
O R I G I N A L  R E S E A R C H

Selenium-Modified Chitosan Induces HepG2 Cell 
Apoptosis and Differential Protein Analysis
Su-Jun Sun1, Peng Deng1, Chun-E Peng1, Hai-Yu Ji2, Long-Fei Mao1, Li-Zeng Peng1

1Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing Ministry of 
Agriculture, Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, People’s Republic of China; 2Center for 
Mitochondria and Healthy Aging, College of Life Sciences, Yantai University, Yantai, People’s Republic of China

Correspondence: Li-Zeng Peng, Tel +86-159-5412-8918, Email penglizeng@sdnu.edu.cn 

Introduction: Chitosan is the product of the natural polysaccharide chitin removing part of the acetyl group, and exhibits various 
physiological and bioactive functions. Selenium modification has been proved to further enhance the chitosan bioactivities, and has 
been a hot topic recently.
Methods: The present study aimed to investigate the potential inhibitory mechanism of selenium-modified chitosan (SMC) on HepG2 
cells through MTT assays, morphological observation, annexin V–FITC/PI double staining, mitochondrial membrane potential 
determination, cell-cycle detection, Western blotting, and two-dimensional gel electrophoresis (2-DE).
Results: The results indicated that SMC can induce HepG2 cell apoptosis with the cell cycle arrested in the S and G2/M phases and 
gradual disruption of mitochondrial membrane potential, reduce the expression of Bcl2, and improve the expression of Bax, 
cytochrome C, cleaved caspase 9, and cleaved caspase 3. Also, 2-DE results showed that tubulin α1 B chain, myosin regulatory 
light chain 12A, calmodulin, UPF0568 protein chromosome 14 open reading frame 166, and the cytochrome C oxidase subunit 5B of 
HepG2 cells were downregulated in HepG2 cells after SMC treatment.
Discussion: These data suggested that HepG2 cells induced apoptosis after SMC treatment via blocking the cell cycle in the S and G2 

/M phases, which might be mediated through the mitochondrial apoptotic pathway. These results could be of benefit to future practical 
applications of SMC in the food and drug fields.
Keywords: selenium-modified chitosan, antihepatoma activity, mitochondrial apoptotic pathway, differential protein analysis

Introduction
Hepatocellular carcinoma (HCC; liver cancer) is one of the most widespread malignancies and the second–most common 
inducement of cancer-related deaths in the world.1,2 Modern studies have focused on developing novel chemotherapeu
tics to induce cancer-cell apoptosis with few side effects.3–5 Apoptosis, a process of self-controlling suicide death, is 
mainly caused by intrinsic and extrinsic mechanisms.6,7 External pathways involve ligand binding to activate death 
receptors and then trigger death-inducing signaling.8,9 Intrinsic pathways, including mitochondrial pathways, can reduce 
the permeability of mitochondrial membranes and release cytochrome C into cytoplasm, leading to the activation of 
caspase families and the occurrence of cell apoptosis.10,11

Selenium is an essential microelement with various biological functions in both humans and animals that has been 
extensively studied in clinical trials.12–14 Relevant research suggests that an inverse relationship exists between selenium 
intake and cancer incidence, and selenium levels are usually lower in cancer patients.15,16 As reported, a deficiency in 
selenium can cause many serious health issues, including cardiovascular diseases, immunosuppression, and certain 
cancers.17,18 Organic selenium compounds combining polysaccharides and proteins have presented outstanding applica
tion prospects in synthetic organic and medicinal chemistry, and have recently gained considerable interest all over the 
world.19,20

Chitosan is a partially deacetylated product of chitin that widely exists in the cell walls of fungi and the exoskeletons 
of some shellfish, such as lobsters and crabs.21 It has been extensively adopted in the pharmaceutical and biomedical 
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fields because of its favorable biocompatibility, good bioadhesivness, and low toxicity.22 Highly purified preparations of 
chitosan can activate the NOD-like receptor family and NLRP3 inflammasomes in primed mouse bone marrow–derived 
macrophages, which induce a robust IL1β response in mouse dendritic cells, peritoneal macrophages, and human 
peripheral blood mononuclear cells. Studies have found that water-soluble chitosan can significantly inhibit the growth 
of liver cancer cells in a dose-dependent manner.23

