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Background: Asthma is a variable long-term condition. Currently, there is no cure for asthma and the focus is, therefore, on long-
term management. Mobile health (mHealth) is promising for chronic disease management but to be able to realize its potential, it needs
to go beyond simply monitoring. mHealth therefore needs to leverage machine learning to provide tailored feedback with personalized
algorithms. There is a need to understand the extent of machine learning that has been leveraged in the context of mHealth for asthma
management. This review aims to fill this gap.
Methods: We searched PubMed for peer-reviewed studies that applied machine learning to data derived from mHealth for asthma
management in the last five years. We selected studies that included some human data other than routinely collected in primary care
and used at least one machine learning algorithm.
Results: Out of 90 studies, we identified 22 relevant studies that were then further reviewed. Broadly, existing research efforts can be
categorized into three types: 1) technology development, 2) attack prediction, 3) patient clustering. Using data from a variety of devices
(smartphones, smartwatches, peak flow meters, electronic noses, smart inhalers, and pulse oximeters), most applications used supervised
learning algorithms (logistic regression, decision trees, and related algorithms) while a few used unsupervised learning algorithms. The vast
majority used traditional machine learning techniques, but a few studies investigated the use of deep learning algorithms.
Discussion: In the past five years, many studies have successfully applied machine learning to asthma mHealth data. However, most
have been developed on small datasets with internal validation at best. Small sample sizes and lack of external validation limit the
generalizability of these studies. Future research should collect data that are more representative of the wider asthma population and
focus on validating the derived algorithms and technologies in a real-world setting.
Keywords: artificial intelligence, chronic disease, smart devices, self-management, remote monitoring; asthma

Introduction
Asthma is a variable long-term condition, affecting 339 million people worldwide,1 often with diurnal, seasonal and life-
time differences in symptoms and disease burden. Although, for many, asthma symptoms are controlled most of the time,
some have on-going poor control and all are at risk of attacks which, at best, are inconvenient and at worst can result in
hospitalization or even death.2 Currently, there is no cure for asthma, therefore the focus of management is on improving
symptom control and reducing the risk of attacks. Asthma is an umbrella term encompassing a range of phenotypes so
personalization of management strategies is essential.

Monitoring is one of the pillars of management, allowing patients to correctly assess their health and take appropriate
action. Mobile health or mHealth is commonly defined as the practice of using mobile technologies in medical care. This
can range from using text reminders for medical appointments to healthcare telephone helplines to using home
monitoring systems and wearable devices.3 mHealth encompasses many streams of data, most of which are produced
faster than a single human can comprehend; machine learning is ideal for processing this amount of data to produce
actionable information and personalized feedback.
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Machine learning involves using computers and algorithms to process large amounts of data (many observations
and many variables) and identify patterns without explicit human programming.4 It has provided insights into a very
wide range of applications, including genomics,5–7 images,8–10 sound recordings,11,12 vital signs,13 and electronic
health records data collected in primary,14,15 secondary,16 and tertiary care.17 Machine learning is an umbrella term,
consisting of tools and techniques that use data to learn how to perform a given task, but the algorithms generally fall
into two classes, supervised and unsupervised learning. Supervised learning finds a mathematical function to link the
data with known labels and is suitable for tasks that have a well-defined goal. Unsupervised learning, on the other
hand, describe patterns and structures in the data without following the lead of labels or categories defined by
a human. More details about machine learning algorithms are provided in the Supplementary Material – Machine
Learning.

Currently, most mHealth interventions that have been implemented in healthcare have focused on reminders and
communications.3 Areas of asthma management that machine learning and mHealth can support include monitoring,18

personalizing care,19 providing education,20 understanding patterns in the population to better target care,21 and predict-
ing asthma attacks using a multitude of data sources.22 Broadly, existing research efforts can be categorized into three
types: 1) technology development, 2) attack prediction, 3) patient clustering.

This clinical review will provide a critical overview of the current research that has leveraged machine learning in the
context of mHealth for remote asthma management, its shortcomings, challenges, the extent of readiness for deployment,
and future research recommendations.

Methods
We carried out a clinical review and searched PubMed for applications of machine learning to mHealth for asthma
management, based on the following inclusion criteria: 1) full text available; 2) available in English; 3) published in last
5 years; 4) including at least one machine learning algorithm; 5) including data collected from humans; 6) including data
other than electronic health records; 7) peer reviewed. We excluded systematic reviews, commentaries, and preprints.
The terms used to search title and abstract are listed in Table 1. Terms in the same column were joined by the OR
operator and the search terms in different columns were joined by the AND operator. Publications in the past five years
equated to publications between 1st January 2017 and 30th July 2021.

Results
Search Results
With our search terms, we found 90 papers available via PubMed published in the last 5 years. After reviewing the
abstracts of all the papers with the inclusion and exclusion criteria, 22 papers were identified and further reviewed in this
study (see Figure 1).

We classified the studies in three areas: technology development, attack prediction, and patient clustering. Technology
development refers to contexts where machine learning is central to developing a new monitoring tool,23–33 such as in
cough and wheeze analysis. Attack prediction refers to studies that use machine learning to predict an asthma event
(typically an attack) usually using mHealth data.34–42 Patient clustering refers to studies which subtype the asthma
population using unsupervised learning algorithms.43,44 See Table 2 for a summary of the papers.

