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Background: Poria cocos (PC), a fungus, has been used for more than 2000 years as a food and medicine in China. PC and its 
components have various pharmacological effects on the skin, including immunomodulatory activities, barrier function improvement, 
and anti-tumor effects. However, the effect of PC in aquaporin-3 (AQP3) expression, which is essential for epidermal water 
permeability barrier maintenance, was not reported.
Methods: This study examined the mechanism through which the ethanol extract of the sclerotium of PC (EPC) promoted the 
expression of AQP3 in cultured human keratinocytes. Western blotting was used to investigate the expression of AQPs and the 
activation of phosphoinositide 3-kinase (PI3K)/Akt-related signaling molecules in HaCaT cells. Cells were treated with inhibitors of 
PI3K/Akt and mechanistic target of rapamycin (mTOR) prior to EPC treatment.
Results: EPC promoted the expression of AQP3 in HaCaT cells without affecting AQP1 and AQP2 expression. Phosphorylated Akt 
levels were increased by EPC treatment, and the inhibition of PI3K by LY2940002 resulted in a reduction in EPC-induced AQP3 
expression. Furthermore, EPC stimulated the phosphorylation of p70S6K and AktSer473, which are downstream targets of mTORC1 
and mTORC2, respectively. The mTOR complex inhibitors, rapamycin and Torin 1, partially reduced EPC-induced AQP3 expression.
Conclusion: These results suggest that EPC increased expression of AQP3, which is important for skin moisturization, by activating 
the PI3K/Akt/mTOR signaling pathway in human keratinocytes.
Keywords: Poria cocos, AQP3, PI3K/Akt, mTORC1, mTORC2

Introduction
The skin is the body’s first line of defense against the external environment.1 For this reason, the skin is responsible for 
providing a physical and water-impermeable barrier for the body as it responds to a variety of stresses such as 
microorganisms, sunlight or physical trauma.2 In particular, keratinocytes, which form the skin barrier, are the pre-
dominant cell type found in the epidermis and constituting approximately 90% of the epidermal cells.3 Keratinocytes 
could handle the inflammatory response as well as skin hydration to maintain the homeostasis of the skin barrier.4 Thus, 
to find out whether the drugs/or cosmetics could regulate skin hydration, the determination of water proteins in 
keratinocytes is essential.

Aquaporins (AQPs), also called water channels, are a family of transmembrane proteins that mainly transport 
water across biological membranes and are involved in many physiological functions, including renal water balance, 
epithelial fluid secretion, cell migration, brain oedema and metabolism in adipocytes.5,6 Among them, several of the 
mammalian aquaporins such as AQP1, and AQP2 appear to be highly selective for the passage of water, whereas 
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others (recently termed aquaglyceroporins such as AQP3, AQP7 and AQP9) also transport glycerol.7 Especially, 
AQP3, an aquaglyceroporin, is most abundantly expressed in keratinocytes of the basal layer of the human 
epidermis and is associated with keratinocyte migration, and proliferation.8–10

Poria cocos, a medicinal mushroom belonging to the Polyporaceae family, is widely used in nephrosis, insomnia, 
and diarrhea.11–13 Previous studies have reported that several compounds derived from P. cocos such as polysac-
charides and triterpenoids have been reported to exhibit antitumor, anti-inflammatory, and anti-allergic activities, as 
well as immunomodulatory activities.11,14,15 In addition, it has been shown that the sclerotium of P. cocos has 
a skin-whitening effect.16

However, the moisturizing activity of P. cocos has not been reported. Therefore, in this study, we investigated whether 
the ethanol extract of the sclerotium of P. cocos (EPC) regulates AQP3 expression in cultured keratinocytes. In addition, 
we also demonstrated regulatory mechanisms of EPC by evaluating the activation of PI3K/Akt/mTOR signaling pathway.

Materials and Methods
Preparation of P. cocos Extracts
P. cocos Wolf was purchased from Omniherb (Youngcheon, Kyungbook, South Korea). The fungus (500 g) was soaked 
in 3 L of 100% ethanol for 3 days at room temperature with sonication for 60 min once a day. The solution was filtered 
using a standard sieve (No. 270, 53 µm), evaporated to dryness at 40 °C under vacuum (Eyela N-11, Japan), and freeze- 
dried (PVTFD10RS, IlShin BioBase, Korea). The amount of ethanol extract obtained was 24.9 g (yield: 6.98%), which 
was stored. The extract was dissolved in dimethyl sulfoxide (DMSO), and DMSO was used at a final concentration range 
of less than 0.01%.

Cell Culture and Drug Treatment
HaCaT cell lines originating from human keratinocytes were purchased from the Korea cell line bank (Seoul, South 
Korea). HaCaT cells were cultured in Dulbecco’s Modified Eagle’s Medium (DMEM, Welgene, Korea) supplemented 
with 10% fetal bovine serum (FBS, Gibco Inc., USA), 100 units/mL penicillin, and 100 μg/mL streptomycin. The cells 
were maintained at 37 °C in a humidified incubator with 5% CO2, and the medium was changed every 48 h. All 
experiments were performed in plastic tissue culture flasks obtained from SPL Life Science (Pocheon-si, Gyeonggi-do, 
South Korea). The cells were serum-starved for 24 h before incubation with EPC. LY294002, Torin 1 (Cell Signaling 
Technology, Dallas, TX, USA) and rapamycin (Sigma-Aldrich, St.Louis, MO, USA) were added 2 h prior to EPC 
treatment.

