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Abstract: Bitter taste receptors (T2Rs) consist of 25 functional receptors that can be found in various types of cells throughout the 
human body with responses ranging from detecting bitter taste to suppressing pathogen-induced inflammation upon activation. 
Numerous studies have observed clinical associations with genetic or phenotypic variants in bitter taste receptors, most notably that 
of the receptor isoform T2R38. With genetic variants playing a role in the response of the body to bacterial quorum-sensing molecules, 
bacterial metabolites, medicinal agonists and nutrients, we examine how T2R polymorphisms, expression levels and bitter taste 
perception can lead to varying clinical associations. From these genetic and phenotypic differences, healthcare management can 
potentially be individualized through appropriately administering drugs with bitter masking to increase compliance; optimizing 
nutritional strategies and diets; avoiding the use of T2R agonists if this pathway is already activated from bacterial infections; 
adjusting drug regimens based on differing prognoses; or adjusting drug regimens based on T2R expression levels in the target cell 
type and bodily region. 
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Introduction
Bitter taste receptors (T2Rs) are G-protein coupled receptors (GPCRs) that are classified as Frizzled/Taste2 family based 
on the GRAFS classification system.1 The seven-transmembrane receptor is encoded by a gene family consisting of 25 
functional genes, which leads to the expression of 25 functional receptor isoforms in the human body where they can be 
activated by various ligands. Activation of these receptors leads to the dissociation of the GPCR’s heterotrimeric 
G-proteins. The Gα subunit upregulates phosphodiesterase, causing the hydrolyzation of cAMP, whereas the Gβγ subunit 
initiates the phospholipase Cβ2/inositol-1,4,5-triphosphate signaling pathway, releasing stored calcium from the endo-
plasmic reticulum into the cytoplasm.2,3 In the gustatory system, bitter taste receptors are located in specialized epithelial 
taste receptor cells that reside in the taste bud. In the transduction pathway for bitter taste, the increase in intracellular 
calcium is followed by the release of ATP through the activation of calcium homeostasis modulator channels, thereby 
depolarizing the taste receptor cell. The released ATP subsequently activates ionotropic purinergic receptors on the 
sensory ganglion neurons that innervate the taste buds, thereby relaying bitter taste perception to the brain.4

In recent years, there has been interest in the role of extraoral T2Rs in various diseases such as asthma, chronic 
rhinosinusitis, COVID-19, systemic inflammation, cancer, eczema and osteomyelitis.5–10 Most studies have focused on 
extraoral T2Rs in the respiratory system where T2R activation can increase ciliary beat frequency, reduce inflammatory 
markers and emit anti-pathogenic substances, such as antimicrobial peptides and low levels of nitric oxide via endothelial 
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nitric oxide synthase.11,12 In immune cells such as lymphocytes, monocytes, granulocytes, leukocytes and mast cells, 
T2R activation can also decrease or inhibit pro-inflammatory cytokines such as TNF-alpha, IL-1β, IL-2, IL-4, IL-5, 
G-CSF, GM-CSF, MCP-1, histamine, PGD2, etc.13,14 Other studies in literature have also found functional effects of 
T2Rs in the gastrointestinal, genitourinary, skin, cardiovascular and neurovascular system.6,15–19

Here, we examine the phenotypic and genetic variations of bitter taste perception and T2Rs, mainly focusing on the 
more well-researched variation of T2R38. We discuss their clinical associations and significance and offer our 
perspectives on applying this knowledge in health management and towards future studies on personalizing medical 
treatments.

Genetic Variants
T2R genes (TAS2R) have been noted to have genetic polymorphisms that affect its sensitivity and function upon 
activation. Some relevant isoforms and their single nucleotide polymorphisms (SNPs) are listed in Table 1, which include 
TAS2R3, -4, -5, -14, -16, -19, -38, and -46. Current studies in literature have predominantly focused on the TAS2R38 
polymorphisms. Three SNPs consisting of rs713598, rs1726866 and rs10246939 reside in the TAS2R38 gene on 
chromosome 7, which forms two predominantly common haplotypes. These two haplotypes are denoted by the affected 
amino acids at positions 49, 262 and 296: alanine-valine-isoleucine (AVI) and proline-alanine-valine (PAV).8,20 Different 
phenotypic expressions have been noted based on these two haplotypes.