Most applications of machine learning for asthma management in mHealth involve collecting self-reported data to
form the ground truth of a patient’s asthma condition, and some objective data either using smartphones or mobile

Table 1 Search Strategy

Asthma Machine Learning mHealth Validation

Asthma* Predict*, Machine Learning,

Artificial intelligence, Bayesian,

Machine, Regression

mHealth, Telehealth, Telemonitor*, Monitor*,

Smart*, Digital-health, eHealth, Mobile,

Smartphone, Track*

AUC, Area Under the Curve, ROC, Receiver

Operating Characteristic, Accuracy, Validation,

Sensitivity, Specificity

Note: Asterisk (*) denotes a wildcard operator, for example, “predict*” represents “predict”, “predicts”, “predicting”, “prediction”, etc.
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monitoring devices, or both. Frequently, a validated measures of asthma control is collected (eg, Asthma Control
Questionnaire (ACQ)45 or Asthma Control Test (ACT)46) in mHealth studies. Using around five questions about the
symptoms experienced by patients, the questionnaires determine whether patients’ asthma is controlled or
uncontrolled.

Many methods and devices for monitoring different aspects of a person have been studied individually and in
combination. Machine learning can be applied to breath monitoring,37,41 sleep monitoring,23,34–36,38,39,42 cough and
wheeze,24,26,27,29–31,36 lung function monitoring,23,25,33–35,38,40 adherence monitoring,32,35,38,43 and environment
monitoring.39,40,44 However, studies had different outcome measures; hence, it is difficult to conduct a direct comparison
between studies.

Technology Development
Developing monitoring tools was a goal for 11 of the included studies. These include identifying sleeping postures from
wearable respiration sensor data,23 activity detection using smartwatches,28 home breathing monitoring,25,33 and
active24,27,29,31 and passive cough and wheeze detection.26,30 Many of the identified studies on technology development
applied digital signal processing (DSP) to process the raw signals collected via sensors, a necessary step before the
application of machine learning.

Two27,28 out of 11 studies included data from children and five23,25,27,28,32 out of 11 studies included data from adults;
however, none of the 11 studies developing monitoring tools had specifically investigated data from a senior population.
Some of the studies on adults were conducted purely with healthy adults who could mimic a wide range of breathing
patterns.

Sleep Posture
Among patients with asthma, posture (such as standing vs supine) can influence respiratory behavior.55 However, there is
conflicting evidence as to whether sleeping posture has a significant effect on respiratory behavior.55–57 Identifying the
posture of when the respiratory measurement was taken can be useful when studying posture-related instabilities.

Using two wearable sensors located at the abdomen and chest, four postures (standing and three sleeping) were
identified with high accuracy. However, the ability to correctly identify postures from sensor data was dependent on
knowing to which individual the data belonged. Using this information, the classifier jumped in performance from 21.9%
accuracy to 99.5% accuracy, thus adapting this method for asthma management will require more research or include
a calibration stage.23

Figure 1 Article selection.
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Table 2 Summary of Studies

Study Category Participants
[Data
Source]

Devices Collected Data Machine
Learning
Algorithms

Input Features (X) Output
(Supervised)
(Y)

Output
(Unsupervised)

Performance Application
to Asthma
Management

Chen A,

202023
Technology

development

11 healthy

adults

2 wireless wearable

sensors: the

abdominal

respiration

(Sensor1), the chest

respiration

(Sensor2)

Respiratory

behaviors

Random Forest 100 data points sliding

window, 1200 data

slices per individual

4 postures:

Standing, laying

on the back,

laying on the left,

laying on the right

- Accuracy =

99.53%

(individual

classifier)

Monitor

sleeping

posture and

respiratory

behavior

Vatanparvar

K, 202024
Technology

development

131 individuals

(age not

specified):

asthma = 69,

COPD = 9,

asthma and

COPD = 13

Smartphone

(Samsung Galaxy

Note 8)

1 minute of voluntary

cough

Gaussian Mixture

Model, neural

networks

5380 sound samples

of coughs

Coughing

individual

- Sensitivity =

90.30%,

specificity =

96.39%,

accuracy =

93.34%

(NeTrain with

cough

embeddings)

Passive

monitoring of

coughs

Prinable J,

202025
Technology

development

9 healthy

adults

Pulse oximeter,

portable sleep

diagnostic (Alice

PDx)

Raw PPG trace,

SPO2, pulse rate, and

relative tidal volume

(RTV)

Deep learning

(LSTM)

45 recordings, 4

features each: PPG,

band-passed PPG,

SPO2, pulse rate

- Inspiration time,

expiration time,

respiratory rate,

inter-breath intervals

(IBI), and the

inspiration-expiration

ratio (I:E)

Relative bias

<4% (apart

from I:E ratio)

Passive

monitoring of

breathing

Adhi

Pramono R.

X, 201926

Technology

development

Unknown

individuals

from multiple

repositories47

Unknown devices Cough sounds Logistic regression 43 recordings.

Frequency bands of

interest: B-HF and

B-01. The spectral

features: HFMaxratio,

MinMaxratio, and

LQMAXratio

2 classes: cough,

non-cough

- Sensitivity =

90.31%,

specificity =

98.14%, F1-

score =

88.70%,

positive

predictive

value =

88.47%,

Matthews

Correlation

Coefficient

(MCC) =

87.46%

Passive

monitoring of

coughs
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Chen H,

201927
Technology

development

126 individuals

(all ages,

infants to

elderly)

(including

asthma and

COPD)

[ICBHI

Scientific

Challenge]48

and unknown

individuals [R.