Cell Viability Analysis
Cell viability was determined using the 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Cells 
were seeded in 24-well plates at a density of 1×104 cells/well. After incubation with various concentrations (6.25, 12.5, 
25, 50, 100 and 200 µg/mL) of EPC, MTT (0.5 mg/mL, Sigma) was added to each culture well and further incubated at 
37 °C for 2 h. The medium was removed, 200 µL of DMSO was added, and the mixture was shaken for 10 min to 
dissolve the formazan crystals. The absorbance of the solubilized formazan was measured at 570 nm using 
a spectrofluorometer (F-2500, Hitachi, Japan).

Immunocytochemistry
HaCaT cells were plated in a chamber slide and incubated with EPC (50 μg/mL) for 24 h at 37°C. Then, the cells were 
fixed in 4% paraformaldehyde for 15 min at RT and washed 3 times with PBS. The cells were treated with 0.1% TritonX- 
100 for 15 min at RT. After washing, non-specific binding sites were blocked with serum (3% BSA) for 1 h at RT and 
incubated with AQP3 antibody (1:200) at 4°C overnight. The cells were then washed and incubated with 
AlexaFluor®488 goat anti-rabbit IgG (1:1,000; cat. no. A-11011) for 2 h at RT in a darkened room. For nuclear staining, 
the cells were incubated with DAPI (cat. no. H-1200; Vector Laboratories, Newark, CA, USA) at 1:1000 for 5 min at RT. 
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The slide was finally washed with PBS and mounted for microscopic examination. Images were visualized using 
a confocal laser microscope (Olympus, Japan).

Immunoblot Analysis
After treatment with EPC, cells were lysed with cold RIPA lysis buffer (EzRIPA lysis kit, ATTA, Japan) containing 
protease and phosphatase inhibitors. The HaCaT cell lysate was then centrifuged at 15,000 × g for 20 min at 4 °C. The 
resultant protein samples were separated using SDS-PAGE and transferred onto a polyvinylidene difluoride membrane 
(Millipore, Burlington, Massachusetts, USA). The membrane was stained with ponceau solution to confirm uniform 
transfer of all proteins and then incubated in a blocking solution (TBS with 0.05% Tween 20) containing 5% non-fat dry 
milk or 5% bovine serum albumin at room temperature for 2 h. The membranes were then probed with antibodies against 
AQP-1 (1:1000), AQP-2 (1:1000), AQP-3 (1:1000), p-Akt (1:1000), Akt (1:1000), p-p70S6K (1:1000), p70S6K 
(1:1000), and β-actin (1:5000). Antibodies were purchased from Santa Cruz Biotechnology (Dallas, TX, USA) and 
Cell Signaling Technology (Dallas, TX, USA). The primary antibodies were diluted in TBST solution containing 5% (w/ 
v) skim milk or 5% (w/v) BSA. The membranes were then incubated with a specific horseradish peroxidase-conjugated 
secondary antibody (Invitrogen Biotechnology, USA). Immunoreactive proteins were detected using the ECL Kit 
(Millipore, Burlington, Massachusetts, USA). The bands were analyzed using a Chemidoc image analyzer (Bio-Rad, 
Hercules, CA, USA). The signal intensity was quantified by ImageJ.

Liquid Chromatography–Mass Spectrometry Analysis (LC/MS)
The standard of pachymic acid (PA) was purchased from Sigma-Aldrich (St. Louis, MO, USA). The EPC and PA were 
dissolved in methanol. Thereafter, ultra-performance liquid chromatography was performed on the ACQUITY UPLC system 

Figure 1 Effects of EPC on AQPs expression in HaCaT cells. (A) Cytotoxic effects of EPC in HaCaT cells. The cell viability was measured by MTT assay. HaCaT cells were 
incubated with or without ethanol extract of the sclerotium of Poria cocos (EPC) as indicated doses (6.25, 12.5, 25, 50, 100 or 200 μg/mL) for 24 h. * p < 0.05 vs control 
group. (B) HaCaT cells were cultured in DMEM supplemented with 1% FBS for 24 h and then treated with various concentrations of EPC (12.5, 25, and 50 µg/mL) for 24 
h. Expression levels of AQP1, AQP2, and AQP3 were analyzed using Western blotting. (C) Confocal immunofluorescence images of AQP3 protein. HaCaT cells were 
treated with EPC (50 µg/mL) for 24 h. The signals of AQP3 protein (green) were detected using anti-AQP3 antibody, and nuclei were counterstained with 4’,6-diamidino- 
2-phenylindole (DAPI) (blue). Scale bar, 50 µm.
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(Waters, MA, USA) with an ACQUITY binary solvent manager pump (ACQ-BSM), a ACQUITY PDA detector (ACQ- 
PDA) and Waters micromass ZQ spectrometer (Waters) coupled with an electrospray ionization (ESI) interface and an ion 
trap mass analyzer. The EPC and pachymic acid were analyzed under the following conditions: column, ACQUITY UPLC 
BEH Shield RP18 (2.1 × 100 mm, 1.7 μm; USA); mobile phase, distilled water (solvent system A), and acetonitrile (CH3CN, 
solvent system B) in a gradient mode (B from 10% to 100% in 15 min); sample injection volume, 5 µL; flow rate, 0.3 mL/ 
min; column temperature, 40°C, UV wavelength, 200 nm. The conditions of MS analysis in the negative ion mode were as 
follows: capillary voltages, –3.00 kV; cone voltage, –100 V; extractor voltage, –2 V; RF lens voltage, –0.2 V; source 
temperature 120°C, desolvation temperature 400°C, gas flow desolvation 600 L/hr, gas flow cone 30 L/hr.

