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Abstract: Chronic obstructive pulmonary disease (COPD) is predicted to become the third 

leading cause of death in the world by 2020. It is characterized by airflow limitation that 

is not fully reversible. The airflow limitation is usually progressive and associated with an 

abnormal inflammatory response of the lungs to noxious particles and gases, most commonly 

cigarette smoke. Among smokers with COPD, even following withdrawal of cigarette smoke, 

inflammation persists and lung function continues to deteriorate. One possible explanation 

is that bacterial colonization of smoke-damaged airways, most commonly with nontypeable 

Haemophilus influenzae (NTHi), perpetuates airway injury and inflammation. Furthermore, 

COPD has also been identified as an independent risk factor for lung cancer irrespective of 

concomitant cigarette smoke exposure. In this article, we review the role of NTHi in airway 

inflammation that may lead to COPD progression and lung cancer promotion.
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Introduction
The pooled global prevalence of chronic obstructive pulmonary disease (COPD) 

in adults aged 40 years or older is ∼10%, and it is a leading cause of morbidity and 

mortality in the US.1–5 COPD is believed to be caused by inflammation induced by 

inhaled smoke and particulates, and possibly by infecting pathogens as well, leading to 

the structural changes in airways and alveoli that result in irreversible airflow limitation 

(Figure 1). Despite the fact that smoking causes most cases of COPD, only 25% of 

smokers develop COPD.6,7 Conversely, epidemiologic data indicate that approximately 

1 of 6 patients with COPD has never smoked.8 This variable susceptibility to COPD 

most likely reflects genetic variations in the inflammatory and structural responses to 

inhaled smoke and to microorganisms colonizing the airways of smokers.9–11 The most 

common colonizing bacterium is nontypeable (ie, unencapsulated) Haemophilus 

influenzae (NTHi).12,13 This organism is found in the lower respiratory tract of ∼30% of 

individuals with COPD at any time.12,14–17 In addition to colonization during clinically 

stable periods, acquisition of new strains of NTHi is an important cause of lower 

respiratory tract infection, resulting in exacerbations of COPD.13,18–20 Together, these 

findings suggest that persistent or repetitive exposure of the airway to NTHi products 

may contribute to airway inflammation in COPD.18 Furthermore, several studies have 

found that smokers with COPD have an increased risk of lung cancer (3- to 10-fold) 

compared with smokers with comparable cigarette exposure but without COPD.21,22 

In this review, we will discuss the existing data regarding the roles that NTHi plays 

in COPD development and lung cancer promotion.
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Inflammation in COPD
Based on the definition of the Global Initiative for Chronic 

Obstructive Lung Disease, COPD is “a disease state charac-

terized by airflow limitation that is not fully reversible. The 

airflow limitation is usually progressive and associated with 

an abnormal inflammatory response of the lungs to noxious 

particles and gases”.23 Although COPD and asthma both 

involve inflammation in the respiratory tract, the inflammatory 

processes differ markedly.10,24 Histopathological studies show a 

predominant involvement of peripheral airways (bronchioles) 

and lung parenchyma in COPD, whereas asthma involves 

inflammation in all airways but minimal involvement of the 

lung parenchyma.25 Both innate and adaptive immune responses 

are involved in lung inflammation in patients with COPD.