A.L.E lung

sounds]49

Digital

stethoscopes

Respiratory sounds SVM, Extreme

Learning Machine

(ELM), KNN

240 recordings, 2

features extracted

from Enhanced

Generalized

S-Transform (EGST):

mean and standard

deviation of EGST

coefficients

2 classes:

wheezing, normal

respiratory

- Sensitivity =

100%,

specificity =

99.27% (ELM,

SVM, KNN)

Active

monitoring of

wheeze

Li K, 201928 Technology

development

30 adults (age

19-48)

[HARuS]50

and 14

children (age

5-15) with

asthma

[BREATHE]51

[HARuS] waist-

worn smartphone

(Samsung Galaxy

S II) and

[BREATHE] wrist-

worn smartwatch

(Motorola Moto

360 Sport)

Triaxial

accelerometry and

gyroscopic data

XGBoost

(Gradient Boosted

Trees), SVM,

random forest

2000 inspiratory and

expiratory segments

of sounds, 6 features

per window of signal:

arithmetic mean, SD,

median absolute

deviation, minimum,

maximum, and

entropy

6 physical

activities:

[HARuS] 6

activities:

standing, sitting,

lying, walking,

walking

downstairs,

walking upstairs;

[BREATHE] 6

activities:

standing, sitting,

lying, walking,

walking on stairs,

running

- [HARuS]

Accuracy rate

= 91.06%

(GGS),

[BREATHE]

accuracy rate

= 79.4% (GGS)

Activity

recognition of

smart watches

Azam M.A,

201829
Technology

development

50 individuals

(age not

specified) with

COPD,

asthma,

bronchitis, and

pneumonia

Smartphone

(Samsung Galaxy

S3)

Airflow 25 cm in

front of mouth

Bag-of-Features,

SVM

255 breathing cycles,

5 features extracted

from instantaneous

envelop (IE) and

instantaneous

frequency (IF)

2 classes: normal,

Adventitious

Signal (AS)

- F1-score =

75%, accuracy

rate = 75.21

(complete

cycle)

Active

monitoring of

breathing

sounds
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Table 2 (Continued).

Study Category Participants
[Data
Source]

Devices Collected Data Machine
Learning
Algorithms

Input Features (X) Output
(Supervised)
(Y)

Output
(Unsupervised)

Performance Application
to Asthma
Management

Adhi

Pramono R.

X, 201930

Technology

development

Unknown

individuals

from multiple

repositories47

Unknown devices Cough sounds Logistic regression 43 unique recordings,

4 features each:

Linear Predictive

Coding (LPC)

coefficient, tonality

index, spectral

flatness, and spectral

centroid

2 classes: cough,

non-cough

- Sensitivity =

86.78%,

specificity =

99.42%, F1-

score =

88.74%

Passive

monitoring of

coughs

Infante C,

201731
Technology

development

87 individuals

(age not

specified):

COPD = 7,

asthma = 15,

allergic rhinitis

= 11, asthma

and allergic

rhinitis = 17,

COPD &

allergic rhinitis

= 4, healthy =

33

Custom-built

electronic

stethoscope and

Android application

Voluntary coughs

recorded from the

trachea (30 seconds),

standard auscultation

lung sound data, peak

flow meter reading

and clinical

questionnaire

Logistic regression

with L1

penalization

(LASSO)

4 features: Zero

Crossing Irregularity,

Rate of Decay,

Kurtosis, Variance

2 set of labels,

diagnosis; cough

type (wet or dry).

- Sensitivity =

100%,

specificity =

87%, AUC =

94% (Wet vs

dry) Sensitivity

= 35.7%,

specificity =

100%, AUC =

67.8%

(classifying

unhealthy

patients with

cough type)

Active

monitoring of

coughs

Taylor T.E,

201832
Technology

development

20 healthy

adults

Inhaler Compliance

Assessment (INCA)

audio recording

device,

pneumotachograph

spirometer

Audio recording of

placebo Ellipta

inhalation, inhalation

rate

Linear regression,

power law

regression

15 inhalations per

person, acoustic

envelope of the

inhaler inhalation

Flow rate: peak

inspiratory flow

rate (PIFR),

volume or

inspiratory

capacity (IC), and

the inhalation

ramp time (Tr)

- Accuracy =

90.89% (power

law model)

Measure

correct inhaler

technique

https://doi.org/10.2147/JA
A
.S285742

D
o
v
e
P
r
e
s
s

JournalofA
sthm

a
and

A
llergy

2022:15
860

T
sang

et
al

D
o
v
e
p
r
e
s
s

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


Purnomo A.

T, 202133
Technology

development

Unknown

individuals

FMCW radar 5 to 15 seconds of

chest displacement

breathing waveforms

XGBoost

(Gradient Boosted

Trees)

4000 breathing

waveforms. [set 1]

breathing wave form;

[set 2] 8 features:

mean, median,

maximum, variance,

standard deviation,

absolute deviation,

kurtosis, and

skewness; [set 3]

MFCC feature

extraction

5 classes: normal

breathing, deep

and quick

breathing, deep

breathing, quick

breathing, holding

the breath

- Precision >

80%, sensitivity

> 70%, F1-

score > 75%

(for all classes,

MFCC feature

extraction)

Active

monitoring of

breathing

Zhang O,

202034
Attack

prediction

2010

individuals

(age >16) with

severe and

persistent

asthma

[SAKURA]52

Paper diary Daily questionnaire:

PEF, morning

symptoms, evening

symptoms, reliever

inhaler usage, asthma

sleep wakening

Recursive feature

elimination, PCA,

random under-

sampling, random

over-sampling,

SMOTE, logistic

regression, naïve

Bayes, decision

tree, perceptron

728,535 daily records,

432 features, 9 basic

features

2 classes:

exacerbation

event, no

exacerbation

- Sensitivity =

90%, specificity

= 83%, AUC =

85% (logistic

regression)

Attack

prediction

from daily

diary and PEF

Tsang K.C.

