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Aim: This study focuses on constructing of an anti-inflammatory drug delivery system by encapsulation of berberine in the β-glucan 
nanoparticles and evaluates its effect on treating ulcerative colitis.
Methods: β-Glucan and the anti-inflammatory drug berberine (BER) are self-assembled into nanoparticles to construct a drug 
delivery system (GLC/BER). The interaction between the drug and the carrier was characterized by circular dichroism, ultraviolet- 
visible spectroscopy, and dynamic light scattering. The anti-inflammatory effect of the GLC/BER was evaluated through 
a lipopolysaccharide (LPS)-induced RAW264.7 macrophage inflammation model and a sodium sulfate (DSS)-induced C57BL/6 
mouse ulcerative colitis model.
Results: The GLC/BER nanoparticles have a particle size of 80–120 nm and a high encapsulation efficiency of 37.8±4.21%. In the 
LPS-induced RAW264.7 macrophage inflammation model, GLC/BER significantly promoted the uptake of BER by RAW264.7 
cells. RT-PCR and ELISA assay showed that it could significantly inhibit the inflammatory factors including IL-1β, IL-6 and 
COX-2. Furthermore, GLC/BER shows inhibiting effect on the secretion of pro-inflammatory factors such as IL-1β and IL-6, 
down-regulating the production of nitrite oxide; in animal studies, GLC/BER was found to exert a relieving effect on mice colitis.
Conclusion: The study found that GLC/BER has an anti-inflammatory effect in vitro and in vivo, and the GLC carrier improves the 
potency and bioavailability of BER, providing a new type of nanomedicine for the treatment of colitis.
Keywords: β-glucan, chiral, drug carrier, immunoregulation, anti-inflammation

Introduction
Inflammatory bowel disease (IBD) is a non-specific chronic intestinal inflammatory disease that mainly includes 
ulcerative colitis (UC) and Crohn’s disease (CD).1,2 IBD is a common disease in Europe and America, and the incidence 
of IBD increases year by year in China.3 Inflammatory bowel disease may invade any part of the gastrointestinal tract and 
induce extra-intestinal manifestations. Patients with IBD often present with symptoms such as inflammation, diarrhea, 
abdominal pain, bloody stool, and weight loss.4,5 Treatment of IBD generally commonly starts with drug therapy, such as 
corticosteroids,6 amino salicylates,7 antibiotics,8 supportive drugs9 and immunosuppressive drugs.10 Therapeutic drugs 
take effect quickly, but often suffer from various side effects. Natural compounds extracted from vegetable or fruit can 
not only suppress intestinal inflammation but also improve intestinal epithelial barrier function and regulate intestinal 
flora.11,12 To deliver natural compounds to gut without damage by gastric acid, nano-delivery systems may be 
a promising solution. Compared with synthetic nanoparticles, biopolymer nanoparticles have advantages of high 
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biocompatibility and biodegradability. Nanoparticles based on gelatin,13 cellulose,14 and chitosan15 have been used to 
deliver anti-inflammatory compounds to colonic epithelium with improved therapeutic effects.

β-Glucan is a natural polysaccharide with immune-modulating activities which can be developed as adjuvants in 
anti-inflammatory,16 anti-cancer,17 anti-bacterial18 and anti-viral therapies.19 β-Glucan can be found in biological 
tissues such as fungi cell wall or bacterial secreta where the glucan chains are packed in highly stable triple helical 
conformation. β-Glucan can take up to 40% of the dry mass of yeast cell wall.20,21 Previous studies has used yeast 
cell wall as a delivery vehicle to deliver a wide range of drugs to immune cells.22–24 However, the preparation 
process of cell wall-based delivery vehicle is complex and difficult to control. The size of cell wall is typically ~5 
μm, which must be sharply reduced if a nanoparticle delivery vehicle is intended. β-Glucan is packed in crystalline 
fibrillar form in cell wall, which cannot be easily disassembled and dissolved in cold or hot water.25 A number of 
solvent systems can be used to dissolve β-glucan such as formic acid, diluted NaOH/water solution and organic 
solvent like Li/DMAc or DMSO.26–29 β-Glucan can be dissolved in alkaline solution containing 0.1–0.2 M NaOH. 
When water was added in β-glucan/NaOH solution, β-glucan chains can renature into triple helix and further pack 
into nanoparticles. The solvent-driven self-assembly process of β-glucan in solution can be exploited to load drugs 
and construct β-glucan-based nanoparticle drug delivery systems.30,31 However, up to now, there have been no reports 
of berberine-loaded β-glucan nanoparticles as anti-inflammatory drug delivery system.