Inflammatory cells
In histopathologic specimens of distal lung and in bron-

choalveolar lavage fluid (BALF) from COPD patients, 

macrophages and neutrophils are prominent.26–28 There is also 

an increase in the total numbers of T lymphocytes in lung 

parenchyma and peripheral and central airways of patients 

with COPD, with a greater increase in CD8+ than in CD4+ 

cells.25,29,30 Although the absolute number of CD8+ cells is 

more than CD4+ cells, there is strong evidence to support a 

role for CD4+ T helper 1 (Th1) cells in maintenance of chronic 

inflammation in COPD.31,32 Loss of lung function in patients 

with COPD is associated with a high percentage of CD4+ 

and CD8+ T lymphocytes that express chemokine receptors 

CCR5 and CXCR3 (markers of Th1 cells), but not CCR3 or 

CCR4 (markers of Th2 cells).33,34 CD8+ cells are typically 

increased in airway infections, and it is possible that chronic 

or recurrent colonization of the lower respiratory tract of 

COPD patients by bacterial and viral pathogens contributes 

to this inflammatory response.35 It has also been shown that 

CD8+ T cells are required for inflammation and destruction 

in cigarette smoke-induced emphysema in mice.36
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Figure 1 Effects of cigarette smoke and NTHi in the pathogenesis of lung cancer and COPD. Two inputs (cigarette smoke and microbial infection, top) act on two broad 
cell types (epithelial, left, and leukocyte, right) within the lungs to induce two outputs (lung cancer and COPD, bottom) as follows. Hydrocarbons and ROS in cigarette 
smoke induce mutations in epithelial cells that initiate carcinogenesis. Hydrocarbons, ROS, and particles in smoke activate the UPR and NLRs in epithelial cells and resident 
leukocytes, such as macrophages, inducing inflammation through key mediators such as IRE1, the inflammasome, and NF-κB. Microbial infection of smoke-damaged airways, 
particularly with NTHi, results in further inflammation by activating pattern recognition receptors such as the NLRs and TLRs. Activated epithelial cells amplify inflammation 
by signaling through chemotactins, cytokines, and DAMPs to resident and recruited leukocytes (CD8+ T cells, CD4+ Th17 cells, and B cells). In turn, activated leukocytes 
signal to epithelial cells through NF-κB and STAT3 to further amplify inflammation and generate proliferative and survival signals that promote carcinogenesis. COPD results 
from phenotypic changes in epithelial cells, such as mucous metaplasia or cell death, along with other structural changes such as proliferation or death of mesenchymal cells 
and deposition or destruction of extracellular matrix that together are termed remodeling.
Abbreviations: COPD, chronic obstructive pulmonary disease; DAMPs, damage-associated molecular patterns; IRE1, inositol-requiring enzyme 1; NF-κB, nuclear 
transcription factor-κB; NLRs, Nod-like receptors; NTHi, nontypeable Haemophilus influenzae; ROS, reactive oxygen species; STAT3, signal transducer and activator of 
transcription 3; TLRs, Toll-like receptors; UPR, unfolded protein response.
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The accumulated volume of B cells in small airways 