Selenium-modified chitosan (SMC) is an organic selenium compound formed by complexing chitosan and selenium, 
thus offering the dual functions of both. Compared to inorganic selenium, SMC has been proved to possess stronger 
antitumor functions and lower toxicity in cancer patients.24,25 In our previous study, SMC with a molecular weight of 
approximately 4827 Da was successfully synthesized by introducing a stable selenium radical (–SeO3−) to C6–OH, C3– 
OH, or–NH2 groups, and was able to effectively induce K562 cell apoptosis in a dose- and time-dependent manner 
in vitro.26 Subsequently, the antitumor mechanisms of SMC in A549 cells in vitro were investigated, and it was 
demonstrated that SMC induced A549 cell apoptosis via a reactive oxygen species–mediated mitochondrial apoptosis 
pathway, which upregulated Bax and downregulated Bcl2, promoted cytochrome C release from mitochondria to 
cytoplasm, and activated cleaved caspase 3.27 Then, apoptosis in A549 cells induced by SMC via the Fas–FasL 
signaling pathway was confirmed by our research group, which demonstrated that SMC could trigger S- and G2 

/M-phase arrest in A549 cells via upregulating the expression levels of Fas, FasL, and Fadd, and then activating the 
caspase cascade.28

However, to our knowledge, the in vitro antitumor mechanisms and differential protein analysis of SMC in HepG2 
cells (one kind of human hepatocellular carcinoma cells) has not been investigated yet. Therefore, in order to expand 
the spectrum of SMC-induced apoptotic cells and extend areas of SMC applications, this research evaluated the 
cytotoxic effects of SMC on HepG2 cells and investigated the underlying mechanisms of cell apoptosis at the DNA 
and protein levels, which could provide a theoretical basis for the further practical applications of SMC in the food and 
drug fields.

Methods
Reagents
MTT, dimethyl sulfoxide (DMSO), reactive oxygen species assay kit, annexin V–FITC/PI apoptosis detection kit, and 
rhodamine 123 assay kit were bought from Solarbio Science & Technology (Beijing, China). Specific β-actin, Bax, Bcl2, 
cytochrome C, caspase 3, and caspase 9 antibodies were obtained from Tianjin Sungene Biotech (Tianjin, China). The 
other relevant chemicals and solvents were of analytical grade. The HepG2 cells (human liver cancer) were bought from 
the Shanghai Institute of Biological Sciences of the Chinese Academy of Sciences (Shanghai, China), and RPMI 1640 
culture medium was employed for cell culture and SMC application.

Preparation of SMC
SMC was synthesized as described previously, and the chemical structure and molecular weight distribution of SMC are 
shown in Figure 1.27 Briefly, acetic acid solution (100 mL, 5%) was employed for 10 g chitosan dissolution, and then the 
chitosan supernate and SeO2 (10:1, v/w) were mixed under vacuum at 45°C for 24 h. Finally, the SMC was obtained after 
dialysis (molecular weight cutoff 1000 Da) against distilled water.

MTT Assay
The inhibitory effects of SMC on HepG2 cells were detected using MTT assay. HepG2 cells (100 μL) at a concentration 
of 5×104 cells/mL were seeded in 96-well plates under 37°C with 5% CO2 and then cocultured with SMC (25, 50, 100, 
200, 400, and 800 μg/mL) for 24, 36, and 48 h. Then, 20 μL MTT solution of 50  μg/mL was added to each well and 
incubated for 4 h and 150 μL DMSO added to dissolve formazan.29 The positive control was 5-Fu treatment, and the 
negative control was no medical treatment. Finally, optical density (OD) values were evaluated using a microplate reader 
(model 680, Bio-Rad, Hercules, CA, USA) at 490 nm wavelength. The inhibitory effects were calculated by the formula 
(1 – average absorbance/control group average absorbance) × 100%.
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Morphological Observation
HepG2 cells (3 mL) were evenly inoculated into six-well plates at a concentration of 105 cells/mL. After treatment with 
different concentrations of SMC (200 μg/mL) for 0, 24, 36, and 48 h, these HepG2 cells were photographed under an 
inverted optical microscope (Eclipse Ti, Nikon, Japan).30