In this study, we prepared an anti-inflammatory nano-delivery system based on berberine (BER) and yeast β-glucan 
(GLC) through solvent-driven self-assembly. The main assumption is that the helical structure of GLC can carry and 
deliver the drug BER specifically to macrophage cells and relieve DDS-induced colitis (Figure 1). The encapsulation of 
BER by GLC is studied by UV-Vis and circular dichroism spectroscopy. The drug release profile is studied at different 
pH conditions simulating pathological and healthy intestinal microenvironment. The anti-inflammatory effects of GLC/ 
BER were first evaluated by its ability to inhibit the production of inflammatory-related mRNA, NO and cytokines in 
a RAW 264.7 cell model. Later, the GLC/BER was administered orally in a DDS-induced mice colitis model to study its 
effects on the treatment of ulcerative colitis.

Figure 1 The preparation of GLC/BER and the proposed therapeutic effect on colitis.
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Experimental Section
Materials
Yeast cell wall particles (Baker’s yeast) were purchased from Tiantian Bioengineering & Technology Co., Ltd (China) 
(purity: 99%). Berberine (BER) was purchased from Yuanye Bio-Technology (Shanghai, China). Dulbecco’s Modified 
Eagle Medium (DMEM, glutamine, high glucose), penicillin, streptomycin and fetal bovine serum (FBS) were purchased 
from HyClone (USA). Dialysis tube (MW cutoff, 1.4 kDa) was purchased from Spectrum Labs (Seoul, Korea). Other 
reagents used in this work were purchased from Shanghai Aladdin Chemicals unless otherwise specified.

Preparation of GLC and GLC/BER
GLC and GLC/BER were prepared by pH-induced self-assembly. For the GLC, powder of β-glucan was suspended in 
deionized water (1 mg/mL, 9 mL). To the suspension, NaOH solution was added to adjust the pH to 13.0. For the GLC/BER, 
1.0 mL of BER water solution (BER: 1.0 mg/mL) was added and the resulting mixture was stirred for 5 min. Next, HCl 
solution was added into the mixture solution to adjust the pH to 7.4. Free BER was removed by dialysis in water for 2 d.

Characteristics
Drug loading capacity. The drug loading efficiency (DLE) was defined as the weight percentage of BER in the GLC, and 
drug encapsulation efficiency (DEE) was defined as the weight percentage of loaded-BER in the GLC and the given 
BER. Firstly, BER solutions of various concentrations were prepared, and the absorbance at 481 nm was measured to 
generate a calibration curve for the DLE and DEE calculations from various GLC. Secondly, in order to determine the 
DLE and DEE, 2.0 mg of lyophilized complex was dispersed in 1 mL of deionized water at room temperature, followed 
by dilution with 9 mL of DMSO to completely expose the encapsulated BER. The obtained solution was examined by 
UV–vis spectroscopy at a wavelength of 345 nm. DLE (%) and DEE (%) were calculated according to the following 
equations:

Ultraviolet and visible spectrum (UV−vis). Absorption spectra from the GLC, GLC/BER solution were taken with 
a double-beam UV−vis spectrometer (Shimadzu UV-2101PC) in a 0.1 mm/0.2 mm demountable quartz cell (Hellmar 
GmbH, Germany) with the range of 200−400 nm.

Circular Dichroism spectra (CD). The CD spectra were recorded on a Chirascan CD spectrophotometer (Applied 
Photophysics, UK). CD spectra were determined over the range of 300−400 nm using a quartz cell with 0.1 mm path 
length. Scans were taken at a rate of 30 nm/min with a sampling interval of 1.0 nm and response time of 1 s at room 
temperature.

Diameter and size distribution. The diameter and size distribution of the obtained GLC, GLC/BER were evaluated by 
dynamic light scattering (DLS, Malvern Nano-ZS, UK) at sample concentration 1.0 mg/mL.