(mainly seen in lymphoid aggregates)2 and in bronchial 

biopsies of large airways37 is higher in patients with COPD 

than in controls without airflow limitation and even higher 

in more severe COPD. The humoral, or antibody, immune 

response is essential for host defense against viral and 

bacterial pathogens. B cells probably contribute to the inflam-

matory process and/or the development and perpetuation of 

COPD by means of a specific antigen-driven process.38 The 

lung has the ability to respond quickly to some pathogens 

through stimulation of resident antigen-specific memory 

B cells. Alternatively, after exposure to a new pathogen, 

the lung can generate de novo both a systemic and local 

(mucosal) antibody response. The resulting production of 

antigen-specific IgG and IgA acts in concert to help clear 

the invading pathogen and reduce subsequent colonization 

of respiratory epithelium.39 Primary adaptive responses are 

triggered by immature myeloid dendritic cells (DCs), which 

carry antigen from the lungs to regional lymph nodes.40 

Antigen presentation by these mature DCs is required to 

activate naive CD4+ T cells, which are essential to generate 

polarized type 1 or type 2 responses and for robust immuno-

logic memory. Persistent and chronic inflammation recruits 

natural killer (NK) cells and more DCs.40 NK cells exposed 

to interleukin-12 (IL-12) favor survival of DCs that prime 

for Th1 responses, whereas NK cells exposed to IL-4 do not 

exert DC selection, leading to Th2 responses. Additionally, 

previous pulmonary infections or immune responses increase 

the number of lung DCs and populate the lungs with clones 

of memory B cells and T cells that are immediately available 

to respond to infections.40

In addition to the traditional Th1 and Th2 subtypes, recent 

developments in cytokine biology imply that COPD might 

be better explained by the T helper 17 (Th17) phenotype.41 

Effector molecules produced by CD4+ Th17  cells include 

IL-17A, IL-17F, and IL-22.41 IL-17A and IL-17F both bind to 

the IL-17 receptor (IL-17R).42 It has been shown that IL-17R 

signaling is required for lung CXC chemokine and granulocyte 

colony-stimulating factor (G-CSF) expression, neutrophil 

recruitment, and host defense against Gram-negative 

bacteria.43 IL-17A, the prototype of this new cytokine family, 

is a 20–30-kDa glycosylated homodimeric cytokine pro-

duced predominantly by T cells.44 Many of the inflammatory 

effects of Th17  cells are attributed to the expression of 

IL-17A. For example, IL-17A upregulates the expression of a 

number of CXCR2 chemokines, including CXCL1, CXCL6, 

and CXCL8, together with the neutrophil survival factors 

granulocyte-macrophage colony-stimulating factor (GM-CSF) 

and G-CSF from the airway epithelium. This would suggest 

that Th17 cells are important in promoting and sustaining the 

neutrophilic inflammation observed in COPD. In addition, 

IL-17A can act synergistically with viral infection as well 

as other inflammatory mediators that include tumor necrosis 

factor (TNF) to potentiate these responses.45,46 Transgenic 

overexpression of IL-17A in the lung induces inflammation 

and mucous metaplasia.47 Primary human tracheobronchial 

epithelial cells stimulated by an extensive panel of cytokines 

upregulated the MUC5AC and MUC5B genes in response to 

IL-17A.48 Additionally, IL-17A potently induces epithelial 

cells and fibroblasts to secrete neutrophil attractants, notably 

CXCL8.48–51 Finally, IL-17 family members increase the 

sensitivity of macrophages to pathogen-associated molecular 

patterns and may even directly induce TNF.51

Inflammatory mediators  
and signaling pathways
Cellular inflammation in COPD is accompanied by increased 

levels of proinflammatory cytokines, which amplify inflam-

mation via the activation of the NF-κB pathway, leading to 

increased expression of multiple inflammatory genes.52–56 

NF-κB activation occurs primarily through IκB kinase 

(IKK)-dependent phosphorylation and subsequent degrada-

tion of specific inhibitors, the IκBs, which retain NF-κB in the 

cytoplasm. Upon activation, NF-κB dimers enter the nucleus, 

where they modulate transcription of a large variety of target 

genes.52,53,57,58 These genes code for mediators of immune and 

inflammatory reactions, such as TNF, IL-1β, IL-6, IFN-γ, 

IL-18, IL-32, and Th17 cytokines, the chemokine IL-8, and 

cell adhesion molecules.

TNF is mostly produced by macrophages, and also by 

many other cells, such as mast cells, epithelial cells, and B and 

T cells, and activates NF-κB.59 TNF levels are increased in 

the sputum of patients with COPD during exacerbations60 

and contribute importantly to cigarette smoke-induced 

emphysema in mice.59

IL-1β stimulates alveolar macrophages from patients 

with COPD to secrete inflammatory factors,61 and together 

with TNF induces ICAM-1 expression on endothelial cells.54 

IL-18, part of the IL-1 superfamily, plays an important role 

in Th1 polarization and various Th1-type diseases, inducing 

TNF, IL-1β, GM-CSF, and chemokine production by mono-

cytes and T lymphocytes.62 In mouse models, it has been 

shown that constitutive IL-18 overproduction in the lungs 

induces emphysema.63

IL-6 is acutely produced by monocytes and macrophages 

at the site of inflammation, as well as by T cells in chronic 
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inflammation. IL-6 activates intracellular signaling of 