Statistical Analysis
All analyses were performed in triplicate, and numerical data are presented as mean ± standard deviation (SD). Multiple 
comparisons were performed using one-way analysis of variance (ANOVA). Statistical significance was set at p < 0.05.

Figure 2 EPC promotes Akt activation in HaCaT cells. (A) Cells were treated with 50 µg/mL of EPC for different time periods (0.5, 1, 2, and 24 h) and Akt activation was 
examined using immunoblotting. (B) Cells were treated with 25 or 50 µg/mL of EPC in the presence or absence of the PI3K inhibitor LY294002. LY294002 was pretreated 
with 20 µM for 2 h. (C) The quantification of (B) by ImageJ. Relative expression levels of p-Akt. *p < 0.05 vs control group, †p < 0.01 vs EPC-treated group. The values are 
means ± SD of three independent experiments.
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Results
EPC Promotes the Expression of AQP3 in Keratinocytes Without Affecting AQP1 and 
AQP2
We first evaluated the cytotoxicity of EPC on HaCaT cells using an MTT assay as shown in Figure 1A. This figure shows 
HaCaT cells were treated with various concentrations of EPC (6.25, 12.5, 25, 50, 100 and 200 µg/mL) for 24 h. Because 
EPC did not show any cytotoxic effects at concentrations up to 50 µg/mL, we used EPC in the subsequent experiments at 
the concentration of 0–50 µg/mL. The effect of EPC on AQP1, AQP2 and AQP3 expression in cultured human 
keratinocytes is shown in Figure 1B. This figure shows HaCaT cells were treated with various concentrations of EPC 
(12.5, 25 and 50 µg/mL) for 24 h, and AQP expression was analyzed using Western blotting. As expected, AQP3 protein 
levels were significantly higher than other AQPs; AQP1 protein level was markedly lower than that of AQP3, and AQP2 

Figure 3 PI3K inhibition blocks EPC-induced upregulation of AQP3. (A) Cells were pretreated with PI3K inhibitor LY294002 (20 µM) for 2 h followed by treatment with 25 
or 50 µg/mL of EPC. After 24 h, AQP3 level was analyzed using immunoblotting. Actin was used as a loading control. (B) Quantification of (A) by ImageJ. Relative expression 
levels of AQP3. *p < 0.05 vs control group, †p < 0.01 vs EPC-treated group. The values are means ± SD of three independent experiments.
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was not detected in the cells. EPC induced AQP3 upregulation in a concentration-dependent manner without affecting the 
levels of AQP1 and AQP2. In addition, Figure 1C shows the immunocytochemistry analysis confirmed that intracellular 
AQP3 expression was visibly increased by ECT treatment. These results indicate that EPC promoted the expression of 
AQP3 in HaCaT cells without affecting AQP1 and AQP2 expression.

PI3K/Akt Pathway is Involved in EPC-Induced AQP3 Upregulation
To examine whether EPC regulated AQP3 expression through activation of PI3K/Akt in HaCaT cells, we analyzed the 
effect of EPC on Akt phosphorylation. Figure 2A shows the phosphorylated Akt levels were increased following 
treatment with 50 µg/mL EPC for 0.5, 1, 2, 24 h. However, Figure 2B and C shows that the increase in AKT was 
suppressed by the PI3K inhibitor LY294002. Next, we evaluated whether the inhibition of endogenous PI3K signaling in 
HaCaT cells affects EPC-induced AQP3 regulation. Figure 3A and B shows the expression levels of AQP3 in HaCaT 
cells after treatment with EPC at 25 and 50 μg/mL in the presence or absence of LY294002. The inhibition of PI3K 
caused a noticeable decrease in EPC-induced AQP3 expression. These results support the involvement of the PI3K/Akt 
pathway in the upregulation of AQP3 by EPC in HaCaT cells.