Transmission electron microscopy (TEM). TEM micrographs of the nanoparticles esters were taken with a Hitachi 
7650 transmission electron microscope with an acceleration voltage of 80 kV. The particles were stained with a 2% 
aqueous solution of phosphotungistic acid and were deposited on a carbon-coated grid without any treatments.

Drug release in vitro. The BER release was assessed in simulated gastric fluid (pH 1.2, 0.04 m HCl, 2 h), intestinal 
fluid (pH 6.8, 0.1 m PBS buffer, 4 h) and colon fluid (normal: pH 7.4, 0.1 m PBS buffer; IBD: pH 3.5, 0.1 m PBS buffer 
adjusted by HCl, 42 h) to simulate normal and colitis gastrointestinal tract (GI) with a dialysis method. In detail, 5 mg 
GLC/BER dispersed in 1 mL 0.9% NaCl solution was dialyzed using a dialysis tube (MwCO 8000−12,000) against 
80 mL of simulating buffer under gentle shaking (70 rpm) at the constant temperature of 37°C; 1 mL of simulating 
medium containing the released BER was collected for UV measurement at desired time points, followed by replenishing 
rapidly equal volume of fresh medium. The concentration of the released drug in the collected medium was measured 

International Journal of Nanomedicine 2022:17                                                                                   https://doi.org/10.2147/IJN.S379792                                                                                                                                                                                                                       

DovePress                                                                                                                       
5305

Dovepress                                                                                                                                                               Xu et al

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


using a UV–vis spectrophotometer at 345 nm, and the accumulated drug release was calculated. All the drug loading and 
release experiments were performed in triplicate to determine means and SD.

Cell Experiments
Cell culture. Monocyte-like macrophage RAW264.7 cell and epithelial cell Caco-2 were purchased from Nanjing 
Cobioer Biosciences Co., LTD. Cells were cultured in Dulbecco’s Modified Eagle’s Medium (DMEM) supplemented 
with 10% fetal bovine serum, 100 IU/mL penicillin, and 100 μg/mL streptomycin at 37°C in a humidified atmosphere 
with 5% CO2.

Cellular uptake. The cellular uptake of GLC/BER and free BER were examined by fluorescence microscopy. Briefly, 
RAW264.7 (5 × 105 cells per well) and Caco-2 (2 × 105 cells per well) at logarithm phase were seeded in 24 well cell 
culture plates, respectively. After incubated for 24 h, GLC/BER or free BER dissolved in PBS at 5 mg/L was added to 
replace the media in each well. After further incubated for 1 h, and 4 h, the media were removed and these wells were 
rinsed with PBS (pH = 7.4) and then were observed using Nikon microscope (TE2000-U, Nikon, Japan).

Reverse transcription-PCR (RT-PCR). Total RNA was extracted from RAW264.7 cells using Trizol reagent 
(Invitrogen Corp., USA), according to the manufacturer’s instructions. cDNAs were synthesized from 1 μg of total 
RNA from each sample using a high-capacity cDNA reverse transcription kit (Applied Biosystems, USA) and were 
amplified with mouse-specific primers for COX-2, IL-1β, IL-6.

Western blotting analysis (WB). Total proteins from RAW264.7 cells were extracted and analyzed by Western 
blotting according to the reported method.

Cytokine assay. NO concentration in the medium supernatant of RAW264.7 cells was determined by the Griess 
reaction. IL-1β and IL-6 cytokines were assessed using ELISA kits according to the manufacturer’s instructions (Dakewe 
Biotech Corporation).

Animals and Experimental Protocols
Eight-week-old female C57BL/6 mice weighing 18–20 g were purchased from the Guangdong Medical Laboratory 
Animal Center. All animal procedures were approved by the Committee on Animals of the Jinan University. All animal 
procedures were performed in accordance with the guidelines of the Committee on Animals of the Jinan University (No. 
SQ2021-0241).

Mice were housed under controlled room temperature (22 ± 2 °C) and humidity (55 ± 5%) on a 12 h light–dark cycle 
with free access to water and diets, and were randomly divided into 5 groups (the control group; 3% DSS group; 3% DSS 
+ 60 mg/kg/day GLC group; 3% DSS + 2.2mg/kg/day BER group, 3% DSS + 60 mg/kg/day GLC/BER group, 5 mice/ 
group). The mice in the control group were supplied with distilled water, whereas all other experimental groups were 
given 3% DSS from day 1 to day 5 and supplied with distilled water from day 6 to day 10. Besides, the mice in the GLC, 
BER, and GLC/BER-treated groups were administered by gavage from day 1 to day 9 and the mice in CTRL and DSS 
group were administered with equal volume of saline as comparison, respectively.