signal transducer and activator of transcription 3 (STAT3) 

in epithelial and immune cells.64 STAT3 upregulation was 

observed in lung tissue from both smokers and nonsmokers 

with COPD, and this was associated with upregulation of 

its target genes.65 Increased levels of IL-6 have been found 

in induced sputum, exhaled breath condensate, and BALF 

from COPD patients,66 and when overexpressed in the mouse 

airways results in emphysema-like airspace enlargement and 

airway inflammation.67

IFN-γ is produced by Th1 cells, activated macrophages, 

and DCs, inducing them to produce IL-12, the main Th1-

inducing cytokine. When overexpressed in the murine lung 

it results in emphysema, and it has also been shown to be 

upregulated in lymphocytes isolated from emphysema-

tous lung tissue samples, BALF, and sputum from COPD 

patients.33,68,69

IL-32 produced in NK cells, T cells, epithelial cells, and 

monocytes has been recently recognized as a proinflamma-

tory cytokine.70 An increased expression of IL-32 in the lung 

tissue of patients with COPD has been demonstrated and 

correlates with the level of TNF and the degree of airway 

obstruction, suggesting that IL-32 is involved in the specific 

immune response observed in COPD and may have an impact 

on disease progression.71,72

IL-8, a CXC chemokine, is a neutrophil chemoattractant 

and activator. It is secreted by macrophages, neutrophils, 

and airway epithelial cells and may contribute to COPD 

progression by attracting neutrophils to the lung.73 Increased 

levels found in sputum samples from COPD patients cor-

relate with the airway bacterial load, and its constitutive 

overexpression in the lungs of mice induces emphysema, 

furthermore suggesting its important role in the pathogenesis 

of COPD.53,63

NTHi and immune responses
NTHi is a small (1.0 × 0.3 µm) Gram-negative coccobacillus 

that lacks a polysaccharide capsule (hence its nontypeable 

classification). It colonizes the upper respiratory tract of up 

to 75% of normal adults and primarily acts as a mucosal 

pathogen.74 Although it lacks a mucinous capsule, NTHi 

possesses characteristic coat proteins.