Annexin V–FITC/PI Staining
HepG2 cells were harvested after incubation with SMC (200 μg/mL) for 0, 24, 36, and 48 h. Detached cells were 
collected by centrifugation (1000 rpm, 5 min) and attached cells by trypsinization (without EDTA). They were washed 
twice in PBS, resuspended in binding buffer, and adjusted to 2 × 105–5 × 105/mL. Annexin V–FITC (250 μg/mL, 5 μL) 
and PI (20 μg/mL, 5 μL) were added in turn, then stained for 10 min in darkness. Subsequently, the samples were 
processed and analyzed using flow cytometry (BD FACSCallibur, NJ, USA).

Measurement of MMP
HepG2 cells were harvested by trypsinization after incubated with SMC (200 μg/mL) for 0, 24, 36, and 48 h. They were 
washed (1000 rpm, 5 min) twice with PBS, and resuspended in PBS. The suspended HepG2 cells (5 × 105/mL, 1000 μL) 
were incubated with rhodamine 123, and the final concentration of 100  μg/mL kept at 37°C for 30 min in darkness. 
Finally, the stained cells were evaluated with flow cytometry (BD FACSCallibur, NJ, USA).

Figure 1 Chemical structure (A) and mass spectrum (B) of SMC.
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Cell-Cycle Analysis
Cell-cycle distributions of SMC-treated HepG2 cells were detected using PI staining. After SMC (200 μg/mL) treatments 
for 0, 24, 36, and 48 h, the cells were harvested and washed twice (1000 rpm, 5 min) in cold PBS, then fixed with 70% 
cold ethanol and stored at −20°C overnight. The fixed cells were washed twice with PBS, then incubated with RNase 
A (0.1 mg/mL) at 37 °C for 30 min and 50 μg/mL PI solution at 4°C for 10 min. These stained cells were measured by 
flow cytometry (BD FACSCallibur, NJ, USA) and the data analyzed with ModFit LT software.

Western Blot Analysis
After SMC (200 μg/mL) treatments for 0, 24, 36, and 48 h, the HepG2 cells were collected and lysed in RIPA cell-lysis 
buffer for 30 min and protein content determined using Coomassie blue staining. The protein samples were separated 
through 12% SDS-PAGE and then transferred to nitrocellulose membranes. Subsequently, these films were cut into 
strips according to the molecular weights of the target proteins and stained with the diluent (1:1000) Bcl2, Bax, 
cytochrome C, caspase 3, caspase 9, and β-actin antibodies, then horseradish peroxidase–conjugated secondary anti
bodies were used to incubate them for 2 h. Subsequently, an ECL-detection kit was used to assist the determination of 
specific protein expression on films. Finally, these films were photographed and analyzed by Quantity One software (Gel 
Imager; Bio-Rad, Hercules, CA, USA).

SDS-PAGE and 2-DE Analysis
The immobilized pH gradient strips (pH 3–10, linear, 11 cm, GE) were employed for further separation of total proteins 
in SMC-treated HepG2 cells (200 μg/mL, 36 h). The voltage settings for isoelectric focusing were 2 h at 50 V, 1 h at 100 
V, 2 h at 500 V, 1 h at 1000 V, and then kept at 8000 V for 3 h. After isoelectric focusing and equilibration, the 12% SDS- 
PAGE gels were used to isolate these proteins based on molecular weights at 30 mA/gel for 1 h and 90 mA/gel for 2 
h. Subsequently, the proteins were visualized through Coomassie brilliant blue staining and the differential proteins were 
identified using a MicroTOF-Q II.