EPC Activates mTOR Signaling in Keratinocytes
mTOR is one of the downstream components of the PI3K/Akt pathway and exists in two functionally and 
structurally distinct protein complexes, mTORC1 and mTORC2.9,10 To determine whether mTORC1 or mTORC2 
activation is involved in AQP3 upregulation by EPC in HaCaT cells, phosphorylation of the downstream targets 
mTORC1 and mTORC2 was examined. p70S6K and AktSer473 are the respective mTORC1 and mTORC2 markers. 
Figure 4 shows the EPC increased the phosphorylation of p70S6K and AktSer473. Figure 4 shows the rapamycin, 
a mTORC1 inhibitor, completely blocked the EPC-induced increase in p70S6K phosphorylation. However, it did not 
affect the phosphorylation of the mTORC2 target AktSer473. This result suggests that EPC activates mTORC1 and 
mTORC2 signaling complexes.

Inactivation of mTOR Signaling Partially Blocks EPC-Induced AQP3 Upregulation
Based on the above results, we assessed the potential involvement of mTOR in the ability of EPC to stimulate AQP3 
expression in HaCaT cells using mTOR inhibitors. Figure 5A shows the inhibition of mTORC1 signaling with rapamycin 
partially down-regulated the EPC-induced AQP3 expression, but had no effect on AktSer473 phosphorylation. Moreover, 
Figure 5B shows the Torin 1 blocking two mTOR complexes, an inhibitor of mTOR downstream targets, significantly 

Figure 4 mTORC1 and mTORC2 activation are induced via EPC treatment. Cells were pretreated with mTORC1 inhibitor rapamycin (50 nM) with/without 25 or 50 µg/mL 
of EPC. The protein levels of mTORC1 marker p70 S6K and mTORC2 marker AktSer473 were detected by Western blot analysis after 4 h. Actin was used as a loading 
control.
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reduced AQP3 expression increased by EPC. As expected, in Figure 5B, activation of p70S6K and AktSer473 was 
completely blocked by Torin 1. These results indicate that upregulation of AQP3 by EPC in HaCaT cells can be regulated 
by activation of mTOR complexes.

Figure 5 mTOR inhibitors partially blocks EPC-induced AQP3 upregulation. Cells were pretreated with mTORC1 inhibitor rapamycin (A) or mTOR complex inhibitor 
Totin 1 (B) with/without 25 or 50 µg/mL of EPC. The protein levels of mTORC1 marker p70 S6K and mTORC2 marker AktSer473 were detected by Western blot after 4 
h. AQP3 levels were detected by Western blot after 24 h. Actin was used as a loading control.
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Analysis of Active Candidate Components from EPC
To determine the active ingredient from EPC, we performed an optimized HPLC using PA based on the reports reported 
so far.17–22 As shown in Figure 6, analysis by UPLC of EPC provided major peaks at 4.8 min, and this peak was 
identified as PA based on the comparison of the retention time in chromatograms of compounds.

PA Promotes the Expression of AQP3 in Keratinocytes
We first evaluated the cytotoxicity of PA on HaCaT cells using an MTT assay is shown in Figure 7A. This figure shows 
the HaCaT cells were treated with various concentrations of PA (1, 2, 5, 10, 15, 20 and 30 µM) for 24 h. Because PA did 
not show any cytotoxic effects at concentrations up to 2 µM, we used PA in the subsequent experiments at the 
concentration of 0–2 µM. The effect of PA on AQP3 expression in cultured human keratinocytes is shown in 
Figure 7B. This figure shows the HaCaT cells were treated with various concentrations of PA (1 and 2 µM) for 24 h, 
and AQP3 expression was analyzed using Western blotting. As expected, PA induced upregulation of AQP3 in 
a concentration-dependent manner. These results indicate that PA upregulates the expression of AQP3 in HaCaT cells.

Figure 6 UPLC analysis of EPC. (A) EPC and (B) pachymic acid was dissolved in methanol. A sample volume of 5 μL was injected and analyzed at a flow rate of 0.3 mL/min 
using an ultraviolet detector at 200 nm.
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Discussion
In this study, we investigated the moisturizing effects and regulatory mechanisms of EPC in cultured human keratino-
cytes. We confirmed that AQP3 expression was significantly higher than that of AQP1 and AQP2 in cells and that the 
expression of AQP3 was significantly increased via EPC treatment. Moreover, the present study showed that EPC 
induced AQP3 expression through activation of the P3K/Akt/mTOR signaling pathway. These findings support the 
potential that EPC could lead to an increase in AQP3, which is important for maintaining the epidermal water 
permeability barrier, through PI3K/Akt/mTOR signaling pathway.

In this study, we could only detect the AQP3 not AQP1 and AQP2 (Figure 1). Among AQPs, AQP1 is mainly found 
on endothelial cells and fibroblasts of the human dermis, acts as a selective water channels, and up-regulated in 
fibroblasts during hypertonic stress.23,24 In similar, AQP2 is mainly expressed on kidney and fibroblasts,25 and rarely 
detected in keratinocytes.5,26,27 Because AQP1 and AQP2 is rarely detected in keratinocytes, we think that the AQP1 was 
not detected well in our study. However, EPC significantly up-regulated the AQP3 in keratinocytes, which suggests that it 

Figure 7 Effects of PA on AQP3 expression in HaCaT cells. (A) Cytotoxic effects of PA in HaCaT cells. The cell viability was measured by MTT assay. HaCaT cells were 
incubated with or without of the pachymic acid (PA) as indicated doses (1, 2, 5, 10, 15, 20 or 30 μM) for 24 h. * p < 0.05 vs control group. (B) HaCaT cells were cultured in 
DMEM supplemented with 1% FBS for 24 h and then treated with indicated concentrations of PA (1 and 2 µM) for 24 h. Expression levels of AQP3 were analyzed using 
Western blotting.
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may facilitate the transport and metabolism of water and glycerol in the skin epidermis, and the function of the epidermal 
water permeability barrier.