The P2 protein is the major outer membrane protein 

(OMP) of NTHi, constituting ∼50% of the protein content 

of the outer membrane. P2 is a target of human serum 

bactericidal antibody, indicating that the protein is important 

in the human immune response to NTHi.75 P6 is a 16-kDa 

peptidoglycan-associated lipoprotein that is present in the 

outer membrane of all strains of NTHi76 and shows a high 

degree of sequence conservation among strains.77 Several 

lines of evidence suggest that P6 elicits bactericidal antibody 

responses.76,78 Berenson et al have shown that P6 is a specific 

trigger of bacteria-induced human macrophage inflammatory 

events, with IL-8 and TNF as key effectors of P6-induced 

macrophage responses.79 Another study has shown that 

although the migration of mature DCs into the pulmonary 

lymph nodes is attenuated after repeated airway challenge 

of mice with OMPs of NTHi, the in vitro P6-specific T cell 

proliferation in cultured pulmonary lymph node cells was 

enhanced and subsequently linked to the development of 

P6-specific IgA production and the development of protec-

tive immunity in the airway of mice.80

NTHi lipooligosaccharide (LOS) is a major virulence 

determinant and may play a role in colonization and inva-

sion of mucosal surfaces in the respiratory tract.81 NTHi 

LOS is analogous to the lipopolysaccharide (LPS) of enteric 

Gram-negative bacteria in that it contains lipid A linked 

by 3-deoxy-d-manno-octulosonic acid to a heterogeneous 

sugar polymer.82,83 NTHi LOS, however, differs from clas-

sic enterobacterial LPS in that it does not contain repeating 

O-antigen units and is therefore more similar to that derived 

from Neisseria and Bordetella species.82,83

Like most other bacterial infections, NTHi infections 

induce inflammation with prominent release of cytokines 

and chemokines. Extensive in vitro studies have shown that 

NTHi lysate activates the NF-κB pathway in airway epithelial 

cells and markedly increases expression and release of proin-

flammatory mediators, including IL-6, IL-8, and TNF.18,84–86 

Airway epithelial cells are capable of sensing and responding 

to inflammatory stimuli through innate immune mechanisms 

that result in lung inflammation.87 These mechanisms mostly 

function through Toll-like receptors (TLRs), a family of 

evolutionarily conserved transmembrane receptors that serve 

as pattern recognition receptors. They recognize conserved 

microbial motifs in molecules such as bacterial LPS, pepti-

doglycan, flagellin, unmethylated CpG DNA, and double- 

and single-stranded RNA. Activation of the corresponding 

TLR by any of these molecules results in the activation of 

antimicrobial responses88 and the initiation of an inflamma-

tory response, alerting the host to the presence of microbial 

invasion and initiating an immune response.89,90

Because the TLRs share sequence similarity with the IL-1 

receptor (IL-1R) family in their cytoplasmic regions, it is not 

unexpected that downstream events are mediated by com-

mon components, such as myeloid differentiation primary 

response gene (88) (MyD88). MyD88 is an adaptor protein 
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that links the IL-1R to IL-1R-associated protein kinase 

(IRAK), a serine–threonine kinase that is related to the pelle 

kinase of Drosophila. Upon binding of ligand to IL-1R, IRAK 

phosphorylates, subsequently dissociates from the receptor 

complex and associates with TNF-receptor-activated factor 

6 (TRAF6). This process results in the activation of two dif-

ferent pathways that involve the c-Jun NH2-terminal kinase 

and p38 mitogen-activated protein kinase (MAPK) family 

and the Rel family transcription factor NF-κB.91,92

TLR-4 is the signaling receptor for LPS, the major proin-

flammatory component of the Gram-negative cell wall, in 

concert with CD14, which serves as the ligand-binding part 

of the LPS receptor complex. Triggering of TLR-4 results 

in the activation of two distinct intracellular pathways, one 

that relies on the common TLR adaptor MyD88 and one 

that is mediated by Toll/IL-1R domain-containing adaptor-

inducing IFN-β (TRIF).93 Wieland et  al have shown that 

alveolar macrophages from CD14 and TLR-4 knockout (KO) 

