positively associated with GDM.147

The expression levels of three miRNAs (miR-132, miR-29a, and miR-222) were significantly decreased in GDM women
compared with the controls at 16–19 gestational weeks. Serum miRNAs could be candidate biomarkers for predicting
GDM.148–150 First-trimester cf DNA (cDNA from placental exosome) levels are associated with GDM.151 Placental
exosomes isolated from the urine of GDM women show a differential profile expression of microRNAs across gestation,
suggesting that urine is a potential biological fluid for the research of pathological conditions during pregnancy.152

Given the role of miRNA in the mechanism of the occurrence and development of GDM, it is expected to use as
a target to develop treatments for GDM.miR-21 can reverse high glucose and high insulin-induced IR in 3T3-L1
adipocytes, which may be a new therapeutic target for metabolic diseases.153 There are many ways to regulate
miRNA levels in vivo, of which anti-miRs are the most widely used approaches.154 MiRNAs are small and comprise
a known sequence, which makes anti-miRs have the potential to become a new class of drugs. At present, the research on
this aspect is mostly in animal experiments, and the application of anti-miRs in gestational diabetes needs further study.

Figure 1 The functions and mechanisms of pdE in GDM. In gestational diabetes, hypoxia, high glucose, and BMI affect the production of placental exosomes, which in turn
regulate insulin resistance, inflammatory factors, and endothelial cell dysfunction. These factors work together to promote the occurrence and development of diabetes and
fetal growth and development.
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Conclusion
In gestational diabetes, hypoxia, high glucose, and BMI affect the production of placental exosomes, which in turn
regulate insulin resistance, inflammatory factors, and endothelial cell dysfunction. These factors work together to
promote the occurrence and development of diabetes and fetal growth and development. The diagnosis of gestational
diabetes is very late, and there is still a lack of effective predictive methods. The content of placental exosomes can
change in early pregnancy, and the detection of exosomes is expected to become an effective method for predicting
GDM. Placental exosomes contain a variety of components. Except for mRNA, there are relatively few studies on other
components of exosomes. The function and mechanism of most placental exosomes are still unclear. Clarifying the
mechanism of exosomes in gestational diabetes is of great significance to its early prevention, diagnosis, and treatment.
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