Statistical Analysis
All experimental values are expressed as mean ± SD, and p<0.05 was considered significant using Student’s t-test.

Results
Inhibition Effects of SMC on HepG2 Cells
The MTT assay has been widely applied in cell-viability analysis for various kinds of cells,31 and was developed by 
Mossman.32 MTT was transferred into insoluble formazan crystals after reacting with succinate dehydrogenase in 
mitochondria of living cells, then DMSO was employed for crystal dissolution, and these soluble liquids were detected 
using a microplate reader.33 The results revealed that SMC inhibited HepG2 cell proliferation in a dose- and time- 
dependent manner (Figure 2). The inhibition rates of HepG2 cells significantly improved as concentrations of SMC 
increased from 25 μg/mL to 200 μg/mL, and then increased very gently. When the concentration of SMC was 200 μg/mL 
after incubation for 36 h, the cell-inhibition rate reached 81.79% and no longer continued to increase remarkably, which 
was similar to that of the 5-Fu group (81.25 μg/mL).

Morphological Observation
Apoptosis is an ordered geneticitally controlled process of cell death34 that has several typical morphological features, 
including cell shrinkage, nuclear chromatin condensation, cytoplasmic vacuolation, plasma membrane isolation, nuclear 
fragmentation, and apoptotic body formation.35 The untreated HepG2 cells appeared normal morphologically, suggesting 
intact membrane and regular shape. After treatment with SMC, they were shrunken with apoptotic bodies, indicating the 
development of apoptosis (Figure 3).
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Annexin V–Fluorescein Isothiocyanate/Propidium Iodide Staining
As is known to us, phosphatidylserine transfers from the inner surface of the cell membrane to the outer surface in the 
early stage of apoptosis and shows high affinity with annexin V. Combining fluorescently labeled annexin V with nucleic 
acid dye PI staining on cells distinguishes early/late apoptosis and necrosis using flow cytometry.36,37 As shown in 
Figure 4, the proportions of (early apoptosis) annexin V+–PI– and (late apoptosis) annexin V+–PI+ HepG2 cells were 
significantly increased with the prolongation of SMC incubation. The total apoptotic rates of SMC-treated cells were 
increased from 1.16% to 12.33% and 63.63% and 81.00%, respectively. These results indicated that the HepG2 cells had 
induced apoptosis by SMC time-dependently.

Detection of Mitochondrial Membrane Potential
Rhodamine 123 was used to measure mitochondrial electric potential in intact cells by cytofluorometry. 
Increased fluorescence in cells reflects the electrophoretic accumulation of mitochondria.38 As shown in Figure 5, 
after staining with rhodamine 12, the proportions of cells in M1 and M2 ranges represented apoptotic cells 

Figure 2 Inhibitory effects of SMC on HepG2 cells with different concentrations (25–800 μg/mL) and time (24 h, 36 h, 48 h).

Figure 3 Morphological observation results of HepG2 cells after SMC treatments. 
Notes: (A) 0 h, (B) 24 h, (C) 36 h, (D) 48 h.
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(disruption of mitochondrial membrane potential [MMP]) and normal cells, respectively. The MMP of SMC-treated 
HepG2 cells obviously decreased with prolongation of SMC coculture compared with the control group, which 
indicated that SMC induced mitochondrial dysfunction during cancer-cell apoptosis.

Cell-Cycle Distribution
PI diffuses rapidly into cells with impaired cell membranes and binds to nucleic acids after treatment with RNA enzyme, 
and subsequently the results of cell-cycle analysis can be obtained using flow cytometry.39 The cell cycle of eukaryotic 
cells can be divided in two periods: the interphase, composed of the G0/G1 phase (growth preparation), S phase (synthesis 
of DNA), and G2 (mitosis preparation), and the M phase (cell division), which is involved in the separation of cells’ 
genetic materials.40 Figure 6 shows the cell-cycle distributions of HepG2 cells after SMC treatment for 24, 36, and 48 
h. The proportion of G2/M and S phases in HepG2 cells was significantly greater than in the control group in a time- 
dependent fashion, while the G0/G1-phase cells had significantly decreased. These data suggest that HepG2 cells 
underwent apoptosis by S- and G2/M-phase arrest.