In this study, we examined the role of the PI3K/Akt pathway in AQP3 expression in EPC-stimulated cells, 
because there are so many previous reports regarding PI3K/Akt pathway to induce AQP3.28–31 Previous reports 
suggested that the overexpression of Akt could contribute to the increase of AQP3, and consequently lead to 
autophagic responses,28 which means PI3K/AKT could mainly control the AQP3. In accordance with previous 
reports,28–31 we also found that the EPC treatment could increase the p-Akt, and EPC-induced AQP3 expression was 
noticeably decreased via treatment with the PI3K inhibitor, which support the involvement of the PI3K/Akt pathway 
in EPC-induced upregulation of AQP3. However, the increase rate of p-Akt is irrational to be a main regulator of 
AQP3. As shown in Figures 2 and 3, AQP-3 was increased about 12-fold increase, whereas p-AKT was increased 
about 20%. This might be a discrepancy that the increase of AQP-3 stem from p-ATK because AKT increase is 
relatively less than AQP-3. We think that AKT pathway might contribute the increase of AQP-3 at least partly, not 
the mainly. There are possibilities that Ras, ERK, AMPK could be mediated to induce AQP-3.28,32,33 Although we 
cannot perform the experiments of other pathway right now, we will examine the various mechanisms in next further 
experiments of active ingredients of PC.

mTOR signaling is one of the known downstream targets of the PI3K/Akt pathway and exists as two structurally 
distinct multiprotein complexes, mTORC1 and mTORC2; they regulate different cellular processes.34,35 mTORC1 
mediates cell growth, cell proliferation, protein synthesis, and autophagy. mTORC2 functions as a regulator of actin 
cytoskeleton. Especially, mTORC1 regulates keratinocyte proliferation in the basal layer, whereas mTORC2 controls 
epidermal stratification and terminal differentiation.36,37 In addition, it has been shown that mTORC1 contributes to 
keratinocyte proliferation following UVB radiation, whereas mTORC2 maintains the survival of DNA-damaged kera-
tinocytes. The mTOR activator MHY1485 attenuated skin cell damage by UV radiation, mTOR inhibitors almost 
abolished MHY1485-induced cytoprotective effects.38,39 Thus, we investigated the roles of the mTORC1 and 
mTORC2 pathways in EPC-induced AQP3. Here, EPC promoted the phosphorylation of p70S6K and AktSer473, the 
downstream targets of mTORC1 and mTORC2, respectively. We confirmed that mTORC1 inhibitor rapamycin treatment 
partially down-regulated EPC-induced AQP3 expression as well as suppressing p70S6K activation. Torin 1, as a selective 
ATP-competitive mTOR inhibitor, inhibits mTORC1 and mTORC2. The effect of EPC on AQP3 expression was 
decreased by blocking both mTOR complex with Torin 1. These data suggest that the mTOR pathway is activated by 
EPC, leading to the upregulation of AQP3 expression.

Several previous studies have reported that dehydrotrametenolic acid, the lanostane-type triterpene acid isolated from 
P. cocos, improves skin barrier function and has anti-diabetic and anti-tumor effects. Thus, many studies have focused on 
the dehydrotrametenolic acid, the lanostane-type triterpene acid as active compounds of P. cocos. However, in this study, 
we firstly reported that PA is a main ingredient of EPC, and a main active compound to induced AQP3 (Figures 6 and 7). 
Indeed, there are reports that PA could be derived from EPC,17 and exhibit the anti-inflammatory activity. In addition, PA 
has been reported to possess anti-inflammatory, anti-cancer properties, and anti-emetic,18–22 and could protect the skin 
tumor formation in mouse following initiation with 7,12-dimethylbenz[a]anthracene (DMBA).20 Although we did not 
determine the detailed mechanisms of PA in AQP3, the novel findings of active ingredients of EPC could be helpful for 
further development of skin goods.

Conclusion
The summary is shown in Figure 8. EPC, and PA, a major physiologically active component of P. cocos, could promote 
the expression of AQP3. Figure 8 shows the EPC stimulated AQP3 expression through activation of PI3K/Akt in human 
keratinocytes. mTORC1 and mTORC2 pathways are activated by EPC, and the effect of EPC on AQP3 expression was 
decreased by blocking PI3K/Akt and both mTOR complex. These results suggest that EPC contributes to an increase in 
AQP3 levels, which is important for migration and proliferation of keratinocytes and the function of the epidermal water 
permeability barrier, by activating the PI3K/Akt/mTOR signaling pathway.
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Figure 8 A signaling pathway by which EPC promotes AQP3 in HaCaT cells. EPC induced the PI3K/Akt activation. mTORC1 downstream target p70S6K and mTORC2 
downstream target Akt Ser473 were activated by EPC, respectively. Finally, the level of intracellular AQP3 was increased by EPC via the PI3K/Akt/mTOR pathway.