Two often used agonists for T2R38 activation are phenylthiocarbamide (PTC) and 6-n-propylthiouracil (PROP).21 

Taste tests of these two compounds can be administered to determine phenotypic variations in bitter taste caused by 
TAS2R38 polymorphisms. Studies have shown that AVI/AVI diplotypes are insensitive to T2R38 activation (non-tasters), 
PAV/AVI diplotypes (tasters) have a moderate reaction to T2R38 activation and PAV/PAV diplotypes (supertasters) are 
ultrasensitive to T2R38 activation. This difference in sensitivity is also significant in bacterial infections as T2R38 can be 
activated by bacterial quorum-sensing molecules such as acyl-homoserine lactone and bacterial metabolites, which in 

Table 1 Genetic Variants of Bitter Taste Receptor Isoforms That Have Been 
Found to Have Clinical Associations

Isoform Chromosome rsID Nucleotide Amino Acid

TAS2R3 7q34 rs765007 C > T 5’ UTR

TAS2R4 7q34 rs2234001 G > C Valine > Leucine

TAS2R5 7q34 rs2234012 A > G 5’ UTR
rs2227264 G > T Serine > Isoleucine

TAS2R13 12p13.2 rs1015443 T > C Asparagine > Serine

TAS2R14 12p13.2 rs11610105 G > A –
rs7138535 T > A –

rs3741843 G > T, C Arginine > Serine

TAS2R16 7q31.32 rs846672 C > A –
rs978739 A > G –
rs1525489 T > C –

rs846664 T > G Asparagine > Lysine

rs1308724 G > C –
rs846672 C > A –

TAS2R19 12p13.2 rs10772420 C > T Arginine > Cysteine

TAS2R38 7q34 rs713598 G > C Alanine > Proline

rs1726866 C > T Alanine > Valine
rs10246939 A > G Isoleucine > Valine

Abbreviation: TAS2R, bitter taste receptor gene.
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turn induce antimicrobial or anti-inflammatory effects in immune cells, ciliated cells of lung epithelium and sinonasal 
epithelial cells.22,23

Clinical Studies
In addition to the underlying mechanisms, understanding clinical associations of bitter taste receptor polymorphisms is 
necessary to optimize healthcare plans and medical treatment. The clinical associations based on current literature are 
covered in this section and have been compiled in Table S-1.

Taste Preference and Perception
Compliance to Medication
Taste preference and perception can play a large role in adherence for liquid oral medication and dietary habits in the 
pediatric population.24–28 Bitterness perception based on the TAS2R38 genotype can vary depending on age where 
children with the AVI haplotype have higher sensitivity to bitter agonists compared to adults.29 Genotyping studies have 
shown that children with the more bitter-sensitive PAV/AVI and PAV/PAV diplotypes may be more inclined to take solid 
pills over liquid medication and are more likely to reject medication due to bitterness.27,28 Thus, masking bitter taste or 
adjusting the administration method for bitter-sensitive children have been regarded as viable strategies in improving 
compliance.30

Dietary Habits and Nutrition
In addition to bitter medications, genetic variation can also play a role in food consumption and dietary habits, which can 
be a factor in increasing the risk of cancer, obesity, oral diseases and life span. Several SNPs of various T2R isoforms, 
including TAS2R13, -16, -19, -38 and a TAS2R3/4/5 haploblock, have been related to bitter taste perception of various 
beverages, including caffeine and alcohol.31–37 Greater perception of PROP bitterness was found to be a significant 
predictor for alcohol intake and greater perception of ethanol intensity.33 SNPs in TAS2R4 and TAS2R14 have been, 
respectively, associated with the regulation and predictability of bitter taste sensitivity towards stevioside solution.38 