H, 202035
Attack

prediction

554 adults

with asthma

[AMHS]53

Smartphone

(BYOT)

Daily and weekly

questionnaire:

symptoms,

healthcare usage,

medication usage,

triggers encountered,

PEF

Decision trees,

logistic regression,

naïve Bayes, and

SVM

2659 periods, 25

features per 14-day

period before

unstable event, 6 basic

features

2 classes: stable,

unstable period

- Sensitivity =

86.6%,

specificity =

72.5%, AUC =

87.1% (naïve

Bayes)

Attack

prediction

from daily

diary

Tinschert P,

202036
Attack

prediction

79 adults with

asthma

Smartphone

(Samsung Galaxy

A3) application

based on

MobileCoach

ACT, Pittsburgh Sleep

Quality Index,

Nocturnal cough

frequencies (manually

labelling audio

recordings from the

smartphone’s built-in

microphone)

Mixed-effects

regressions,

decision trees

based on recursive

partitioning

analysis

2291 nights, 7

combinations of

Pittsburgh Sleep

Quality Index and

Nocturnal cough

frequencies

ACT score Prediction of

exacerbation risk in

the next 7 days

56% <

balanced

accuracy <

70%

Attack

prediction

from sleep

quality
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Table 2 (Continued).

Study Category Participants
[Data
Source]

Devices Collected Data Machine
Learning
Algorithms

Input Features (X) Output
(Supervised)
(Y)

Output
(Unsupervised)

Performance Application
to Asthma
Management

Tenero L,

202037
Attack

prediction

38 children

(age 6-16):

persistent

asthma = 28,

control = 10

Electronic nose

(Cyranose 320)

VOCs in exhaled

breath, spirometry

PCA, penalized

logistic model

1 recording per

person, 32 e-Nose

nanosensors

4 classes: control

(CON),

controlled asthma

(AC), partially

controlled asthma

(APC) or

uncontrolled

asthma (ANC)

6 most important

sensors, 5 principal

components

Sensitivity =

79%, specificity

= 84%, cross-

validated AUC

= 80%

Asthma

control

prediction

from exhaled

breath

Finkelstein J,

201738
Attack

prediction

Adults with

asthma

Peak flow meter

connected to

laptop

PEF, daily

questionnaire:

symptoms,

medication usage,

trigger exposure,

sleep

Naïve Bayes,

adaptive Bayesian

network, SVM

7001 records, 147

features, 21 basic

variables x 7 days

2 classes: high-

alert, no-alert PEF

zone on day 8

- Sensitivity =

100.0%,

specificity =

100.0%,

accuracy =

100.0%

(adaptive

Bayesian

network)

Attack

prediction

from daily

diary and PEF

Castner J,

202039
Attack

prediction

43 adults

(working aged

women) with

poorly

controlled

asthma

Fitness tracker

(Fitbit Charge),

activity monitor

(Actigraph GT3X

+), spirometer

(Vyntus),

spirometer

(MicroDiary), home

monitor (Hobo

Data Logger)

ACT, Mini Asthma

Quality of Life

Questionnaire

(AQLQ), trait

emotionality PANAS-

X questionnaire,

Consensus Sleep

Diary, asthma control

diary (ACD),

physiologic and

environmental

sensors, medical

record review, and

spirometry.

Generalized linear

mixed models

900 daily scores,

[set 1] 8 features;

[set 2] 10 features

[set 1] self-

reported asthma-

specific wakening;

[set 2] FEV1

- [set 1] AUC =

77% (sleep

wakening)

[set 2] AUC =

83% (FEV1)

Measure sleep

disruption

using fitness

tracker
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Khasha R,

201940
Attack

prediction

96 individuals

(age >5) with

asthma

Weather reports,

Air quality,

questionnaires,

medical records

140 variables about

patient

demographics, lung

function, symptoms,

environmental

factors, medical

history

Ensemble learning,

multinomial

logistic regression,

SVM, random

forest, extreme

gradient boosting,

KNN, decision

tree, Gaussian

naïve Bayesian,

rule-based

classifier created

from clinical

knowledge

2870 daily records, 35

selected variables

3 classes: well-

controlled, not

well-controlled,

very poorly-

controlled levels

- Sensitivity =

88.3%,

precision =

89.4%,

specificity =

94.9%, neg

pred value =

94.3%,

accuracy =

92.7%

(Ensemble

Learning 2)

Asthma

control

prediction

using health

records and

weather

reports

Van Vliet D,

201741
Attack

prediction

96 children

(age 6-18)

with asthma

NIOX analyzer

(NIOX MINO), 5

liter inert bag with

a resistant free

valve (Tedlar bag),

spirometer (ZAN

100®)

ACQ, GINA

respiratory symptom

score, online FeNO

assessment,

collection of exhaled

breath (VOCs),

dynamic spirometry

Random forest,

PCA

574 chromatograms,

7 VOCs

Exacerbations Most important

VOCs, separation of

children with and

without exacerbation,

possible difference in

co-factors between

samples of children

with an exacerbation

14 days after sampling

and those without an

exacerbation after 2

months

Sensitivity =

88%, specificity

= 75%, AUC =

90% (attack

after 14 days)

Attack

prediction

from exhaled

breath and

home

monitoring

Huffaker M.

F, 201842
Attack

prediction

16 children

(age 5-18)

with

persistent

asthma

BCG

accelerometer-

based passive bed

sensor (Murata

Technologies

SCA11H)

Heart rate (HR),

respiratory rate (RR),

HR variability HRV,

calculated RR

variability (RRV),

relative stroke

volume (SV), HR

percentile based on

age, RR percentile

based on age,

movement, relative

Q (= SV × HR), VO2

Random forest 891 nights, 16

features, 8 basic

features

Report of asthma

symptoms

- Sensitivity =

47.2%,

specificity =

96.3%,

accuracy =

87.4%

Attack

prediction

from sleep and

bed

monitoring

(Continued)
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Table 2 (Continued).