Clinical, Cosmetic and Investigational Dermatology 2022:15                                                                  https://doi.org/10.2147/CCID.S378545                                                                                                                                                                                                                       

DovePress                                                                                                                       
1929

Dovepress                                                                                                                                                             Park et al

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


References
1. Swaney MH, Kalan LR. Living in your skin: microbes, molecules, and mechanisms. Infect Immun. 2021;89(4):e00695–e00720. doi:10.1128/ 

IAI.00695-20
2. Bollag WB, Aitkens L, White J, et al. HyndmanAquaporin-3 in the epidermis: more than skin deep. Am J Physiol Cell Physiol. 2020;318(6): 

C1144–C1153. doi:10.1152/ajpcell.00075.2020
3. El-Serafi AT, El-Serafi I, Steinvall I, et al. A systematic review of keratinocyte secretions: a regenerative perspective. Int J Mol Sci. 2022;23 

(14):7934. doi:10.3390/ijms23147934
4. Proksch E, Brandner JM, Jensen JM. The skin: an indispensable barrier. Exp Dermatol. 2008;17(12):1063–1072. doi:10.1111/j.1600- 

0625.2008.00786.x
5. Tricarico PM, Mentino D, Marco AD, et al. Aquaporins are one of the critical factors in the disruption of the skin barrier in inflammatory skin 

diseases. Int J Mol Sci. 2022;23:4020. doi:10.3390/ijms23074020
6. Ishibashi K, Kondo S, Hara S, et al. The evolutionary aspects of aquaporin family. Am J Physiol Regul Integr Comp Physiol. 2011;300(3):R566– 

R576. doi:10.1152/ajpregu.90464.2008
7. Verkman AS, Mitra AK. Structure and function of aquaporin water channels. Am J Physiol Renal Physiol. 2000;278(1):13–28. doi:10.1152/ 

ajprenal.2000.278.1.F13
8. Chikuma MH, Verkman AS. Aquaporin-3 facilitates epidermal cell migration and proliferation during wound healing. J Mol Med. 2008;86 

(2):221–231. doi:10.1007/s00109-007-0272-4
9. Hara M, Ma T, Verkman AS. Selectively reduced glycerol in skin of aquaporin-3-deficient mice may account for impaired skin hydration, elasticity, 

and barrier recovery. J Biol Chem. 2002;277(48):46616–46621. doi:10.1074/jbc.M209003200
10. Qin H, Zheng X, Zhong X, et al. Aquaporin-3 in keratinocytes and skin: its role and interaction with phospholipase D2. Arch Biochem Biophys. 

2011;508(2):138–143. doi:10.1016/j.abb.2011.01.014
11. Rios JL. Chemical constituents and pharmacological properties of Poria cocos. Planta Med. 2011;77(7):681–691. doi:10.1055/s-0030-1270823
12. Lee SM, Lee YJ, Yoon JJ, et al. Effect of Poria cocos on hypertonic stress-induced water channel expression and apoptosis in renal collecting duct 

cells. J Ethnopharmacol. 2012;141(1):368–376. doi:10.1016/j.jep.2012.02.048
13. Feng YL, Lei P, Tian T, et al. Diuretic activity of some fractions of the epidermis of Poria cocos. J Ethnopharmacol. 2013;150(3):1114–1118. 

doi:10.1016/j.jep.2013.10.043
14. Bae MJ, See HJ, Choi G, et al. Regulatory T cell induced by poria cocos bark exert therapeutic effects in murine models of atopic dermatitis and 

food allergy. Mediators Inflamm. 2016;2016:3472608. doi:10.1155/2016/3472608
15. Tian H, Liu Z, Pu Y, et al. Immunomodulatory effects exerted by Poria cocos polysaccharides via TLR4/TRAF6/NF-κB signaling in vitro and 

in vivo. Biomed Pharmacother. 2019;112:108709. doi:10.1016/j.biopha.2019.108709
16. Kang KY, Hwang YH, Lee SJ, et al. Verification of the functional antioxidant activity and antimelanogenic properties of extract of Poria cocos 

mycelium fermented with Freeze-dried plum powder. Int J Biomater. 2019;2019:9283207. doi:10.1155/2019/9283207
17. Xia B, Zhou Y, Tan HS, et al. Advanced ultra-performance liquid chromatography-photodiode array-quadrupole time-of-flight mass spectrometric 

methods for simultaneous screening and quantification of triterpenoids in Poria cocos. Food Chem. 2014;152:237–244. doi:10.1016/j. 
foodchem.2013.11.151

18. Tai T, Akita Y, Kinoshita K, et al. Anti-emetic principles of Poria cocos. Planta Med. 1995;61(6):527–530. doi:10.1055/s-2006-959363
19. Giner EM, Manez S, Recio MC, et al. In vivo studies on the anti-inflammatory activity of pachymic and dehydrotumulosic acids. Planta Med. 