Differences in food preferences and dietary habits based on TAS2R38 have also been noted in several studies where PAV/ 
PAV supertasters were generally more averse to bitter foods.34,35,39–43 In infants, TAS2R38 genotype was associated with 
first complementary food intake in infants, where a higher percentage of non-tasters completed their meal on the first 
attempt.26 TAS2R38 polymorphisms have also been found to affect smoking habits, where menthol cigarette smokers 
were found to have a higher frequency of the supertaster PAV haplotype compared to non-menthol cigarette smokers.44,45 

In one study, smokers were associated with the phenotype of higher bitter taste sensitivity of PROP compared to non- 
smokers.46

Obesity
Given that nutrition plays an important role in bodily health, researchers have observed the consequential effects of 
TAS2R variation. Obese patients were found to perceive bitter taste more intensely or have higher detection thresholds 
compared to lean or normal-weighted patients based on the PROP taste test.47,48 Likewise, body mass index (BMI) was 
also inversely associated PTC taste sensitivity.49 Increased sensitivity to certain bitter substances could indicate a lower 
quantity of vegetable consumption.40,41 Contrarily, one study found the AVI/AVI non-taster diplotype to be associated 
with higher risk of obesity in European Americans and Asians,50 possibly due to differences in nutrient sensing, energy 
metabolism, immune responses or reduced sensitivity to sweet taste recognition.43

Oral Health
Dietary factors consisting of sugary and fatty foods, in turn, contribute to incidents of dental caries and oral disease.51 As 
the non-taster phenotype and genotype are also associated with reduced sensitivity to sweet taste and liking sweets,43,52 

numerous phenotype taste tests have also been conducted, relating the non-taster status of PROP to dental decay and 
dental caries.53–66 Generally, studies have found that PROP non-tasters were at higher risk of decayed, missing, and filled 
surfaces and caries experience compared to tasters. Medium tasters were also at higher risk compared to supertasters. 
This association was also found in a PTC taste sensitivity study.56 Discrepancies in dietary habits caused by phenotypic 
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variants can also have an effect on the offspring of non-taster mothers, where the children had a higher prevalence of 
dental caries.61,66

The relationship between the non-taster status and tooth decay has also been confirmed in a genetic study relating 
TAS2R38 variation to oral health where the PAV haplotype was associated with protection from dental caries and the AVI 
haplotype associated with caries risk.67 Contrarily, in another study, the AVI/AVI genotype was associated with decreased 
prevalence of periodontal disease in Thai patients.68 Discrepancies can possibly be explained through additional factors. 
In obese children, AVI non-taster haplotypes were associated with increased decayed, missing and filled permanent/ 
primary teeth scores for obese patients but had the opposite effect in a control non-obese population where non-tasters 
were associated with decreased scores.69 In another study, it was suggested that PROP supertasters may express wider 
anhedonia leading to a higher proportion of people who disliked sweets.70

Longevity
Since nutrition, obesity, oral health, and cancer also factor into aging and longevity, studies have also noticed associations 
with TAS2R38 and TAS2R16 polymorphisms to human life span, although there has been some heterogeneity for both of 
these genes.71–74 Whether or not associations with longevity are due to differences in dietary habits or if the variance in 
responses to extra-oral T2R activation plays a significant role in aging remains to be determined. Further data is required 
to examine the influence of additional factors such as demographics, nutrition, culture, environment and other genetic 
factors.