mice are virtually unresponsive to NTHi in vitro.93 Intranasal 

administration of NTHi in the mouse results in a brisk 

elaboration of IL-1β, IL-6, TNF, macrophage-inflammatory 

protein (MIP)-1α, and MIP-2 in BALF and a corresponding 

mobilization of intrapulmonary neutrophils. After intranasal 

infection with NTHi, CD14 and TLR-4 KO mice showed an 

attenuated early inflammatory response in their lungs with 

diminished IL-1β, IL-6, TNF, MIP-1α, and MIP-2 in BALF 

and a notable absence of intrapulmonary neutrophils, which 

was associated with a strongly reduced clearance of NTHi 

from the respiratory tract.93,94 Additionally, MyD88 KO, 

but not TRIF mutant mice, showed an increased bacterial 

load in their lungs upon infection with NTHi.93 These data 

demonstrate that the MyD88-dependent pathway of TLR-4 

is important for an effective innate immune response to respi-

ratory tract infection caused by NTHi. This suggests that the 

airway epithelia might contribute to sensing NTHi infection 

and signaling the innate immune response.94

TLR-2 also plays a critical role in mediating inflammatory 

responses against bacterial pathogens in the lung.95 NTHi 

strongly activates NF-κB in human epithelial cells via two 

distinct signaling pathways: NF-κB translocation-dependent 

and NF-κB translocation-independent pathways.85 The NF-κB 

translocation-dependent pathway involves activation of the 

NF-κB-inducing kinase (NIK)–IKKα/β complex, leading to 

IκBα phosphorylation and degradation, whereas the NF-κB 

translocation-independent pathway involves activation of 

MKK3/6-MAPK. TLR-2 is required for NTHi-induced NF-κB 

activation through both pathways, and OMP P6 appears to also 

activate NF-κB via similar signaling pathways.85 NTHi also 

induces COX-2 and PGE2 expression in a p38 MAPK and 

NF-κB-dependent manner through TLR2 in lung epithelial 

cells in vitro and lung tissues in vivo.96

NTHi in COPD
NTHi is frequently present in the airways of adults with 

COPD.14–17 This Gram-negative bacterium is found in the 

lower respiratory tract of ∼30% of individuals with COPD 

at any time, and with serial sampling more than 60% of 

COPD patients show colonization.97 Several studies have 

shown higher inflammatory responses in the presence of 

NTHi colonization in stable COPD patients and smokers 

without COPD.98–100 For example, colonized smokers, with 

or without COPD, had more bronchial neutrophilia compared 

with noncolonized ones.15 Bacterial colonization has also 

been associated with increased frequency of exacerbations 

and an accelerated decline in lung function.97 Furthermore, 

the acquisition of new NTHi serotypes is associated with 

exacerbations of COPD.12,13,18–20 In one study, NTHi was 

found in the bronchial tissues of 87% of patients with exac-

erbations compared with 33% of stable COPD patients and 

0% of healthy controls.14 The immune response that develops 

after an exacerbation seems to be strain specific and protects 

against recurrent exacerbation due to the homologous strain 

but leaves the patient susceptible to exacerbations caused by 

antigenically unrelated heterologous strains, and this likely 

represents a mechanism for recurrent infections.101

Studies using molecular techniques indicate that some 

patients with COPD are persistently colonized with NTHi 

even after antimicrobial therapy and despite a negative 

sputum culture. This suggests that bacteria may cause a 

greater proportion of exacerbations than is revealed by 

sputum culture alone.102–104 Defective immune responsive-

ness and impaired phagocytosis by alveolar macrophages 

might provide an immunologic basis for persistence of NTHi 

in the airways of adults with COPD.105 Cigarette smoke 

induces mucus dysfunction by several mechanisms106–110 

and ultimately increases mucin production, reduces mucus 

hydration, and decreases mucus clearance, which might 

also contribute to airway colonization in COPD patients.111 

Other possible mechanisms of colonization include airway 

epithelial cell invasion,20,103 antigenic alteration,112–114 and 

biofilm formation.115

NTHi could contribute to COPD progression by 

inducing neutrophilic influx into the airways, neutrophil 

necrosis with release of neutrophil elastase and other matrix 

metalloproteinases, and production of oxygen radicals.79,86 

These mediators can overwhelm the antiproteinase barrier of 
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the lung and damage airway and alveolar structures, thereby 

amplifying smoking-induced lung damage.116 We have 

shown that weekly exposure of mice to an aerosolized NTHi 

lysate induces lung inflammation with a profile of mediators 

and inflammatory cells similar to that observed in COPD 

patients.117 Repetitive exposure to NTHi lysate results in a 

10-fold increase in total inflammatory cell numbers in BALF, 

dominated by neutrophils (81%) with fewer macrophages and 

lymphocytes. This was accompanied by marked increases 

in inflammatory cytokines (TNF and IL-6), Th1 cytokines 

(IFN-γ and IL-12), and the neutrophil chemoattractant KC. 

Consistent with the rapid rise in the levels of inflammatory 

cytokines, NF-κB was rapidly activated after each exposure. 