2000;66(3):221–227. doi:10.1055/s-2000-8563
20. Kaminaga T, Yasukawa K, Kanno H, et al. Inhibitory effects of lanostane-type triterpene acids, the components of Poria cocos, on tumor promotion 

by 12-O-Tetradecanoylphorbol-13-acetate in two-stage carcinogenesis in mouse skin. Oncology. 1996;53(5):382–385. doi:10.1159/000227592
21. Gapter L, Wang Z, Glinski J, et al. Induction of apoptosis in prostate cancer cells by pachymic acid from Poria cocos. Biochem Biophys Res 

Commun. 2005;332(4):1153–1161. doi:10.1016/j.bbrc.2005.05.044
22. Li G, Xu ML, Lee CS, et al. Cytotoxicity and DNA topoisomerases inhibitory activity of constituents from the sclerotium of Poria cocos. Arch 

Pharm Res. 2004;27(8):829–833. doi:10.1007/BF02980174
23. Boury JM, Sougrata R, Tailhardat M, et al. Expression and function of aquaporins in human skin: is aquaporin-3 just a glycerol transporter? 

Biochim Biophys Acta. 2006;1758(8):1034–1042. doi:10.1016/j.bbamem.2006.06.013
24. Baey AD, Lanzavecchia A. The role of aquaporins in dendritic cell micropinocytosis. J Exp Med. 2000;191(4):743–748. doi:10.1084/jem.191.4.743
25. Zhang Z, Xu P, Xie Z, et al. Downregulation of AQP2 in the anterior vaginal wall is associated with the pathogenesis of female stress urinary 

incontinence. Mol Med Rep. 2017;16(3):3503–3509. doi:10.3892/mmr.2017.7014
26. Aburada T, Ikarashi N, Kagami M, et al. Byakkokaninjinto prevents body water loss by increasing the expression of kidney aquaporin-2 and skin 

aquaporin-3 in KKAy mice. Phytother Res. 2011;25(6):897–903. doi:10.1002/ptr.3358
27. Patel R, Heard LK, Chen X, et al. Aquaporins in the skin. Adv Exp Med Biol. 2017;969:173–191. doi:10.1007/978-94-024-1057-0_11
28. Malale K, Fu J, Qiu L, et al. Hypoxia-induced aquaporin-3 changes hepatocellular carcinoma cell sensitivity to sorafenib by activating the PI3K/ 

Akt signaling pathway. Cancer Manag Res. 2020;12:4321–4333. doi:10.2147/CMAR.S243918
29. Xu H, Xu Y, Zhang W, et al. Aquaporin-3 positively regulates matrix metalloproteinases via PI3K/AKT signal pathway in human gastric carcinoma 

SGC7901 cells. J Exp Clin Cancer Res. 2011;30(1):86. doi:10.1186/1756-9966-30-86
30. Chandrashekar L, Rajappa M, Rajendiran KS, et al. Is vitiligo associated with systemic aquaporin-3 deficiency? Postepy Dermatol Alergol. 2021;38 

(2):156–158. doi:10.5114/ada.2021.104291
31. Rodríguez A, Catalán V, Ambrosi JG, et al. Insulin- and leptin-mediated control of aquaglyceroporins in human adipocytes and hepatocytes is 

mediated via the PI3K/Akt/mTOR signaling cascade. J Clin Endocrinol Metab. 2011;96(4):E586–E597. doi:10.1210/jc.2010-1408
32. Wang W, Geng X, Lei L, et al. Aquaporin-3 deficiency slows cyst enlargement in experimental mouse models of autosomal dominant polycystic 

kidney disease. FASEB J. 2019;33(5):6185–6196. doi:10.1096/fj.201801338RRR
33. Hou SY, Li YP, Wang JH, et al. Aquaporin-3 inhibition reduces the growth of NSCLC cells induced by hypoxia. Cell Physiol Biochem. 2016;38 

(1):129–140. doi:10.1159/000438615

https://doi.org/10.2147/CCID.S378545                                                                                                                                                                                                                                 

DovePress                                                                                                                    

Clinical, Cosmetic and Investigational Dermatology 2022:15 1930

Park et al                                                                                                                                                              Dovepress