Study Category Participants
[Data
Source]

Devices Collected Data Machine
Learning
Algorithms

Input Features (X) Output
(Supervised)
(Y)

Output
(Unsupervised)

Performance Application
to Asthma
Management

Tibble H,

202043
Patient

clustering

211 children

(age 6-15)

with asthma

attack54

Electronic inhaler

monitoring devices

Medication dose

taken

PCA, K-means,

decision trees

35,161 person-days of

data, 5 features: the

percentage of doses

taken, the percentage

of days on which zero

doses were taken, the

percentage of days on

which both doses

were taken, the

number of treatment

intermissions per 100

study days, and the

duration of treatment

intermissions per 100

study days

- 3 clusters: poor

adherence, moderate

adherence, good

adherence

- Characterize

asthma

patients by

adherence

Tignor N,

201744
Patient

clustering

334 adults

with asthma

[AMHS]53

Smartphone

(BYOT)

Daily questionnaire:

symptom diary,

medication, triggers

encountered

Probability based

imputation with

consensus

clustering (PIC)

method (utilize

k-means)

1 recording per

person. [Cluster

formation] daily

symptoms;

[Characterize

formation] 10

features: 4 clinical

features, 3

demographic features,

3 trigger features

- 3 clusters: high day

symptom rate,

medium day symptom

rate, low day

symptom rate

- Subtyping

asthma

patients for

personalized

alerts based on

triggers

Abbreviations: AUC, Area under the ROC curve; BYOT, Bring your own technology; COPD, Chronic Obstructive Pulmonary Disease; FeNO, Fractional exhaled nitric oxide; GINA, Global Initiative for Asthma; LSTM, Long short-term
memory; PCA, Principal Component Analysis; PPG, Photoplethysmogram; SVM, Support Vector Machine; VOCs, Volatile organic compounds.
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Activity Detection
Smartwatches are increasingly prevalent amongst the public, healthy individuals, and elite athletes to measure their
health. This has promoted technology development, so that the sensors are more reliable, affordable, and comparable
between brands.58 Motion data (triaxial accelerometry and gyroscopic data) commonly collected in smartwatches was
used in activity detection, which could improve the capabilities of passive monitoring potentially replacing the need to
ask questions about activity. Using DSP to process the raw signals and supervised learning (gradient boosted tree
classification) on two datasets, various activities like standing, sitting, and walking were identified from signals from the
wrist worn device with promising accuracy.28

In a comparison between the performance of algorithms trained on two datasets, one in adults and one in children,
found the activity detection performed better in adults, but this was confounded by the adults performing tightly
proscribed movements and the children recording more natural movements.28

Breathing Monitoring
Breathing monitoring and detecting difficulties in breathing could help potentially identify asthma attacks early. Tools
that have been proposed for home monitoring include portable sleep diagnostic devices to monitor breathing,25 and radar
to measure chest movement.33 Using deep learning and features from a pulse oximeter, there were accurate predictions of
the respiratory waveforms.25 Likewise, applying supervised learning (XGBoost) on features extracted from chest
movement recorded by the radar gave promising accuracy of identifying different breathing patterns.33

Cough Monitoring
Like sleep monitoring, wheeze and cough are widely captured as a measure of asthma control and included in validated
asthma questionnaires. However, there are also studies combining mHealth and machine learning to develop new tools
for monitoring wheeze and cough, both actively24,27,29,31 and passively.26,30 Recording and analyzing voluntary coughs
and respiratory sounds from people with different respiratory diseases could provide a tool to assist diagnosis. Although
separating wet (cough with phlegm) and dry coughs was successful, there were varying levels of performance when
making a diagnosis using recordings alone.24,29,31 Using voluntary cough recordings, one study accurately predicted
individuals who were either healthy, had asthma, had chronic obstructive pulmonary disease (COPD), or had comorbid
asthma and COPD with an accuracy of 93.3%.24 In contrast, another study using cough type to distinguish healthy people
from those with respiratory disease had a much lower performance, with AUC of 67.8%.31 Developing new DSP
methods (an essential step to be able to extract relevant information from raw sound signals) have shown promise in
wheeze and cough detection from digital stethoscope recordings.26,27,30

Inhaler Technique Monitoring
Measuring adherence to medication is widely studied in asthma research. In addition to measuring when patients took
medication, measuring how the inhalers were used and checking for correct technique is another application of
mHealth and machine learning. Regression models of DSP processed adult audio recordings from the INhaler
Compliance Assessment (INCA) device were found to accurately estimate the inhaler inhalation flow profile with
91% accuracy.32 This objective measure of inhaler technique could help patients improve how they take their
medication.

Attack Prediction
Machine learning was applied to several different mHealth data sources to predict asthma attacks and change in
symptoms. The data included volatile organic compounds,37,41 sleep quality,36,39,42 peak flow,34,35,38,40 preventer
medication adherence,35,38 and environmental triggers.39,40 Two34,40 of the nine studies included data collected from
children or teenagers, and adults, but the population was considered as a whole in both cases. Three studies37,41,42

focused on children with asthma, four studies35,36,38,39 focused on adults with asthma, and none of the studies focused on
seniors. The performance of the algorithms was unlikely to have been affected by the age group of the study population.
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Breath Analysis
Volatile organic compounds (VOCs), stemming from indoor pollutants, that are present in the breath of patients could be
used to understand the development of asthma attacks, but evidence is inconsistent.59 Gas chromatography–mass
spectrometry (GC-MS) is the gold standard in VOC analysis, but electronic nose (e-Nose) could be a portable alternative.
The e-Nose can detect and recognize individual chemical compounds in mixtures of chemical vapors.