In the weeks following chronic activation of this innate 

immune response, a marked COPD-like inflammatory process 

ensues. Peribronchiolar and perivascular inflammatory cell 

infiltration and lymphoid aggregates (after 8 weeks), similar 

to those described in COPD patients, were seen. The chronic 

inflammatory response was characterized by infiltration of the 

airway wall by macrophages, CD20+ B cells, CD8+ T cells, 

CD4+ T cells, and neutrophils. Structural changes in the 

lung parenchyma were closely associated with the chronic 

inflammatory response. There was increased fibrous tissue 

around airways, similar to that described in COPD patients, 

after 25 weekly NTHi exposures, and this further increased 

after 50 weeks of exposure.117 Flow cytometric analysis of 

BALF and lung homogenates after eight NTHi exposures 

has also shown an increased number of IL-17-producing 

CD4+ T cells (Th17 cells), associated with high expression of 

IL-17 in inflamed lung tissue and in the BALF (unpublished 

data). Furthermore, exposure of mice genetically deficient 

in IL-17R to the NTHi lysate resulted in a lower level of 

neutrophilic influx into the BALF and less inflammatory 

cell infiltration in lung tissue, indicating a major role for 

Th17 cells in NTHi-induced COPD-like airway inflamma-

tion (unpublished data). As transgenic overexpression of 

TNF in the airway epithelium caused BALF neutrophilia 

and inflammatory cell infiltration around airways, but not 

fibrosis,117 this suggests that innate immune inflammation 

alone is insufficient to induce airway fibrosis.

Studies have shown that both human and mouse alveolar 

epithelial type II (AT II) cells express MHC II molecules and 

that AT II cells are capable of activating T cells in vitro.118–120 

A recent study shows that naive CD4+ T cells are specifi-

cally activated against a lung-specific antigen by AT II cells 

independently of lymphoid tissue and DCs in vivo.121 These 

data offer the strongest evidence to date that the lung itself, 

independent of the classical antigen-presenting cells of the 

immune system, can present foreign and self-peptides and 

differentiate CD4+ T cells into regulatory T cell subsets.122 

We also demonstrated that NTHi lysate could induce innate 

resistance in the lungs, resulting in broad protection against 

a wide range of pathogens,87 which occurs independent 

of alveolar macrophages and recruited neutrophils. This 

protection derives from stimulation of local innate immune 

mechanisms, and activated lung epithelium is the most likely 

cellular effector of this response. Furthermore, gene expres-

sion analysis of lungs from NTHi-exposed mice demonstrated 

NF-κB signaling to be the most enriched process, followed 

closely by interferons, IL-6/STAT3, and TLR signaling, 

including MyD88, TLR-2, and TLR-4.123,124 To further dissect 

the importance of the NF-κB pathway in this phenomenon, 

we have targeted NF-κB in the airway epithelium using 

a genetic strategy and have demonstrated a lower level of 

neutrophilic influx into BALF after a single NTHi exposure 

(unpublished data). Together, these findings suggest that 

exposure of the airway to NTHi products contributes to lung 

inflammation and airway fibrosis in COPD, which is mediated 

by innate immune activation of epithelial cells that signal to 

adaptive immune cells.

NTHi, COPD, and lung cancer
Worldwide, lung cancer is the leading cause of cancer mortal-

ity and is expected to account for 30% of all male and 26% of 

all female cancer deaths in 2009.125 Cigarette smoking causes 

90% of all lung cancers and is believed to do so primarily 

by inducing DNA mutations.126 In addition, epidemiologic 

data indicate that chronic inflammation also plays a role in 

lung epithelial carcinogenesis.127 Genetic factors have also 

been shown to play a role in determining susceptibility to 

lung cancer. These genetic factors are believed to confer an 

inherent susceptibility (exaggerated or maladaptive response) 

to chronic inflammation from cigarette smoking. Consistent 

with many cancer models, this inflammatory stimulus in 

the lungs results in tissue remodeling, DNA damage, and 

impaired cell cycle control.128

Multiple studies have found that smokers with COPD 

have an increased risk of lung cancer compared with smokers 

without COPD.21,22,127,129,130 There is strong evidence that a 

patient’s forced expiratory volume in the first second of expi-

ration is an independent prognostic marker for developing 

lung cancer in both smokers and exsmokers,129,130 and the 

incidence of lung cancer seems to be higher for those with 

more severe airflow obstruction. The presence of mild 

emphysema, even without demonstrable airflow obstruction, 

confers a substantial risk of developing lung cancer.131 The 
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likelihood of developing lung cancer within 10 years is 