Parkinson’s Disease and Gut Microbiota
A higher frequency of the PROP non-taster and PTC non-taster status has been found in patients with Parkinson’s disease 
compared to healthy control groups.75,76 Testing for the TAS2R38 variant also showed an association between 
Parkinson’s disease and the non-tasting haplotype where there was a significantly higher frequency of the AVI haplotype 
and lower frequency of the PAV/PAV diplotype compared to the control group.75 The study also found no differences in 
genotype results of the gustin gene, indicating that the differences in taste status were not due to the non-functional form 
of gustin nor due to a low number of taste buds. A subsequent study showed that patients with Parkinson’s disease who 
were insensitive to PROP and had at least one AVI haplotype showed consistent differences in gut microbiota compared 
to other patients.77 Patients with at least one AVI haplotype had lower bacterial diversity with significantly lower genus 
Clostridium. Based on the author’s discussion, there are beneficial effects of microbiota from Clostridium genus in the 
gastrointestinal tract where the microbiota contributes towards the metabolism of short-chain fatty acids, bile acids and 
tryptophan. These key metabolites are known to have positive health contributions including controlling bacterial 
overgrowth, modulating microbial composition, inducing gut hormone secretion, stimulating gastrointestinal motility, 
and generating anti-inflammatory or anti-oxidative effects.78 In turn, gut microbiota composition and inflammation are 
associated with the pathogenesis of Parkinson’s disease.79,80

Cancer
Activation of T2Rs in various cancerous cells has been noted to produce several anti-cancerous effects, including 
decreasing cell proliferation, migration, invasion, motility, angiogenesis and metastasis along with increasing apoptosis 
and cell cycle arrest.10,81–86 Known T2R agonists and bitter flavonoids, such as quercetin, chrysin, coumarin, noscapine 
and naringin, have also been found to have similar beneficiary effects in vitro and in animal studies along with clinical 
studies using the flavonoids a supplementary treatment or adjuvant.87–91

In a systematic review, Zehentner et al noted numerous TAS2R isoforms were either downregulated or upregulated in 
several cancerous tissues and cell lines compared to their non-cancerous counterparts.10 It has been discovered that T2R4 
is comparatively downregulated in breast cancer cells, whereas T2R14 is upregulated.81,92 Multiple T2R isoforms have 
also been found to be differentially expressed among ovarian cancer cells, tissue of fallopian tube origin, prostate cancer 
cells and benign prostatic hyperplasia.82 Variability in gene expression can have consequences in terms of the survival 
rate or prognosis of cancer patients. Based on the Cancer Genome Atlas, increased expression of T2Rs in head and neck 
squamous cell carcinomas was associated with improved overall survival.86 Zehentner et al determined that the 
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upregulation of TAS2Rs were associated with an improved prognosis, whereas lower expression levels of certain 
TAS2Rs were associated with a poor prognosis.10 Consequently, T2R agonist drugs that are used to supplement cancer 
treatments would also likely vary in efficacy based on TAS2R expression. Studies and drug administration targeting 
T2Rs for cancer thus must consider testing for TAS2R expression along with possible functional variants prior to 
application.

Several clinical studies have also been conducted on T2R polymorphisms in relation to cancer risk. Results for cancer 
risk associations with the three main TAS2R38 diplotypes have been heterogeneous. The PAV/AVI diplotype was 
associated with increased gastric cancer risk among Korean participants despite the variant not being associated with 
dietary intake.93 Among Japanese gastrointestinal cancer patients, there was a higher frequency of the AVI/AVI diplotype 
and a lower frequency of the PAV/PAV diplotype compared to controls, although no associations were found with 
TAS2R46 genotypes.94 Similarly, a study on the Czech and German population found a, respectively, borderline 
significant and statistically significant relationship between AVI/AVI diplotypes and increased colorectal cancer risk.95 

In contrast, AVI/AVI was associated with reduced risk of colorectal cancer in Korean patients despite no positive 
associations found between AVI/AVI diplotypes and cancer-inducing dietary habits.96 A study among Latin Americans 
found that the PAV/PAV diplotype showed an increase risk in gastric cancer compared to the PAV/AVI diplotype.97 In 
terms of other TAS2R isoforms, only one out of six SNPs of TAS2R16 (rs1525489) was found to be associated with 
increased risk of rectal cancer in European patients.98 No associations were found between TAS2R14 polymorphisms and 
colon cancer.99