Western Blotting
Western blotting analysis was conducted to determine apoptosis-related Bcl2, Bax, cytochrome C, caspase 3, and 
caspase 9 expression levels in HepG2 cells following SMC treatments for 0, 24, 36, or 48 h. As shown in Figure 7, 
a significant upregulation of Bax protein was discovered relative to the treated groups, while the expression of Bcl2 
was reduced. A conspicuous accumulation in cytochrome C was detected with the increase in time, consistent with 
the disruption of ΔΨm (Figure 7). Subsequently, compared with untreated HepG2 cells, the expression of caspase 3 
and caspase 9 gradually improved time-dependently in the SMC-treated groups. These results suggested that the 

Figure 4 Apoptosis rates of HepG2 cells induced by SMC. 
Notes: (A) 0 h, (B) 24 h, (C) 36 h, (D) 48 h.

Figure 5 Effects of SMC on mitochondrial membrane potential of HepG2 cells. 
Notes: (A) 0 h, (B) 24 h, (C) 36 h, (D) 48 h.
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cell-apoptosis mechanism in SMC-treated HepG2 cells was mainly connected with the mitochondrial pathway by 
changing the expression levels of Bcl2 and Bax and reducing the MMP, which led to the release of cytochrome 
C and the increase in cleaved caspase 3 and cleaved caspase 9.

Figure 6 Effects of SMC on HepG2 cell-cycle distribution at 0 (A), 24 (B), 36 (C), and 48 (D) h.

Figure 7 Expression of apoptosis-related proteins in HepG2 cells exposed to SMC for 0, 24, 36, and 48 h measured by Western blotting. (A) Expressions levels of β-actin, 
Bax, Bcl2 and CytC; (B) expression ratios of Bax, Bcl2, and CytC to β-actin and Bax/Bcl2; (C) expression levels of β-actin, pro/cleaved caspase 9 and pro/cleaved caspase 3; 
(D) expression ratios of pro/cleaved caspase 9 and pro/cleaved caspase 3 to β-actin. 
Note: **p<0.01 compared with untreated cells.
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Two-Dimensional Electrophoresis
Whole-protein maps using immobilized pH gradient strips (13 cm, pH 3–10) were established by 2-DE and analysed by 
PD Quest to identify the differential proteins with obvious changes. As shown in Figure 8, there were 14 differential 
proteins selected for further identification, and the results of numbers 1, 3, 4, 6, and 7 were consistent with their 
isoelectric points and molecular weights. The differentially expressed proteins obtained from the 2-DE gels were 
analyzed and identified by MALDI-TOF/TOF-MS. Finally, five protein spots (tubulin α1 B chain, myosin regulatory 
light chain 12A, calmodulin, UPF0568 protein C14orf166, and cytochrome C oxidase subunit 5B) were identified and are 
shown in Table 1.

Discussion
Cancer cells can proliferate without limitation because of the loss of cell-cycle regulation,41 and modern research 
has aimed to develop novel drugs or adjuvants for cancer treatments by inducing cell apoptosis. Mitochondria can 
trigger the apoptosis of tumor cells,42 resulting in a series of apoptotic indicators appearing, including cell shrinkage and 
nuclear fragmentation.43 In the present work, SMC induced HepG2 cell apoptosis by S- and G2/M-phase arrest, leading 
to disruption of MMP and morphological changes.

The mitochondrial pathway, a classical apoptosis signaling pathway, is always associated with mitochondrial 
dysfunction and the abnormal expression of related proteins.44,45 BCL2, an antideath gene, can suppress cell 

Figure 8 2-DE results of HepG2 cells from the control group (A) and SMC groups (B). 
Notes: The numerals 1–7 represent the seven differential proteins detected in this experiment.