The VOCs in exhaled breath of children were analyzed using both supervised and unsupervised learning.37,41

Supervised learning methods (penalized logistic models and random forest) were used to identify the most important
VOCs for attack prediction. Classifiers were trained to identify which VOCs would predict an upcoming asthma attack or
worsening control. The study reported good performance, with sensitivity and specificity between 70% and 90%, and an
AUC upwards of 80%. Furthermore, unsupervised learning (principal component analysis (PCA)) was used to pre-
process the data to form combinations of VOCs for attack prediction and for visualizing high-dimensional data in a two-
dimensional graph.37,41

Sleep Monitoring
Aligned with the clinical recognition of exaggerated diurnal variation causing sleep disturbance as a sign of poorly
controlled asthma,60,61 disturbance to sleep was widely used as a potential predictor of worsening asthma. Many studies
captured night symptoms and sleep quality using questionnaires,34,35,38 but some collected objective sleep data using
devices.36,39,42 Out of 25 features used to predict asthma attacks with daily (symptom diary like-) questionnaires about
asthma, night symptoms-related features were two of the four most predictive features.35 Also, night-time waking was
selected as one of three basic variables used for prediction.34 When the objective data were combined with machine
learning algorithms (random forest, generalized linear mixed models, regression), it enabled smartphone recordings to
analyze nocturnal coughs,36 related fitness tracker activity data with sleep wakening,39 and bed sensors to predict asthma
control.42 The usefulness of using sensors to predict self-reported asthma control is unclear, using nocturnal cough and
sleep quality alone achieving balanced accuracy of no more than 70% in predicting attacks,36 but using fitness tracker
data to predict sleep wakening had an AUC of 77%,39 and an accuracy of 87.4% in predicting reports of asthma
symptoms.42

Lung Function Monitoring
Falling peak expiratory flow (PEF) is a major indicator of asthma attacks. Peak flow meters are sometimes used by
patients at home to take objective measurements and used to inform whether action needs to be taken. Spirometers are
another device that measures lung function, but in more detail than peak flow meters.62 Action plans use thresholds of
80% of their best PEF to determine that action needs to be taken, and urgent action is required if a person’s PEF falls
below 60%.60 A drop in PEF and/or a change in symptom score are widely used in asthma action plans to determine self-
management in response to deterioration.63 Smart peak flow meters enable patients to measure and track their PEF, and
are often linked with a mobile app to function.

Measuring PEF to monitor lung function is commonplace in asthma studies. This could be either reporting the
results from a traditional peak flow meter,34,35,40 or using a smart peak flow meters that sends the data through
a computer or smartphone.38 PEF measurements are used as both predictors of asthma attacks as well as defining
severity and informing management. Using daily diaries and PEF measurements to predict worsening condition with
supervised learning (adaptive Bayesian network) achieved a performance of 100.0% accuracy, sensitivity, and
specificity.38

Adherence Monitoring
Adherence to regular preventative medication is sometimes captured by questionnaire and used as a predictor for asthma
attacks.35,38 Although clinically important, the two studies did not identify the adherence to controller medication as an
important predictive feature in their methods. In contrast, and consistent with clinical recommendations, features based
on the use of short-acting reliever medication were two of the four most predictive features.35
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Environment Monitoring
Some common asthma triggers in the environment, such as pollen, meteorological change, and air pollution (eg,
particulate matter, carbon monoxide (CO), nitrogen dioxide (NO2)), could be monitored to reduce risk of exposure to
known triggers. Also, recording asthma triggers encountered, such as viral infections, passive smoke, and pets, could
give a better understanding of a person’s asthma and their symptoms.64–66 Connecting data from pollution monitoring
stations and meteorology stations with patient health records provides a wealth of information for analysis.

Furthermore, combining physicians’ knowledge using a rule-based classifier (analogous to a decision tree created
based on knowledge) with conventional supervised learning techniques (multinomial logistic regression, SVM, random
forest, extreme gradient boosting, KNN, decision tree, Gaussian naïve Bayesian) created an accurate (sensitivity of
88.3% and precision of 89.4%) ensemble learning algorithm for predicting levels of asthma control.40 Based on the
joined dataset, the most important features for prediction were lung function and symptoms: PEF in the morning and
before bedtime, ACT score, and shortness of breath in the last 24 hours. Although environmental features were not
ranked highly, daily NO2 concentration and daily temperatures were useful.40 Further, home environment measuring
device has also been shown to be useful in predicting self-reported asthma-specific wakening.39

Patient Clustering
Two studies43,44 used unsupervised learning to form data-driven clusters using data collected via mHealth. One study was
investigated clusters in children with asthma,43 the other had focused on data collected by adults with asthma.44

Adherence Monitoring
In addition to capturing adherence to regular controller medication via questionnaires, there has also been in-depth
studies of medication adherence. Smart inhalers are devices that objectively measure how inhaler medication is taken, as
an alternative to self-report. Monitoring can be applied to the long-acting controller inhaler or the short-acting reliever
inhaler, or both. By analyzing electronic inhaler monitoring data of controller medication with unsupervised learning
algorithms (PCA and k-mean), asthma patients were characterized by multi-dimensional inhaler adherence measures,
which formed three groups, poor (on average 16% of their prescribed doses), moderate (averaged 60% of dose), and good
(averaged 91% of dose) adherence.43 Furthermore, comparison with clusters formed by another data-driven method
(decision trees) yielded similar results.43

Environment Monitoring
Like many daily questionnaires, recording encounters with asthma triggers can be difficult and lead to missing data. To
tackle this, probability-based imputation with consensus clustering was developed as a method of imputing the missing
data and clustering patients, which can be used to subtype asthma patients for personalized alerts based on their
triggers.44 Using the imputation method, three patient clusters were formed using the daily asthma symptom data. The
characteristics of each cluster was investigated on four clinical, three demographic, and three trigger features. Cluster 1,
with the highest average day symptom level, had patients who frequently reported pollen and heat as their triggers. On
the other hand, cluster 3, with the lowest average day symptoms, was characterized more by patients citing air quality as
their trigger.44 Prospectively, weather forecasts could be useful in predicting the risk of a future asthma attack for patients
who are sensitive to environmental triggers such as sudden temperature changes or high pollen levels.