Evaluation of disease activity index (DAI). The DAI was established by scoring the changes in body weight loss, 
diarrheal condition and fecal bleeding. The DAI is the sum of the score of these three parameters. Each score was 
determined according to the reported method. At the end of the experiment, all mice were sacrificed; colons were 
dissected from each mouse, and the lengths between the ileo-cecal junction and anal verge were measured.

Histological Score. The harvested colons of mice were gently washed with ice-cold PBS, fixed in 4% paraformalde-
hyde overnight and embedded in paraffin. After slicing, hematoxylin and eosin (H&E) staining was performed. The 
histological scoring system is determined according to the reported method.

Result and Discussion
Characterizations of GLC/BER
Photos of GLC, BER and GLC/BER in solution are shown in Figure 2A. It can be seen that BER has poor solubility in 
water and large insoluble aggregates can be seen inside of the vial. In contrast, the suspension of GLC/BER was highly 
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homogeneous with no visible precipitation, suggesting that the dispersion of BER can be improved by GLC. In addition, 
GLC/BER remained stable after 2 months with no visible aggregation or precipitation, indicating a high extent of 
stability. Figure 2B shows the nanoparticle size distribution of GLC and GLC/BER using dynamic light scattering. As 
shown in the figure, the size of individual GLC is distributed between 30 nm and 60 nm with an average particle size of 
32 nm, while the size of GLC/BER is distributed between 60 nm and 120 nm with an average particle size of 72 nm. 
TEM images show that the GLC and GLC/BER nanoparticles have a spherical morphology and the particle size was 
increased after the drug loading process. The increase in particle size can be interpreted as the encapsulation of BER in 
GLC nanoparticles.

UV-Vis spectroscopy was used to study the interaction between GLC and BER. As is shown in Figure 2C, BER 
shows 3 distinctive peaks at 232, 263 and 345 nm, respectively. After complexed with GLC, the λmax of the peaks red- 
shifted to 228, 260 and 337 nm, respectively, and the latter two peaks show a significant decline of intensity. This red- 
shift is commonly seen when hydrophobic molecules were encapsulated inside of the helical structure of β-glucan, 
indicating that BER may form non-covalent complex with GLC.

Figure 2 Characterizations of GLC and GLC/BER. Photographs of GLC, BER and GLC/BER in solution, Inset: TEM images of the nanoparticles (A); DLS results and particle 
size distribution of GLC and GLC/BER (B); UV spectrum analysis of BER and GLC/BER (C); CD spectra of BER and GLC/BER (D).
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Circular dichroism spectroscopy was used to study the interaction between GLC and BER. As β-glucan is a helical 
polysaccharide with distinctive chirality, it can affect the CD signals of hosted molecules when special interaction 
occurred. As is shown in Figure 2D, the CD spectra of BER alone shows a negative shoulder peak at around 322 nm and 
a positive peak at 387 nm. After complex of BER with GLC, the CD spectra change significantly. The shower peak at 
322 nm transformed into a sharp peak with increased intensity, and the positive peak shifted from 387 nm to 365 nm (22 
nm of red-shift). As β-glucan has no CD signals due to the lack of chromophores on the backbone, the change of CD 
signals can be directly attributed to the encapsulation of BER in the helical structures of β-glucan. Taken together, the 
results demonstrated that the hydrophobic drug BER can be loaded in the helical structures of GLC in the form of 
homogeneously dispersed nanoparticles.

