Reduced Graphene Oxide Incorporated GelMA Hydrogel Promotes Angiogenesis for Wound Healing Applications [Corrigendum]

Rehman SR, Augustine R, Zahid AA, Ahmed R, Tariq M, Hasan A. Int J Nanomedicine. 2019;14:9603-9617.

The authors have advised that an error was made during the preparation of the wound healing scratch assay images shown in Figure 6 on page 9613. All the original data was retained and a correct image for the GrG4, Endothelial, 24 hrs timepoint was selected as a suitable replacement. The correct Figure 6 is as follows.

Dovepress Rehman et al

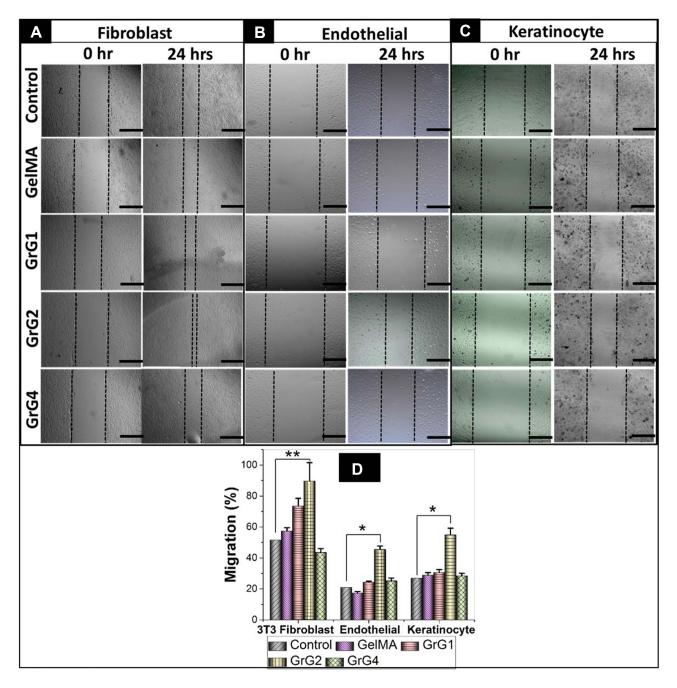


Figure 6 Results of wound healing scratch assay using (A) 3T3 fibroblast cells, (B) Endothelial Cells, (C) HaCat Keratinocyte cells for control (untreated), blank GelMA hydrogel, 0.001 wt% rGO loaded GelMA hydrogel (GrG1), 0.002 wt% rGO loaded GelMA hydrogel (GrG2), & 0.004% rGO loaded GelMA hydrogel (GrG4) treated cells. (D) Percentage of wound healing was measured and presented on a histogram using ImageJ software. (*P < 0.05, **P < 0.01). The scale bar at the right lower corner is 1000 µm.

International Journal of Nanomedicine

Dovepress

Publish your work in this journal

The International Journal of Nanomedicine is an international, peer-reviewed journal focusing on the application of nanotechnology in diagnostics, therapeutics, and drug delivery systems throughout the biomedical field. This journal is indexed on PubMed Central, MedLine, CAS, SciSearch®, Current Contents®/Clinical Medicine, Journal Citation Reports/Science Edition, EMBase, Scopus and the Elsevier Bibliographic databases. The manuscript management system is completely online and includes a very quick and fair peer-review system, which is all easy to use. Visit http:// www.dovepress.com/testimonials.php to read real quotes from published authors.

Submit your manuscript here: https://www.dovepress.com/international-journal-of-nanomedicine-journal

https://doi.org/10.2147/IJN.\$381536