Respiratory Illnesses
Due to antipathogenic effects of T2R activation in the respiratory system, several studies have found relationships 
between phenotypic or genetic variants of TAS2R38 and chronic rhinosinusitis (CRS). The non-taster phenotype has 
been associated with increased severity in Caucasian patients with CRS without polyps, and the supertaster phenotype 
was associated with less incidences of sinus infections and better nasal quality of life scores.100,101 Concurrently, 
genotype studies have shown that 1) CRS patients with the nonfunctional AVI/AVI variant were significant more 
likely to undergo surgical intervention due medical management being ineffective; 2) patients with PAV/PAV 
genotypes had significantly lower computed tomography (CT) scores compared to AVI/AVI genotypes; 3) presence 
of culturable bacteria was more likely in nasal swabs from patients with the AVI/AVI genotype; 4) in vivo biofilm 
formation was more likely in sinonasal mucosa samples of AVI/AVI patients; 5) there was a higher frequency of CRS 
patients with both the minor allele (A) at SNP rs10772420 for the TAS2R19 gene and the non-taster allele (A) of the 
TAS2R38 gene; 6) CRS patients had higher levels of TAS2R38 expression compared to controls and higher TAS2R38 
expression was associated with increased severity of inflammation; and 7) TAS2R38 expression in the inferior 
turbinate mucosa was higher in CRS patients with more severe symptoms and in patients with both asthma and 
nasal polyps.102–109

These trends held true for disorders that caused similar respiratory manifestations, such as cystic fibrosis and primary 
ciliary dyskinesia. There was a lower frequency of the PAV allele in cystic fibrosis patients with nasal polyposis who 
required surgery and in cystic fibrosis patients with chronic pulmonary colonization by Pseudomonas aeruginosa.110 

Similarly, in patients with primary ciliary dyskinesia, one study found that there was a lower percentage of PAV/PAV 
patients with frequent respiratory exacerbations and no PAV/PAV patients with chronic colonization by Pseudomonas 
aeruginosa.111 Concurrently, AVI/AVI primary ciliary dyskinesia patients with CRS tended to have nasal polyposis and 
displayed increased severity of disease.112

Aside from TAS2R38, TAS2R14 polymorphisms were associated with Korean asthmatic patients, where increased 
bronchodilator response and lower mean asthma control test scores were significantly associated with SNPs 815T>C, 
1267A>G, 1897T>C and 815T>C, respectively.113 In line with respiratory illnesses, a couple of studies have examined 
the effect of the T2R38 phenotype on coronavirus disease 2019 (COVID-19) symptoms. Based on phenotypic expres-
sion, non-tasters were more likely to test positive for COVID-19, more likely to be hospitalized and more likely to 
display longer duration of symptoms, whereas moderate tasters only displayed mild-to-moderate symptoms.114,115 
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Contrarily, a more recent study by Risso et al found no relationship between the TAS2R38 SNPs and severity of COVID- 
19 symptoms.116

Expression Levels on Skin
The presence of T2R isoforms and the level of TAS2R mRNA expression were found to be variable in the skin, where 
the expression levels of some TAS2Rs were possibly related to sun exposure (TAS2R14, −30, −42, −60), sex (TAS2R3, 
-4, -8, -9, -14, -60) and age (TAS2R5).117 A prior study also found that TAS2R1 and TAS2R38 were expressed and 
functional in human epidermal keratinocytes.17 The activation of HaCaT keratinocytes using diphenidol and amarogentin 
induced intracellular calcium release and stimulated the expression of differentiation markers.