Entrapment Efficiency and Release Rate of GLC/BER
As shown in Table 1, β-glucan was used as the drug carrier to carry BER, and the content of BER in GLC/BER was 
determined to be 3.78%, with encapsulation efficiency of 28.4%. To explore the bioavailability of BER and further 
investigate the drug release characteristics of GLC/BER in a simulated intestinal environment. Simulating pH environ-
ment of normal colon (pH = 7.4) and colitis lesion colon (pH = 3.5), to explore the cumulative drug release rate of GLC/ 
BER in gastrointestinal tract environment with different pH values. The results are shown in Figure 3. The cumulative 
release in the acidic environment of simulated colitis lesion was increased compared with normal condition, and the 
cumulative release rate of GLC/BER in the colon region 24 h reached about 20.57%. The above results indicated that 
GLC/BER could improve the bioavailability of BER and facilitate targeted delivery of BER to immune cells located in 
the colon area, thus exerting a good anti-inflammatory effect.

Macrophage Targeting Effects of GLC/BER
It is well established that β-glucan can be recognized by the pattern recognition receptors on host immune cells and can 
be used as a natural targeting motif for macrophages. Macrophages are one of the major immune cells that penetrate into 
the inflammation site and generate inflammatory factors. In order to evaluate the targeting ability of GLC/BER for 
macrophages, a series of cellular uptake assays were performed using RAW264.7 cells with a control group of Caco-2 
cells (an epithelial cell line). RAW264.7 and Caco-2 cells were incubated with GLC/BER suspension, and imaged by 
a fluorescence microscopy. As is shown in Figure 4, there is no difference in the absorption of BER and GLC/BER by the 
RAW 264.7 cells at 1h. However, a robust green fluorescence can be observed in macrophage cells after treatment with 
the GLC/BER at 4h, while BER alone is hardly internalized under the same condition. The results indicate that GLC can 
promote the uptake of BER by macrophages, therefore increasing the bioavailability of BER. In contrast, GLC/BER was 
hardly internalized by Caco-2 cells at a similar condition, indicating that GLC/BER has no targeting effects for non- 
immune cells.

The in vitro Anti-Inflammatory Effects of GLC/BER
According to reports, COX-2, IL-1β, IL-6 and other inflammatory cytokines are related to the pathogenesis of many 
diseases, such as rheumatoid arthritis, Crohn’s disease and encephalomyelitis. LPS is the active substance of gram-negative 
bacteria, which are well-known macrophage activators that can activate Toll-like receptor 4 (TLR4), inducing 
RAW264.7s macrophage cells to produce large amounts of NO and other inflammatory factors, such as IL-1β, IL-6, etc. 
Therefore, RAW264.7 inflammatory cell model stimulated by LPS was employed to study the anti-inflammatory activity of 
GLC/BER drug delivery by RT-qPCR experiments. As is shown in Figure 5A–C, GLC/BER exhibits strong inhibition 
effect on the production of inflammatory-related mRNA including COX-2, IL-1β, IL-6 in RAW264.7 cells; down-regulate 

Table 1 Drug Loading Efficiency and Drug Encapsulation Efficiency of GLC/BER

Drug Carrier Drug Loading Efficiency Drug Encapsulation Efficiency

GLC/BER 3.53% 35.3%
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s the secretion of NO in a Griess assay; and decrease the secretion of inflammation-associated factors of IL-1β and IL-6 
measured by ELISA experiment. The anti-inflammatory effects of GLC/BER is also higher than that of GLC and BER 
alone.

GLC/BER Alleviates DSS-Induced Colitis in Mice
The DSS-induced acute colitis model in mice is simple to establish and has similar characteristics to human ulcerative 
colitis. Therefore, it is widely used in the research of inflammatory bowel disease. Because GLC/BER can promote the 
effect of macrophages on drugs ingestion and significantly inhibit LPS-induced cell inflammation, the therapeutic effect 
of GLC/BER in acute colitis was further evaluated. The experimental protocol of this study is shown in Figure 6A. First, 
3% DSS was used to create a model for 5 days, and the drug was administered on the first day of model building for 
a total of 9 days. Finally, the mice were killed on the 10th day and the samples were taken.

Weight change and colitis animal disease activity index are the criteria for evaluating colitis modeling and treatment 
effects. First, as shown in Figure 5B and C, the body weight of the mice in the normal group increased during the test, 
while the DSS model mice began to lose weight significantly on the sixth day of the experiment, and reached the lowest 

Figure 4 The uptake of BER (A, C, E and G) and GLC/BER (B, D, F and H) in RAW264.7/Caco-2 cells was determined after incubation for 1h and 4h.