Discussion
This review has described a range of machine learning applications being used to support asthma management, in the
areas of developing novel technology,23–33 predicting acute attacks at an individual level,34–42 and informing under-
standing of asthma phenotypes by clustering patients within populations.43,44 There were examples of successful
application of machine learning to achieve a novel task (such as attack prediction from sleep quality, control prediction
from exhaled breath, characterize asthma patients by medication adherence)36,37,42,43 or to improve existing methodology
by using fewer resources for similar or better performance (such as smartphone-based passive monitoring of
coughs).24,26,27,30,31,40,41
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Most of the machine learning algorithms applied were easily interpretable,26–32,34–39 a desirable characteristic to help
easily understand the decision process in a clinical context. However, a few studies applied more complex but less
interpretable machine learning algorithms.24,25,40

Developing Novel Technology: Proof-of-Concept with Clinical Potential
Using machine learning, new home monitoring tools were under development, including for activity detection, breath
monitoring, cough monitoring, and inhaler technique monitoring.23–33 Most studies were in the proof-of-concept stage
and although they were developed on selected small populations, many had achieved promising performance.23–25 An
initial challenge, before considering the clinical potential of novel technology, is to process the incoming data so that
background noise is removed and clear signals emerge.29 This was the focus of several of the papers that described
development of new methods to filter the signal data.26,27,29 Before using the novel technology to monitor asthma at
home, validation studies should be conducted in a real-world environment.

Prediction of Attacks: Supporting Individual Self-Management
Asthma is a variable condition,67 and central to supported self-management is the ability to recognize early evidence of
deterioration and to take appropriate timely action to prevent a serious attack.68,69 A key aim of many of the machine
learning papers was to use a wide variety of data sources to identify an individual’s risk of uncontrolled asthma and to
improve prediction of asthma attacks.34–42 All the predictors explored (asthma symptoms, PEF, VOCs, fractional exhaled
nitric oxide (FeNO), heart rate, respiratory rate, sleep quality, medication adherence, and environment) showed promise,
though it was widely discussed that combining multiple varied data sources could help improve asthma attack
prediction.28,34,35,38,40 Importantly, the prediction algorithms were developed retrospectively and require external valida-
tion in different datasets before they can be used in clinical practice. Besides the need for external validation, future
studies should also consider evaluating the algorithms by comparison to existing effective “action plans” in clinical
practice.

Clustering Patients: Informing Phenotypes and Targeting Care
Contemporary understanding of asthma as an umbrella term describing a heterogenous group of conditions70 has
increased interest in identifying phenotypes of asthma amenable to specific treatments or carrying specific risks of
poor symptom control and/or acute attacks. Using unsupervised learning algorithms, progress has been made on forming
patient clusters representing natural patterns spotted in the data.43 Understanding phenotypes not only has value in terms
of individual risk and targeting care to “treatable traits” but can inform health service delivery as appropriate care can be
targeted on high-risk populations.71 However, many of the studies used relatively small datasets – and often of
populations selected for frequent symptoms or willingness to monitor – with limited generalizability to the whole asthma
population.23–25,31,36,37,39,41–43 Future research should consider larger sample sizes that can better represent the general
asthma population.

Machine Learning Applied to Asthma Management: Challenges
Tailored Data Collection
The performance of machine learning algorithms largely depends on the input data; hence, the sample size and data pre-
processing methods must be considered in conjunction with the performance metrics. Most data used to train the machine
learning algorithms in this review had small sample sizes, and sometimes used narrow inclusion criteria to collect the
data.23–25,31,36,37,39,41–43 For example, a common exclusion criterion for asthma studies is “other respiratory
disease”,23,37,41,43,44 which makes for a homogeneous dataset (which may be easier to analyze) but it reduces the
likelihood of the results being generalizable. It also overlooks the possibility that the conditions excluded may be part of
the phenotype. Even within asthma, different individuals have different medication regimes, which complicates the
analysis,43 but selection according to a specific regime (say prescribed combination controller medication) will only give
information on a selected population. Importantly, in longitudinal studies where participant retention is a factor, different
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individuals may provide different amounts of data for analysis, which will skew analysis towards patients who are more
engaged with the study, more adherent to data collection, possibly influenced by the characteristics of their asthma.42,44

Secondary Analysis of Existing Datasets
To tackle the problem of small sample sizes, some studies have conducted secondary analysis on data that were collected
for a different purpose.27,34 Eight studies (36%) were based on data that were publicly available or available on
request.26–28,30,34,35,43,44 This makes for efficient use of data, but the aims (and thus eligibility) of the original dataset
may not match the aims of the new analysis thereby making the interpretation of the results more challenging.

Missing Data
How the analysis handled missing data will be important to understand the differences between studies.35,40,42,44 If the
amount of missing data is small, removing the cases with missing data is an option. Alternatively, imputing the missing
values is a method that avoids losing data, but is a major challenge when there is a low response rate or the data are not
missing at random44,72,73 (eg, people with frequent attacks may monitor more regularly than those who rarely have
symptoms). Other methods to handle missing data include interpolation into regular spacing or creating summary
windows,35 which can then be analyzed using regular methods. However, each method of handling missing data carries
their assumptions (for example, assuming people with missing inhaler data and people who reporting using and not using
their have the same inhaler usage rate).

Low Event Rate in the Dataset
For many people with less severe asthma, attacks are infrequent leading to large “class imbalance”. In some populations,
the imbalance can be upwards of 90%.26,34–36,38,40 Data analysis sampling techniques, such as Synthetic Minority
Oversampling TEchnique (SMOTE),74 have been applied to balance out the classes by essentially multiplying the
minority class, which allows machine learning techniques to function properly. For example, oversampling techniques
can be used to artificially enlarge the number of asthma attacks such that the data now has 50% attacks and 50%
controlled asthma.