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://doi.org/10.1128/IAI.00695-20
https://doi.org/10.1128/IAI.00695-20
https://doi.org/10.1152/ajpcell.00075.2020
https://doi.org/10.3390/ijms23147934
https://doi.org/10.1111/j.1600-0625.2008.00786.x
https://doi.org/10.1111/j.1600-0625.2008.00786.x
https://doi.org/10.3390/ijms23074020
https://doi.org/10.1152/ajpregu.90464.2008
https://doi.org/10.1152/ajprenal.2000.278.1.F13
https://doi.org/10.1152/ajprenal.2000.278.1.F13
https://doi.org/10.1007/s00109-007-0272-4
https://doi.org/10.1074/jbc.M209003200
https://doi.org/10.1016/j.abb.2011.01.014
https://doi.org/10.1055/s-0030-1270823
https://doi.org/10.1016/j.jep.2012.02.048
https://doi.org/10.1016/j.jep.2013.10.043
https://doi.org/10.1155/2016/3472608
https://doi.org/10.1016/j.biopha.2019.108709
https://doi.org/10.1155/2019/9283207
https://doi.org/10.1016/j.foodchem.2013.11.151
https://doi.org/10.1016/j.foodchem.2013.11.151
https://doi.org/10.1055/s-2006-959363
https://doi.org/10.1055/s-2000-8563
https://doi.org/10.1159/000227592
https://doi.org/10.1016/j.bbrc.2005.05.044
https://doi.org/10.1007/BF02980174
https://doi.org/10.1016/j.bbamem.2006.06.013
https://doi.org/10.1084/jem.191.4.743
https://doi.org/10.3892/mmr.2017.7014
https://doi.org/10.1002/ptr.3358
https://doi.org/10.1007/978-94-024-1057-0_11
https://doi.org/10.2147/CMAR.S243918
https://doi.org/10.1186/1756-9966-30-86
https://doi.org/10.5114/ada.2021.104291
https://doi.org/10.1210/jc.2010-1408
https://doi.org/10.1096/fj.201801338RRR
https://doi.org/10.1159/000438615
https://www.dovepress.com
https://www.dovepress.com


34. Fingar DC, Blenis J. Target of rapamycin (TOR): an integrator of nutrient and growth factor signals and coordinator of cell growth and cell cycle 
progression. Oncogene. 2004;23(18):3151–3171. doi:10.1038/sj.onc.1207542

35. Sarbassov DD, Guertin DA, Ali SM, et al. Phosphorylation and regulation of Akt/PKB by the Rictor-mTOR complex. Science. 2005;307 
(5712):1098–1101. doi:10.1126/science.1106148

36. Ding X, Bloch W, Iden S, et al. mTORC1 and mTORC2 regulate skin morphogenesis and epidermal barrier formation. Nat Commun. 2016;7 
(1):13226. doi:10.1038/ncomms13226

37. Buerger C, Shirsath N, Lang V, et al. Inflammation dependent mTORC1 signaling interferes with the switch from keratinocyte proliferation to 
differentiation. PLoS One. 2017;12(7):e0180853. doi:10.1371/journal.pone.0180853

38. Carr TD, DiGiovanni J, Lynch CJ, et al. Inhibition of mammalian target of rapamycin (mTOR) suppresses UVB-induced keratinocyte proliferation 
and survival. Cancer Prev Res. 2012;5(12):1394–1404. doi:10.1158/1940-6207.CAPR-12-0272-T

39. Yang B, Xu QY, Guo CY, et al. MHY1485 ameliorates UV-induced skin cell damages via activating mTOR-Nrf2 signaling. Oncotarget. 2017;8 
(8):12775–12783. doi:10.18632/oncotarget.14299

Clinical, Cosmetic and Investigational Dermatology                                                                          Dovepress 

Publish your work in this journal 
Clinical, Cosmetic and Investigational Dermatology is an international, peer-reviewed, open access, online journal that focuses on the latest 
clinical and experimental research in all aspects of skin disease and cosmetic interventions. This journal is indexed on CAS. The manuscript 
management system is completely online and includes a very quick and fair peer-review system, which is all easy to use. Visit http://www. 
dovepress.com/testimonials.php to read real quotes from published authors.  

Submit your manuscript here: https://www.dovepress.com/clinical-cosmetic-and-investigational-dermatology-journal

Clinical, Cosmetic and Investigational Dermatology 2022:15                                                             DovePress                                                                                                                       1931

Dovepress                                                                                                                                                             Park et al

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://doi.org/10.1038/sj.onc.1207542
https://doi.org/10.1126/science.1106148
https://doi.org/10.1038/ncomms13226
https://doi.org/10.1371/journal.pone.0180853
https://doi.org/10.1158/1940-6207.CAPR-12-0272-T
https://doi.org/10.18632/oncotarget.14299
https://www.dovepress.com
http://www.dovepress.com/testimonials.php
http://www.dovepress.com/testimonials.php
https://www.facebook.com/DoveMedicalPress/
https://twitter.com/dovepress
https://www.linkedin.com/company/dove-medical-press
https://www.youtube.com/user/dovepress
https://www.dovepress.com
https://www.dovepress.com

	Introduction
	Materials and Methods
	Preparation of <italic>P.cocos</italic> Extracts
	Cell Culture and Drug Treatment
	Cell Viability Analysis
	Immunocytochemistry
	Immunoblot Analysis
	Liquid Chromatography–Mass Spectrometry Analysis (LC/MS)
	Statistical Analysis

	Results
	EPC Promotes the Expression of AQP3 in Keratinocytes Without Affecting AQP1 and AQP2
	PI3K/Akt Pathway is Involved in EPC-Induced AQP3 Upregulation
	EPC Activates mTOR Signaling in Keratinocytes
	Inactivation of mTOR Signaling Partially Blocks EPC-Induced AQP3 Upregulation
	Analysis of Active Candidate Components from EPC
	PA Promotes the Expression of AQP3 in Keratinocytes

	Discussion
	Conclusion
	Data Sharing Statement
	Ethics Statement
	Author Contributions
	Funding
	Disclosure
	References