Osteomyelitis
Previously, we surmised that T2Rs had a role in bone inflammation.5 In our own preliminary clinical observation of 34 
pediatric patients with acute osteomyelitis, the frequency of PAV/PAV, PAV/AVI and AVI/AVI patients were found to be 
44.1% (15/34), 41.2% (14/34) and 14.7% (5/34), respectively. Blood parameters showed that PAV/PAV patients had 
significantly higher levels of peak platelet counts (P = 0.0096) and longer hospital stays (P = 0.0266) compared to PAV/ 
AVI patients. Interestingly, the canonical T2R pathway is known upregulate PLCβ2 production and decrease cAMP 
levels,11 both of which can lead to increases in platelet aggregation.118

In our preliminary results, only 2 out of 29 of the PAV/PAV and PAV/AVI patients were infected with methicillin- 
resistant Staphylococcus aureus (MRSA), compared to 3 out of 5 AVI/AVI patients being infected with MRSA. 
A theoretical reasoning for the low incidences of MRSA infections in PAV/PAV and PAV/AVI patients could be due to 
the differences in the volatile organic compounds produced by MRSA and methicillin-sensitive Staphylococcus aureus 
(MSSA).119 Volatile metabolites from S aureus that can activate the T2R38 pathway include 2-pentanone, 2-methylpro-
panal, dimethyl disulfide and methyl mercaptan.120–122 Metabolites from MRSA may be able to activate the T2R38 
pathway in PAV/PAV and PAV/AVI patients, inducing antipathogenic mechanisms in immune cells.

Clinical Application and Future Perspectives
Several considerations arise when applying knowledge of T2R SNPs and taste variation to health management, 
personalizing drug regimens and future studies. Masking the bitter taste of medication has been a long-known strategy 
for improving compliance, especially for the pediatric population. Knowledge of a patient’s variant can help improve 
treatment regimens, administration methods or patient compliance by choosing medications, delivery methods or brands 
that are more palatable to the patient. For instance, a study on the taste perception of two commonly used antibiotics, 
chloramphenicol and ofloxacin, was found to be associated with the TAS2R38 diplotype and a TAS2R9 SNP, 
respectively.123 Considering that TAS2R variants play a factor in medication compliance,27 patients susceptible to 
increased bitterness of these antibiotics may be administered solid oral medications over liquid medications or brands 
that particularly block the activation of the associated T2R isoform. Infants or mentally disabled patients who are unable 
to provide feedback on their reason for noncompliance can also undergo SNP testing where considerations regarding 
their bitter taste perception can be worked into a medication compliance protocol.

Several factors can influence the relationship between taste sensitivity, food preference and obesity, such as genetic 
factors, ethnicity, age, gender, estrogenic phase, endocannabinoid system, and cognitive factors.124 Consequently, studies 
on the relationship between bitter taste perception and obesity can potentially yield heterogeneous results. Although most 
studies in literature have found an association between obesity or BMI and TAS2R38 variation,42,43,47,48,50 a study on an 
Indian population, for instance, found that both the TAS2R38 genotype and PROP taster status were not significantly 
correlated to BMI.125 Age may be one factor that influences taste status and BMI among Indians. A study among female 
Indian adolescents found that a relationship between PTC taste and a higher BMI did exist among 11-year-olds, but this 
association was lost among older aged groups.126 The same study also found that the PTC tasters among 14- to 16-year- 
olds had a higher mean percentage body fat, fat mass index and fat-free mass index. Thus, a large-scale multivariate 
analysis would be beneficial in determining key influential variables that affect food intake. Nutritionists can then use 
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these key determinants to optimize dietary courses in order to help prevent or treat diseases such as obesity, dental caries 
and Parkinson’s disease, as well as improve patient adherence to dietary plans.

The strategy of developing personalized nutritional plans through TAS2R38 genotype status has also been previously 
outlined by Bray et al.127 The authors note that childhood eating habits can carry over into adulthood and that repeated 
dietary exposure to a food can lower intake reluctance and increase the tendency of consuming that food. The authors 
further remark that masking the bitter taste of certain vegetables through sauces, spices or healthy fats can be an 
additional strategy in increasing dietary intake. PROP tasters among children, for example, were found to consume 80% 
more raw broccoli when the vegetable was accompanied by a sauce.128 On the other hand, broccoli consumption with the 
addition of a sauce did not change among PROP non-tasters. Thus, adopting food intake strategies to improve dietary 
behavior can be adopted based on the PROP/PTC taste status or TAS2R38 genotype.