Inconsistent Output Definitions During Modelling
Different studies of asthma attack predictions had different definitions of an asthma attack and outcome measures. This
included using patient symptoms,36,37,39–42 self-reported asthma attack treatment,34,35 and spirometry measurements.38,39

Although sometimes similar, the different definitions cannot be used in direct comparison.73 Furthermore, some out-
comes were easier to model based on the input data, thus leading to over-optimistic performance results. For example,
Finkelstein and Jeong used 21 daily measures, including symptoms and PEF, to predict asthma attacks.38 However, the
asthma attacks were defined as the PEF zone on day 8, which is directly related to one of the input features, namely PEF
on day 7. Consequently, it is not sufficient to assess any study based solely on the performance metrics without the
broader context.

External Validation
For external validation, the “new” dataset must be the similar in at least the key parameters as the training dataset to
meaningfully compare the machine learning algorithms. Ideally, and especially for health data, the methods should be
robust and comparable even if there are slight differences in the data. It is highly challenging to externally validate
machine learning models partly due to major differences in inclusion criteria and outcome definitions, and most often due
to lack of access to comparable data.26,30,41 Slight differences in wording of questions or device choice can create
datasets that are similar yet not directly comparable, hence not applicable for external validation (for example, acute
attacks might be measured as “needing an oral steroid course” or “unscheduled care” and might be assessed over a year
or a few months). In the context of mHealth, this requires similar devices to be used, but rapidly advancing technology
may make this a challenge. However, this may change in the future as devices become validated and widely used (like
how validated questionnaires and guidelines have allowed studies to be comparable).

None of the machine learning algorithms in the 22 studies had been externally validated and were only internally
validated.
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Data Quality
Conducting data collection in controlled environments enables cleaner data to be collected and analyzed.27,29 However,
real-world settings will most likely lead to reduced data quality. Consequently, it is important that a given model’s
performance is evaluated for use by actual patients in their day-to-day lives.32,33

Future Direction
Machine learning algorithms are dependent on the data that is inputted. Since most existing studies are based on
relatively small sample sizes and often selected populations, the next natural step is to validate the results in larger –
and more representative – populations.25,39,43 Future research should consider adding other data sources to existing
models, collecting multi-dimensional data using several devices and data sources simultaneously to provides a more
complete picture about a person and their environment, whilst also assessing the utility of individual
devices.25,28,34,35,38,40 Studies like MyAirCoach22 and Biomedical REAl-Time Health Evaluation (BREATHE)51 that
combine several sources of data longitudinally are important for future development of mHealth technologies for asthma.

The data used to train the machine learning models included data collected from children, teenagers, and adults,
patients with asthma, COPD, and other respiratory diseases, some exclusively and others in combination. Although any
variation of the performance in the algorithms trained on data from either age group was unlikely to be directly related to
the age, it remains to be seen if the model developed for one population can perform comparably with a new or more
general population.

Expanding the functionality of technologies developed, improving performance, and validating results against other
devices is another area for future research.23,24,27,31,33,37,41 For example, wheeze detection could be extended to other
breath sounds,27 expanding its application to other respiratory diseases. Cough detection could be applied to more
difficult data, such as a mix of multiple individuals and background noise,24 much like the “cocktail party problem” in
machine learning. Developments in image recognition and video analysis using machine learning is promising8–10 and
could be applied to enhance inhaler technique monitoring.

The data generated by mHealth devices for home monitoring are increasingly reliable and validated against existing
gold-standard equipment.58,75,76 However, the validity of the information created by machine learning analysis has not
yet reached the standards required by health services. Many more large-scale studies, akin to clinical trials, will be
required to test the outputs of real-time analysis using mHealth and machine learning algorithms deployed in the real
world.23,28–30,34,42 Although training machine learning models often require a large amount of computing power, the
resulting models may be easy to use and can be deployed and run on a mobile phone.

An ideal asthma management system combining machine learning and mHealth would intelligently utilize both active
and passive monitoring and be validated with clinical trials. Passive monitoring requires minimal input from the patient,
such as wearing a smartwatch or switching on a sleep monitoring device, capturing data without interfering with the
patient’s daily life. In contrast, active monitoring requires more input from the patient but could provide more detailed
information about a person’s condition, such as measuring peak flow or answering questions about asthma control. Using
machine learning to infer when active monitoring is required based on passive monitoring data would minimize the need
for intrusive data collection, while not reducing the attention given to patients.36,40 Most importantly, systems must be
evaluated clinically to ensure clinical (and cost) effectiveness and safety.

Strengths and Limitations
A reproducible search strategy was implemented using the free search engine PubMed database to search for the latest
developments in applications of machine learning algorithms, where the focus was placed only on the past five years. The
interdisciplinary team who interpreted the papers consisted of practicing clinicians (covering both primary and secondary
care) and applied machine learning experts. However, this is not a systematic review, and it was challenging to directly
compare studies and algorithms due to diverse contexts.
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Conclusion
Recent developments in applying machine learning to asthma management have tested a wide range of functionalities
using mHealth devices. The algorithms have demonstrated promising results, but they have only been assessed with
internal validation at best. Further, the algorithms were mostly developed on small datasets and a select population.
Consequently, the likely performance of these algorithms in the general population in a real-world environment is
unknown. Future research should include external validation with large sample size and a focus on combining multiple,
diverse sources of data.

Abbreviations
ACT, Asthma Control Test; ACQ, Asthma Control Questionnaire; AUC, area under the ROC curve; BYOT, bring your
own technology; COPD, chronic obstructive pulmonary disease; DSP, digital signal processing; FeNO, fractional exhaled
nitric oxide; FN, false negative; FP, false positive; GINA, Global Initiative for Asthma; kNN, k-nearest neighbors;
LSTM, long short-term memory; mHealth, mobile health; PCA, principal component analysis; PEF, peak expiratory
flow; PPG, photoplethysmogram; RCT, randomized control trial; ROC, receiver operating characteristic; SVM, support
vector machine; TN, true negative; TP, true positive; VOC, volatile organic compound.
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