Table 1 Identification of five differentially expressed proteins

Database Accession number Protein Molecular weight (Da) Isoelectric point Expression

1 NCBI gi/4507729 Tubulin α1 B chain 50,152 4.94 Decreased

3 NCBI gi/5453740 Myosin regulatory light chain 12 A 19794 4.65 Decreased

4 NCBI gi/5901912 Calmodulin 16,838 4.09 Decreased
6 NCBI gi/7706322 UPF0568 protein C14orf166 28,068 6.19 Decreased

7 NCBI gi/17017988 Cytochrome C oxidase subunit 5B 13696 9.07 Decreased
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apoptosis, while Bax can induce mitochondrial function disorder, leading to the release of various cell-apoptosis 
mediators.46,47 The relative expression ratio of Bax to Bcl2 is an important indicator of the state of cells.48 

Cytoplasmic cytochrome C has an apoptosis-promoting role in normal or cancer cells.49 In this study, SMC 
induced MMP disruption and improved the expression of Bax while decreasing that of Bcl2, leading to cytochrome 
C being released into cytoplasm and contributing to triggering of the apoptosis of HepG2 cells. Cytoplasmic 
cytochrome C may participate in activating caspase 9 in a manner dependent on adenosine triphosphate.50 

Subsequently, the active caspase 9 is expected to cleave caspase 3 and PARP51 and induce cell apoptosis via the 
mitochondrial signal pathway.52,53 In this study, the expression levels of cleaved caspase 9 and cleaved caspase 3 in 
SMC-treated HepG2 cells were obviously higher after activation by cytochrome C in cytoplasm, thereby initiating the 
apoptosis process.

It is known that α-tubulin plays important roles in reorganizing and dissembling microtubule combinations, thereby 
regulating the cell life cycle and mitosis. Its decreased expression can cause proliferation inhibition or apoptosis of 
cells.54 Myosin regulatory light chain 12A is the major regulatory domain in the formation process of globulin-catalyzed 
supramolecular complexes. Phosphorylation of myosin plays crucial roles in tumor-cell growth and invasion.13,55 

Calmodulin has become a potential target for cancer therapy.56,57 Some drugs exhibit antitumor effects via binding to 
calmodulin and altering the molecular conformation, thereby inhibiting calmodulin-regulated target enzymes, such as 
myosin light chain kinase, affecting cell metabolism, cell growth, and other biological activities.58 C14orf166 is an open- 
reading-frame sequence expressing protein products involved in the mitosis of cells and the formation of centrosome 
structures that is expressed in various tumor cell lines, although the mechanism of action in tumors remains 
unknown.59,60 Cytochrome C oxidase is an electron-transporting, rate-limiting enzyme that catalyzes the oxidation of 
reduced cytochrome C. Its abnormal expression can directly affect the oxidation of cytochrome C and trigger dysfunction 
among mitochondria, leading to excessive ROS accumulation and abnormal cell status.61–64 As such, the findings of 
lower expression levels of these proteins in SMC-treated HepG2 cells indicated that SMC effectively inhibited the 
proliferation of cancer cells, reduced their viability, caused mitochondrial dysfunction, and finally resulted in HepG2 cell 
apoptosis, which is consistent with previous results.

Conclusion
Our results demonstrated that SMC caused the mitochondrial dysfunction of HepG2 cells by arresting the cell cycle in 
the S and G2/M phases and inducing apoptosis via the mitochondrial apoptotic pathway. Tubulin α1 B chain, myosin 
regulatory light chain 12A, calmodulin, UPF0568 protein C14orf166, and cytochrome C oxidase subunit 5B expression 
levels in SMC-treated HepG2 cells all decreased, which further indicated that cell apoptosis was mediated through 
mitochondria. These results could provide a theoretical basis and data support for further practical applications of SMC 
in the food and drug fields.
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