Given the extensive research conducted on bacterial quorum-sensing molecules activating T2R38 in respiratory and 
sinonasal infections, further investigation should be conducted on examining the efficacy of T2R agonists among patients 
with differing TAS2R38 variants. Theoretically, drugs that function through the activation of T2R may be less effective 
for bacterial infections in patients carrying the PAV haplotype, as this pathway would already be activated through 
T2R38. Several anti-inflammatory medicinal herbs are also known for containing bitter flavonoids that activate T2R1, 
-10, -14 and -46.129 Future clinical research studies may want to consider comparing differences in the efficacy of bitter 
among patients with varying TAS2R SNPs, as inconsistencies and heterogeneity in therapeutic efficacy of flavonoids for 
asthma have been noted across several studies.130 Similarly, MP-AzeFlu (Dymista®; spray of azelastine/fluticasone 
propionate) is a drug used for allergic rhinitis and its dilatory effects on pre-contracted airways are thought to be 
enhanced by T2R activation rather than through blocking histamine receptors.131 Investigations can be conducted on the 
specific receptor isoforms that MP-AzeFlu activates and whether its efficacy is affected by T2R polymorphisms of the 
host. Moreover, T2R38 may also be naturally triggered in allergic rhinitis patients due to their altered and potentially 
more pathogenic bacterial microbiome in the nasal passage.132–134

Since the prognosis of gram-negative bacteria-infected patients can also differ based on TAS2R38 variation, adopting 
early aggressive treatment regimens for patients with the AVI diplotype can be contemplated. For example, in CRS 
patients, the non-taster phenotype and AVI diplotype are associated with increased disease severity, more frequent sinus 
infections, lower quality of life, higher likelihood of undergoing surgical invention, higher CT scores of the paranasal 
sinuses, higher likelihood of cultural bacteria in nasal swab samples, higher likelihood of in vivo biofilm formation, more 
frequent respiratory exacerbations, and higher likelihood of having nasal polyposis.100–105,112 This body of evidences 
suggests a significantly worse prognosis for AVI/AVI or non-taster CRS patients. The future development of more 
aggressive, but safe treatment regimens for this patient group would be beneficial for improving prognosis.

Aside from phenotype and genotype variation, TAS2R expression levels must also be taken into consideration. 
A systematic review outlined numerous in vitro studies showing the anti-cancerous effects of agonist-mediated T2R 
activation in cancer cell lines and its potential usefulness in enhancing chemotherapeutic effects.10 Attempting to activate 
the T2R pathway would theoretically be ineffective in tumor types with downregulated TAS2R expression. Thus, 
determining increased TAS2R expression profiles in tumor biopsies may be a viable strategy for improving complemen-
tary or adjuvant therapies, given the multi-faceted role T2R agonists can have in cancer therapy. Similarly, differences in 
TAS2R expression levels in the skin signify that T2R agonist drugs can possibly have heterogeneous effects based on the 
T2R isoform being targeted. The use of T2R agonist cocktails to treat atopic eczema, as seen in a 2013 patent,135 should 
take into consideration individual skin types. Different combinations of T2R agonists can be provided to appropriately 
activate the receptor isoforms that have higher expression levels specific to the patient and skin region.

In summary, improving compliance to medication and nutritional dietary strategies can be personalized based on 
variations in bitter taste genotype and phenotype. The efficacy of T2R agonists in treating bacterial infections should be 
investigated across different TAS2R38 diplotypes. Better or more aggressive treatment strategies can be developed for 
CRS patients who have a poor prognosis due to the TAS2R38 AVI/AVI diplotype. Lastly, T2R agonists used to treat 
cancer or skin conditions must take into consideration individual TAS2R expression levels.
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