three-fold greater in patients with mild-to-moderate COPD 

and 10-fold greater in patients with severe COPD compared 

with smokers with normal lung function.22 It has also been 

shown that increased lung cancer mortality is associated with 

a history of COPD, even among people who have never been 

active smokers.132

Several possible mechanisms may link lung cancer to 

COPD, and both genetic and environmental factors may 

play a role. This link could be related to inflammation and 

the body’s attempt to repair emphysematous airspaces.133 

On the basis of existing in vitro studies showing that 

NTHi activates proliferative and antiapoptotic signaling 

pathways,84,85,134 colonization with this bacterium may 

also promote carcinogenesis by stimulating growth and 

inhibiting apoptosis. We have shown that NTHi-induced 

COPD-like airway inflammation promotes lung cancer in a 

Clara cell-targeted K-ras mutant mouse model (CC-LR) of 

lung cancer.135 In contrast, existing epidemiologic data do 

not suggest any definite association between allergic airway 

inflammation (including asthma) and lung cancer, and some 

even suggest a protective role.136–140 To test this, CC-LR mice 

were sensitized intraperitoneally to ovalbumin (OVA) and 

then repetitively challenged with an OVA aerosol weekly 

for 8 weeks. This resulted in eosinophilic lung inflamma-

tion associated with increased levels of Th2 cytokines and 

mucous metaplasia of airway epithelium, similar to what 

is seen in asthma patients. However, this type of allergic 

inflammation did not result in a significant difference in lung 

surface tumor number.124

IL-6 has been implicated in inflammatory responses in 

human COPD,6,26 and the IL-6 pathway has been found to 

be one of the mechanisms linking inflammation to cancer.64 

Therefore, to determine the causal role of cytokines that 

mediate COPD-like inflammation in lung carcinogenesis, 

we genetically ablated IL-6 in CC-LR mice. This not only 

inhibited intrinsic lung cancer development (1.7-fold) but 

also inhibited the promoting effect of extrinsic COPD-

like airway inflammation (2.6-fold).124 Taken together, 

we found that there is a clear specificity for the nature of 

inflammation in lung cancer promotion (Th17 type), and 

IL-6 has an essential role in lung cancer promotion. We 

suggest that COPD-like airway inflammation induced by 

NTHi provides a tumor microenvironment that favors lung 

tumor promotion and progression. This occurs via release of 

inflammatory mediators (IL-6 and TNF) from innate immune 

cells (neutrophils and macrophages) secondary to activation 

of epithelial innate immune signaling pathways (MyD88/

NF-κB). This in turn activates more intracellular signaling 

pathways (NF-κB and STAT3) in the airway epithelium 

and immune cells, resulting in activation of prosurvival, 

antiapoptotic, and proangiogenic signals accompanied by 

skewing toward a protumoral adaptive immune response 

(Th17 response) (Figure 1).

Conclusion
It appears that surface components of NTHi induce lung 

inflammation by innate immune signaling mechanisms and 

that this progresses to airway fibrosis by recruitment of the 

host adaptive immune system. A straightforward strategy to 

reduce the incidence of COPD is the prevention of tobacco 

consumption. However, because of the persistent risk among 

former smokers, additional strategies that stop the progres-

sion to advanced COPD are highly attractive. Based on the 

demonstrated ability of NTHi to induce lung inflammation 

and airway fibrosis and its persistent colonization of the air-

ways of COPD patients, dissecting underlying mechanisms 

will help us to develop alternative preventive and therapeutic 

strategies in COPD patients. Furthermore, this would have 

a major impact on preventing the leading cause of cancer 

death by providing the basis for rationally directed therapy 

in patients at high risk for lung cancer development.
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