Figure 3 Cumulative release statistics of GLC/BER in vitro under different gastrointestinal conditions (48h).
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value on the eighth day. In addition, DSS model mice developed drowsiness, loose stools, and bloody stools. Severe 
diarrhea began on the fifth day. Obvious weight loss and clinical symptoms showed that 3% DSS successfully induced 
colitis. Compared with the DSS group, mice in the GLC, BER, and GLC/BER groups also showed similar clinical 
symptoms after the sixth day. In addition, the weight loss of GLC group and BER group was similar to that of DSS 
group, indicating that β-glucan and berberine alone had no significant therapeutic effect on colitis, while the weight loss 
rate of GLC/BER group mice was the slowest, and maintained the minimum weight loss rate in all the administration 
groups, indicating that GLC/BER has a better therapeutic effect.

In view of the DSS successfully induced severe clinical symptoms in mice with colitis, the mice’s drinking water was 
replaced with normal water from the sixth day to slightly alleviate the over-severe colitis in mice. After alleviation and 
continuous administration treatment, the mice in the GLC/BER administration group were the first to regain their vitality and 
stopped appearing blood in the stool at the same time, while the other administration groups were not much different from the 
model. The above results indicate that DSS can successfully induce colitis in mice, while the GLC, and BER groups have no 
efficacy in treating colitis in mice. This can be attributed to the fact that the GLC/BER drug carrier group can effectively 
improve the bioavailability of BER, so as to treat colitis in mice and alleviate the rapid weight loss of mice.

In addition, the length of the colon and histopathological section are also important criteria for evaluating the severity 
of colitis. As shown in the Figure 6D and E, the average length of the colon of the control group is significantly longer 
than that of the DSS group, which is consistent with the data reported that DSS-induced colitis will cause the colon to 
shorten. Compared with the DSS group, it can be observed that the GLC/BER group has increased colon length, 
indicating that the GLC/BER group can partially alleviate DSS-induced colitis.

The histopathological section of the colon was further evaluated. As is shown in Figure 7, DSS caused severe mucosal 
damage, crypt loss, and necrosis. At the same time, extensive macrophage infiltration can be observed. Macrophages play 

Figure 5 The effects of GLC, BER and GLC/BER on the mRNA expression of COX-2, IL-1β, IL-6 (A) and IL-1β, IL-6 (B) and NO (C) secretion of RAW264.7 macrophages 
induced by LPS after incubation for 12 hours. Each value represents the mean ±SEM of three separate experiments. Each group was compared with the cell blank control 
group. **p<0.01, ***p<0.001, ****p<0.0001.
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a key role in the pathophysiology of colitis, and their infiltration of the colon can aggravate inflammation. As is shown in the 
histopathological images, GLC/BER-treated group shows a relieved symptoms of macrophage infiltration and damage of 
colonic tissues. The possible reason is that GLC promotes cell internalization through related receptors on the cell surface of 
macrophages, thereby increasing the uptake and anti-inflammatory effect of BER.

Figure 6 Effects of GLC/BER on alleviating the symptoms of DSS-induced colitis in mice. Experimental protocol of DSS -nduced colitis in mice (A); Body weight change (B); 
DAI score (C); Statistical analysis of colon length (D); Representative view of colon (E). Data were presented as mean standard deviation (n=6). Each group was compared 
with the DSS group, *P<0.05, **P<0.01, ****P<0.0001.
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Figure 7 H&E staining of colonic sections at 100 and 200 magnification. CTRL (A); DSS (B); DSS+GLC (C); DSS+BER (D); DSS+GLC/BER (E); Colon histopathological 
injury score (F). Organ tissue sections of control and GLC groups (G), *P<0.05, ***P<0.001.
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Conclusions
The yeast-derived β-glucan is used to construct a drug delivery vehicle, which effectively delivers the drug molecule 
berberine to the colon site and plays a significant role in the treatment of colon inflammation. The experimental results 
showed that β-glucan with triple helix structure can encapsulate BER at a high drug loading efficiency. GLC/BER can 
promote the uptake of berberine by macrophages, inhibit LPS-induced inflammation in RAW264.7 cell model, and 
alleviate the tissue damage caused by DDS-induced ulcerative colitis in a mice model. This work provides a new insight 
for the development of oral drug delivery systems for the treatment of colitis.
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